# REPORT



# 1555 18TH STREET EAST

OWEN SOUND, ONTARIO

NOISE IMPACT STUDY RWDI #2204035 April 19, 2023

#### **SUBMITTED TO**

#### **Heather Jenkins**

Senior Director, Portfolio Management E: <u>HJenkins@smartcenters.com</u> T:647.362.3855

#### **SmartCentres**

3200 Highway 7 Vaughan, Ontario, L4K 5Z5 T: 905.326.6400

#### **SUBMITTED BY**

#### **Scott Bell**

Project Manager E: <u>Scott.Bell@rwdi.com</u>

#### Slavi Grozev, P.Eng.

Senior Noise and Vibration Engineer E: <a href="mailto:Slavi.Grozev@rwdi.com">Slavi.Grozev@rwdi.com</a>

#### **RWDI**

600 Southgate Drive Guelph, Ontario, N1G 4P6

T: 519.823.1311



**S. G.** GROŻEV **10**0161856



# **VERSION HISTORY**

| Index | Date              | Description                     | Prepared by     | Reviewed by  |
|-------|-------------------|---------------------------------|-----------------|--------------|
| 1     | October 13, 2022  | Draft                           | Lorenzo Carboni | Slavi Grozev |
| 2     | October 14, 2022  | Final                           | Natalie Firth   | Scott Bell   |
| 3     | November 10, 2022 | Updated with new site plan      | Lorenzo Carboni | Slavi Grozev |
| 4     | January 13, 2023  | Updated with new site plan      | Colin Jakubec   | Slavi Grozev |
| 5     | April 19, 2023    | Updated for Grey County Hospice | Colin Jakubec   | Slavi Grozev |



# **EXECUTIVE SUMMARY**

RWDI was retained to prepare a Noise Impact Study (NIS) for the proposed development 1555 18<sup>th</sup> Street East in Owen Sound, Ontario. The proposed development site is a green field between the SmartCentres' plaza and the Grey Bruce Health Services Center. This assessment was completed per requirements in the pre-consultation review.

Due to the transportation sound levels at the plane of the façade, central air conditioning is recommended for Building A to allow for windows and doors to remain closed as a noise mitigation measure. Further, prospective purchasers or tenants should be informed by a warning clause "Type D".

Due to the non-permitted stationary source sound levels at the façade being elevated is checked that the levels indoors with closed windows will not be a nuisance, per the local by-law. As such it is advisable to install or make an allowance for the residents to a ventilation system that will allow for windows to be closed.

The potential noise levels from stationary sources of sound were evaluated. Based on the noise modeling results with the noted ventilation requirements, the proposed development is not anticipated to infringe on the compliance of any commercial or industrial operations with environmental noise permits (ECA or EASR), nor cause infractions against the local noise by-law.

Recommendation of the use of a 1.8 m tall acoustic barrier to help reduce sound levels at the nearby hospice. With the implementation of the barrier adequate sound levels at nearby sensitive locations are expected to be achieved.

At this stage in design the noise levels produced by the development on itself could not be quantitatively assessed However, the effect on the building itself is expected to be feasible to meet the applicable criteria. We recommend that the building design is evaluated prior to building permit to ensure that the acoustical design is adequately implemented in order to meet the applicable criteria.



# **CONTENTS**

| VER                     | SION HISTORY                                                       | 2  |
|-------------------------|--------------------------------------------------------------------|----|
| EXE                     | CUTIVE SUMMARY                                                     | 1  |
| CON                     | TENTS                                                              | 2  |
| LIST                    | OF TABLES                                                          | 3  |
| LIST                    | OF FIGURES                                                         | 3  |
| LIST                    | OF APPENDICES                                                      | 3  |
| 1                       | INTRODUCTION                                                       |    |
| 2                       | APPLICABLE CRITERIA                                                | 4  |
| 3                       | THE EFFECTS OF THE ENVIRONMENT ON THE PROPOSED DEVELOPMENT         | 5  |
| 3.1.1<br>3.1.2<br>3.1.3 | 3.1 Transportation Source Assessment                               | 5  |
| 3.2.1                   | <b>3.2 Stationary Source Assessment</b> Stationary Source Modeling |    |
| 3.3.1<br>3.3.2          | Transportation Sources                                             | 11 |
| 4                       | THE EFFECTS OF THE PROPOSED DEVELOPMENT ON ITS SURROUNDINGS        | 11 |
| 5                       | THE EFFECTS OF THE PROPOSED DEVELOPMENT ON ITSELF                  | 13 |
| 6                       | CONCLUSIONS                                                        | 14 |
| 7                       | REFERENCES                                                         | 15 |
| 8                       | STATEMENT OF LIMITATIONS                                           | 15 |

#### NOISE IMPACT STUDY 1555 18TH STREET EAST

RWDI#2204035 April 19, 2023



# LIST OF TABLES

| Table 1: Road Traffic Volumes                                                       | 5    |
|-------------------------------------------------------------------------------------|------|
| Table 2: Predicted Transportation Source Sound Levels                               | 6    |
| Table 3: Stationary Source Sound Power Level Assumptions                            | 8    |
| Table 4: Predicted Sound Levels at Worst-case Facades – Stationary Sources          | 9    |
| Table 5: Predicted Sound Levels at Outdoor Points of Reception – Stationary Sources | . 10 |
| Table 6: Assumed Sound Power Levels for Equipment on the Proposed Development       | . 12 |
| Table 7: Predicted Sound Levels at Worst-case Development Facades – Continuous      |      |
| Stationary Sources                                                                  |      |

# LIST OF FIGURES

Figure 1: Context Site Plan

Figure 2: Outdoor Living Area Locations

Figure 3: Outdoor Point of Reception Locations

Figure 4.1: Stationary Source Locations – Standard Non-Permitted Figure 4.2: Stationary Source Locations – Standard Permitted

Figure 4.3: Stationary Source Locations – Emergency Permitted

Figure 4.4: Stationary Source Locations - Site

Figure 5: Stationary Source Locations – Site (Acoustical Barrier Location)

# LIST OF APPENDICES

Appendix A: Site Drawings

Appendix B: Criteria

Appendix C: Transportation Volume Data

Appendix D: Sample Calculations

Appendix E: Owen Sound Noise By-Law



# 1 INTRODUCTION

RWDI was retained to prepare a Noise Impact Study (NIS) for the proposed development 1555 18<sup>th</sup> Street East in Owen Sound, Ontario. The proposed development site is a green field between the SmartCenters' plaza and the Grey Bruce Health Services Center.

The proposed development will consist of multiple low rise residential buildings, with a mix of apartment buildings and townhouse blocks. The context site plan is shown in **Figure 1**.

The site is minimally exposed to noise from road traffic from 10th Street East and 18th Avenue East to the west.

Surrounding stationary sources of noise include commercial buildings in the SmartCenters' plaza to the north and the health care facility to the south.

This assessment was completed per requirements in the pre-consultation review from the City of Owen Sound. This assessment was based on design drawings dated December 7, 2022. Drawings are included in **Appendix A**.

## 2 APPLICABLE CRITERIA

Applicable criteria for transportation noise sources (road and rail), stationary noise sources and rail vibration are adopted from the Ontario Ministry of the Environment, Conservation and Parks (MECP) NPC-300 Environmental Noise Guideline (MOE, 2013), with a summary of the applicable criteria included with **Appendix B**. The Grey County Development Application Guidelines were also referenced to ensure the necessary supporting information is provided.

The proposed development site would be characterized as a "Class 1 Area", which is defined according to NPC-300 as an area with an acoustical environment typical of a major population centre, where the background sound level is dominated by the activities of people, usually road traffic, often referred to as "urban hum."

In addition to the applicable provincial guidance, the City of Owen Sound By-law (OS, 2014) was also used where applicable.



# 3 THE EFFECTS OF THE ENVIRONMENT ON THE PROPOSED DEVELOPMENT

## 3.1 Transportation Source Assessment

#### 3.1.1 Road Traffic Volume Data

The 10<sup>th</sup> Street East annual average daily traffic volumes, and percentage of trucks were obtained from publicly available City of Owen Sound data. A 90%/10% daytime/nighttime local road split was applied. The traffic volumes for each of the respective roadways were grown at a rate of 2% per year to represent the predicted 10-year horizon volumes.

A summary of the traffic data used is included in **Table 1** below with more detailed information included in **Appendix C**.

**Table 1: Road Traffic Volumes** 

| Roadway                                                          | 2032 Future Traffic<br>(AADT) | % Day/Night | Speed Limit<br>(km/hr) | % Trucks<br>Day/Night |
|------------------------------------------------------------------|-------------------------------|-------------|------------------------|-----------------------|
| 10 <sup>th</sup> Street East and<br>18 <sup>th</sup> Avenue East | 6544                          | 90% / 10%   | 50                     | 17.2% / 10.8%         |

### 3.1.2 Representative Receptors

The selection of receptors affected by transportation noise sources was based on the drawings reviewed for this assessment. Using the "building evaluation" feature of Cadna/A, each façade of the residential buildings was assessed.

Outdoor Living Areas (OLAs) would include outdoor areas intended and designed for the quiet enjoyment of the outdoor environment and which are readily accessible from the building. OLAs may include any common outdoor amenity spaces associated with a multi-unit residential development (e.g., courtyards, roof-top terraces), and/or private backyards and terraces with a minimum depth of 4m provided they are the only outdoor living area for the occupant. For this development no OLAs were associated with the apartment buildings, daytime sound levels from transportation sources were assessed in the backyards associated with the townhouse blocks, one representative receptor is assessed for each block. The OLA locations are indicated in **Figure 2**.

# 3.1.3 Transportation Source Assessment – Analysis and Results

Sound levels due to the adjacent transportation (road) sources were predicted using the RLS-90 standard (RLS,1990) as implemented in the Cadna/A software package.



To assess the effect of transportation noise on the development, the maximum sound level on each façade and the qualifying OLAs was determined with the results summarized in **Table 2**, note that only the worst-case façade for each block is shown here.

**Table 2: Predicted Transportation Source Sound Levels** 

|                   |           | Plane of Window               |                                |                               |  |  |
|-------------------|-----------|-------------------------------|--------------------------------|-------------------------------|--|--|
| Building          | Façade    | Day<br>L <sub>EQ</sub> , 16hr | Night<br>L <sub>EQ</sub> , 8hr | Day<br>L <sub>EQ</sub> , 16hr |  |  |
| <b>Building A</b> | Northwest | 63                            | 56                             | -                             |  |  |
| <b>Building B</b> | North     | 47                            | 40                             | -                             |  |  |
| Block 01          | West      | 52                            | 46                             | 47                            |  |  |
| Block 02          | West      | 51                            | 43                             | 48                            |  |  |
| Block 03          | West      | 50                            | 43                             | 47                            |  |  |
| Block 04          | West      | 48                            | 41                             | 47                            |  |  |
| Block 05          | West      | 47                            | 41                             | 45                            |  |  |
| Block 06          | West      | 46                            | 39                             | 45                            |  |  |
| Block 07          | North     | 47                            | 40                             | 44                            |  |  |
| Block 08          | North     | 44                            | 38                             | 38                            |  |  |
| Block 09          | North     | 43                            | 37                             | 37                            |  |  |
| Block 10          | North     | 43                            | 36                             | 36                            |  |  |
| Building C        | West      | 45                            | 38                             | -                             |  |  |
| Building D        | North     | 43                            | 37                             | -                             |  |  |
| Building E        | North     | 42                            | 35                             | -                             |  |  |

With the exception of Building A, facades have sound levels below the provincial criteria. Recommendations for building A are made in **Section 3.3.1**, for the rest of the development no mitigation or noise warning clauses are required.

A sample calculation output file of the CadnaA RLS-90 calculation is provided in **Appendix D**.

# **3.2 Stationary Source Assessment**

Stationary sources could be grouped into two categories: Those that have a permit with the Ontario Ministry of the Environment, Conservation and Parks (MECP) through an Environmental Compliance Approval (ECA) or Environmental Activity and Sector Registry (EASR); and those that are exempt from ECA or EASR permit requirements.

In the case where a stationary source has an ECA or EASR permit with the MECP, and would be put in a position where it is no longer in compliance with the applicable sound level criteria due to the encroachment of the proposed new development, source specific mitigation and/or formal classification of the proposed development

#### NOISE IMPACT STUDY 1555 18TH STREET EAST

#### RWDI#2204035 April 19, 2023



lands as a "Class 4 Area" (refer to C.4.4.2 "Class 4 Area" in NPC-300) would be required. In this case, coordination and agreements between the stationary source owner, proposed new development owner, the land-use planning authority and potentially the MECP would be needed.

In the case where a stationary source is exempt from ECA or EASR permit requirements with the MECP, the noise provisions of the applicable Municipal Code and guidance from NPC-300 would be applicable. In this case, mitigation of sound levels due to stationary sources would be from a due diligence perspective to avoid nuisance complaints from future occupants of the proposed new development. Mitigation could be in the form of mitigation at the source (with agreement from the stationary source owner) and/or mitigation at the receptor through site and building element design (building orientation, acoustical barriers, façade sound insulation design).

#### 3.2.1 Stationary Source Modeling

In this case, sources associated with the Grey Bruce Health Services Center for its ECA (#8948-A4SR26) is assessed strictly per NPC-300.

RWDI conducted a screening level assessment to determine stationary sources of noise surrounding the proposed development using a combination publicly available aerial imagery, street-level imagery, business listings and MECP's Access Environment database.

The stationary source is assessment is split into two scenarios.

- 1. Standard sources associated with the Grey Bruce Health Services Center (Permitted); and
- 2. Emergency sources associated with the Grey Bruce Health Services Center (Emergency Permitted).

#### 3.2.1.1 Representative Receptors

Using the "building evaluation" feature of Cadna/A, each façade of the residential buildings was assessed. The worst-case outdoor points of reception (ORP) locations were assessed to evaluate the potential stationary source noise effects on the proposed development. The OPRs mirror the OLA locations, adjusted to capture the worst-case stationary source noise scenarios. The OPR locations are indicated in **Figure 3**.

#### 3.2.1.2 Assumed Sources and Sound Power Levels

The Grey Bruce Health Services Center was identified to have a noise abatement action plan to address certain louvers on the side of the building. The facility was modeled to include the louver mitigation outlined in its ECA and with the understanding that it should be compliant at a height of 4.5 above grade at the development site given its existing residential zoning category. Additionally, it is expected that the facility will be compliant at the existing Chapman House, Hospice of Grey Bruce. No significant sources of noise were identified at Chapman House. Sound power levels for general emissions from the facilities louvers and emergency generator exhaust stacks were selected to model this facility as such.

RWDI proxy data was used for the sound power levels of the HVAC units, chillers, auto shop, idling trucks including refrigerated trucks, included in the model. The assumed sound power levels included in the stationary source



assessment are presented in **Table 3**. The locations of the sources and sound power levels used for each scenario of the stationary source assessment illustrated in **Figure 4.1, 4.2** and **4.3** respectively.

**Table 3: Stationary Source Sound Power Level Assumptions** 

| Table 5: Stationary St |                                                         |                                                                       |                                          | /cle                           |
|------------------------|---------------------------------------------------------|-----------------------------------------------------------------------|------------------------------------------|--------------------------------|
| Source                 | Source Proxy Data / Sound Power Calculation Level (dBA) |                                                                       | Daytime and Evening<br>(07:00h - 23:00h) | Nighttime<br>(23:00h - 07:00h) |
|                        | Non                                                     | -Permitted Stationa                                                   | ry Sources                               |                                |
| HVAC_1F                | Proxy Data                                              | 82                                                                    | Continuous                               | 30 min/hour                    |
| HVAC_2F                | Proxy Data                                              | 85                                                                    | Continuous                               | 30 min/hour                    |
| HVAC_3F                | Proxy Data                                              | 87                                                                    | Continuous                               | 30 min/hour                    |
| HVAC_4F                | Proxy Data                                              | 88                                                                    | Continuous                               | 30 min/hour                    |
| HVAC_6F                | Proxy Data                                              | 90                                                                    | Continuous                               | 30 min/hour                    |
| Chiller                | Proxy Data                                              | 92                                                                    | Continuous                               | Continuous                     |
| Idling Truck           | Proxy Data                                              | 92                                                                    | 10 min/hour                              | 10 min/hour                    |
| Refrigerated<br>Truck  | Proxy Data                                              | 102                                                                   | Continuous                               | Continuous                     |
| Auto Shop              | Proxy Data                                              | 90                                                                    | Continuous <sup>1</sup>                  | Off Duty                       |
|                        | Pe                                                      | ermitted Stationary                                                   | Sources                                  |                                |
| Hospital Louver        | Calculation                                             | 92 <sup>2</sup> , 83 <sup>3</sup> , 80 <sup>3</sup> , 79 <sup>3</sup> | Continuous                               | Continuous                     |
| Hospital<br>Generator  | Calculation                                             | 92                                                                    | Continuous                               | Continuous                     |

#### Note(s):

- 1. Sound level measurement accounts for typical on-off and sporadic use of tools at a typical auto shop.
- 2. Base sound level used for louvers on hospital
- Mitigated per Grey Bruce Health Services Center noise abetment action plan applied to select louvers.

The assumed sound power level values and duty-cycles for the stationary sources are based on reasonable assumptions for the source type. Continuous operation of the HVAC units during the daytime and 50% duty cycle during the nighttime when operations are reduced, chillers are assumed to operate continuously as it is expected that these units service the refrigerated sections within Walmart. Idling trucks are to account for up to 2 deliveries per hour abiding by the City of Owen sounds 5-minute idling bylaw, refrigerated trucks are modeled operating continuously as the refrigeration unit is not subject to the idling bylaw. The auto shop is modeled as operating continuously during its posted business hours. Continuous operation of all sources at the Grey Bruce Health Services Center is the worst-case scenario and representative of typical healthcare facility operations.

#### 3.2.1.3 Analysis and Results

Stationary source noise modelling was carried out using the Cadna/A software package, a commercially available implementation of the ISO 9613 (ISO, 1994 and ISO, 1996) algorithms. The predicted sound levels are assessed against both the Class 1 Area limits, 50 dBA for the daytime and 45 dBA for the nighttime (refer to **Appendix B** for additional details).



The predicted sound levels at the plane of window during the worst-case 1-hour from each stationary source scenario are presented in **Table 4**. Only the worst case for each façade in each scenario are presented.

**Table 4: Predicted Sound Levels at Worst-case Facades - Stationary Sources** 

|            | N      | on-Permitte                  | ed                             |        | Permitted                    |                                | Emer   | rgency Perm                  | itted                          |
|------------|--------|------------------------------|--------------------------------|--------|------------------------------|--------------------------------|--------|------------------------------|--------------------------------|
| Building   | Façade | Day<br>L <sub>EQ</sub> , 1hr | Night<br>L <sub>EQ</sub> , 1hr | Façade | Day<br>L <sub>EQ</sub> , 1hr | Night<br>L <sub>EQ</sub> , 1hr | Façade | Day<br>L <sub>EQ</sub> , 1hr | Night<br>L <sub>EQ</sub> , 1hr |
| Building A | NE     | 53                           | 52                             | SW     | 41                           | 41                             | SE     | 45                           | 45                             |
| Building B | N      | 47                           | 45                             | S      | 45                           | 45                             | S      | 50                           | 50                             |
| Block 01   | N      | 57                           | 56                             | W      | 42                           | 42                             | W      | 46                           | 46                             |
| Block 02   | N      | 57                           | 57                             | W      | 42                           | 42                             | S      | 40                           | 40                             |
| Block 03   | W      | 57                           | 56                             | W      | 42                           | 42                             | W      | 38                           | 38                             |
| Block 04   | N      | 56                           | 55                             | W      | 41                           | 41                             | W      | 37                           | 37                             |
| Block 05   | N      | 55                           | 54                             | W      | 41                           | 41                             | S      | 37                           | 37                             |
| Block 06   | N      | 54                           | 53                             | W      | 40                           | 40                             | S      | 36                           | 36                             |
| Block 07   | N      | 47                           | 46                             | S      | 45                           | 45                             | S      | 48                           | 48                             |
| Block 08   | N      | 47                           | 45                             | S      | 44                           | 44                             | S      | 46                           | 46                             |
| Block 09   | N      | 47                           | 45                             | S      | 43                           | 43                             | S      | 44                           | 44                             |
| Block 10   | N      | 44                           | 42                             | S      | 42                           | 42                             | S      | 43                           | 43                             |
| Building C | N      | 52                           | 51                             | W      | 40                           | 40                             | S      | 41                           | 41                             |
| Building D | N      | 51                           | 49                             | W      | 38                           | 38                             | W      | 38                           | 38                             |
| Building E | N      | 49                           | 47                             | W      | 37                           | 37                             | S      | 36                           | 36                             |

Note(s):

As shown in **Table 4**, the daytime and nighttime permitted sources continuous sound levels at the façades are predicted to meet the applicable Class 1 sound level criteria. The non-permitted sources exceed the NPC-300 Class 1 limits at the plane-of-window; however, these sources are subject to the local bylaw and are assessed as due diligence. To ensure that residences are provided comfortable interior environment the sound levels from the worst-case areas in the development (Block 02) were evaluated inside the residence with a closed window. It is expected that the Ontario Building Code minimums will provide comfortable interior sound levels with approximately 20 dB reduction. Furthermore, given that the subject lands are already zoned for a noise sensitive use, the nearby industries effects will have already been considered.

The predicted sound levels at the plane of window during the worst-case 1-hour from each stationary source scenario are presented in **Table 5**.

<sup>1.</sup> Worst-case daytime and nighttime occur on different façades.



Table 5: Predicted Sound Levels at Outdoor Points of Reception - Stationary Sources

| Duilding |               | Day L <sub>EQ</sub> , 1hr |                     |
|----------|---------------|---------------------------|---------------------|
| Building | Non-Permitted | Permitted                 | Emergency Permitted |
| Block 01 | 50            | 35                        | 30                  |
| Block 02 | 50            | 36                        | 32                  |
| Block 03 | 50            | 34                        | 29                  |
| Block 04 | 50            | 34                        | 29                  |
| Block 05 | 48            | 32                        | 27                  |
| Block 06 | 50            | 32                        | 27                  |
| Block 07 | 30            | 46                        | 47                  |
| Block 08 | 32            | 46                        | 46                  |
| Block 09 | 28            | 45                        | 44                  |
| Block 10 | 27            | 43                        | 44                  |

As shown in **Table 5**, the daytime permitted continuous sound levels at the OPRs are predicted to meet the applicable Class 1 sound level criteria. As such the non-permitted sources assed for due diligence are not expected to be an annoyance.

A sample calculation output file of the CadnaA ISO-9613 calculation is provided in **Appendix D**.



#### 3.3 Recommendations

Based on the noise and vibration assessment results, the following recommendations were determined for the project. Recommendations are provided for both transportation sources and stationary sources.

#### 3.3.1 Transportation Sources

Due to the transportation sound levels at the plane of the façade, central air conditioning is recommended for Building A to allow for windows and doors to remain closed as a noise mitigation measure. Further, prospective purchasers or tenants should be informed by a warning clause "Type D".

There is no required mitigation to address noise levels from transportation sources of noise for other parts of the proposed development.

#### 3.3.2 Stationary Sources

Due to the non-permitted stationary source sound levels at the façade being elevated is checked that the levels indoors with closed windows will not be a nuisance, per the local by-law. As such it is advisable to install or make an allowance for the residents to a ventilation system that will allow for windows to be closed.

Based on the noise modeling results with the noted ventilation requirements, the proposed development is not anticipated to infringe on the compliance of any commercial or industrial operations with environmental noise permits (ECA or EASR), nor cause infractions against the local noise by-law (OS, 2014). As such, the land use compatibility of the proposed development with respect to the nearby industries is considered acceptable from the noise assessment perspective.

# 4 THE EFFECTS OF THE PROPOSED DEVELOPMENT ON ITS SURROUNDINGS

The SmartCenters are assessed as due diligence against the local noise By-law, and NPC-300 where applicable. The proposed development has the potential to impact the surrounding environment with respect to sound emissions from mechanical equipment associated with heating and ventilation.

The potential impact of these sources is assessed against the MECP sound level criteria to ensure an adequate sound environment would be present for the existing surrounding sensitive land uses. The most sensitive location evaluated is the hospice located to the west of the site and the Grey Bruce Health Service hospital to the south of the site.

On-site stationary sources for the development consist of makeup air units and air conditioner units. Modelling was conducted for the largest and most significant sources of noise to determine the sound levels of the equipment on the surrounding sensitive land uses. Sound power levels of the equipment are presented in **Table 6** and are based on information provided by the client for comparable residential development equipment. The location of these



sources can be seen in **Figure 4.4**. Buildings A and B are assumed to have a parapet of 30 cm surrounding the roof top edge.

Table 6: Assumed Sound Power Levels on the Proposed Development

|                       |               | Sound                         | Duty Cycle                                  |                                |  |
|-----------------------|---------------|-------------------------------|---------------------------------------------|--------------------------------|--|
| Source                | ID            | Sound<br>Power<br>Level (dBA) | Daytime and<br>Evening<br>(07:00h – 23:00h) | Nighttime<br>(23:00h - 07:00h) |  |
| MUA Case              | MAU_Case_site | 86                            | Continuous                                  | Continuous                     |  |
| Air Conditioning Unit | AC_Site       | 84                            | Continuous                                  | Continuous                     |  |

The predicted sound levels are assessed against the NPC-300 Class 1 limits and are presented in **Table 7**. Compliance was evaluated against the nighttime criteria as residential units were assumed to have the potential to be continuously operational.

Table 7: Predicted Sound Levels at Worst-case Development Facades - Continuous Stationary Sources

| Façade/OLA                    |           | Predicted<br>Sound Level<br>(dBA) | Class 1 Sound L<br>Lim<br>Exte<br>(dB<br>Daytime | nit<br>rior | Meets Criteria? |
|-------------------------------|-----------|-----------------------------------|--------------------------------------------------|-------------|-----------------|
|                               | Northeast | 45                                | 50                                               | 45          | Yes             |
|                               | East      | 45                                | 50                                               | 45          | Yes             |
| Hospice                       | South     | 33                                | 50                                               | 45          | Yes             |
|                               | Southwest | 27                                | 50                                               | 45          | Yes             |
|                               | West      | 34                                | 50                                               | 45          | Yes             |
| Grey Bruce Health<br>Services | North     | 41                                | 50                                               | 45          | Yes             |

Sound levels are predicted to be met for onsite stationary sources at the hospice, and the hospital to the south.

There are loading areas at Buildings A and B meant for garbage collection and building loading activities. Per the Owen Sound Noise By-law, attached in **Appendix E**, garbage trucks carrying out city operations are generally exempt from the Noise By-Law. Furthermore, NPC-300 lists these activities as ones not required to be assessed as part of development applications.

However, as a form of due diligence, garbage collection and loading area activities were also assessed at the nearby hospice. Garbage collection steady state sound levels (i.e. those from truck movements and idling operations) at the nearest hospice façade are expected to be 46 dBA, thus marginally over the NPC-300 nighttime sound criteria of 45

#### NOISE IMPACT STUDY 1555 18TH STREET EAST

RWDI#2204035 April 19, 2023



dBA. Such a minor exceedance is not audible. Impulsive sound levels (i.e. those related to the emptying of bins) were modelled to be in the low 60 dBAI range. This is a very infrequent and short activity but it may be of nuisance.

It is recommended, as best practice, to include an acoustic barrier in a section of the fencing to the west, as seen in **Figure 5**, to reduce sound levels. The barrier should have at least the same height of the proposed fencing of 1.8 m, but should be constructed such that it has a minimum surface density of 20 kg/m² to meet the NPC-300 definition of an acoustical barrier and provide a noticeable reduction. While this is not required it will ensure that sound levels are reduced as much as possible given the Owen Sound barrier height limitations. It is further recommended to not allow moving trucks to remain idle when moving occurs to ensure sound levels are met at the hospice. Owen Sound Noise By-law makes note of this to not allow vehicles to remain idle for more than 10 minutes, however, eliminating idling will further reduce sound levels at the hospice.

Based on the recommendations and information provided by the client an adequate sound environment will be achieved at the surrounding sensitive noise receptors.

# 5 THE EFFECTS OF THE PROPOSED DEVELOPMENT ON ITSELF

On-site stationary sources for the dwellings are expected to mainly consist of HVAC related equipment. Consideration should be given to control airborne and structure-borne noise generated within the proposed development from these sources.

Provided that best practices for the acoustical design of the building and guidelines from NPC-216 (MOE, 1993) are followed, noise from the development are expected to be feasible to meet the applicable sound level criteria due to the residential nature of the proposed dwellings.

We recommend that the potential noise effect of the proposed development is reviewed during detailed design to ensure the applicable sound level criteria will be achieved.



# 6 CONCLUSIONS

RWDI was retained to prepare a Noise Impact Study (NIS) for the proposed development 1555 18<sup>th</sup> Street East in Owen Sound, Ontario.

Due to the transportation sound levels at the plane of the façade, central air conditioning is recommended for Building A to allow for windows and doors to remain closed as a noise mitigation measure. Further, prospective purchasers or tenants should be informed by a warning clause "Type D".

Due to the non-permitted stationary source sound levels at the façade being elevated is checked that the levels indoors with closed windows will not be a nuisance, per the local by-law. As such it is advisable to install or make an allowance for the residents to a ventilation system that will allow for windows to be closed.

The potential noise levels from stationary sources of sound were evaluated. Based on the noise modeling results with the noted ventilation requirements, the proposed development is not anticipated to infringe on the compliance of any commercial or industrial operations with environmental noise permits (ECA or EASR), nor cause infractions against the local noise by-law.

Recommendation of the use of a 1.8 m tall acoustic barrier to help reduce sound levels at the nearby hospice. With the implementation of the barrier adequate sound levels at nearby sensitive locations are expected to be achieved.

At this stage in design the noise levels produced by the development on itself could not be quantitatively assessed However, the effect on the building itself is expected to be feasible to meet the applicable criteria. We recommend that the building design is evaluated prior to building permit to ensure that the acoustical design is adequately implemented in order to meet the applicable criteria.

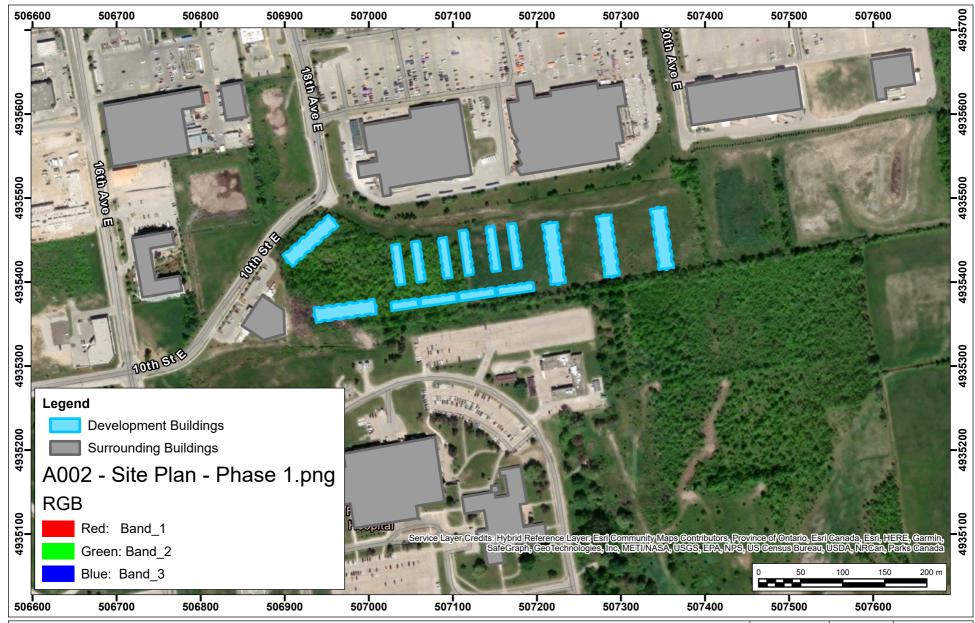
Based on the results of the analysis including implementation of the recommendations included with this assessment, the proposed development is considered feasible from an environmental noise perspective.



## 7 REFERENCES

- 1. Ontario Ministry of the Environment (MOE), August 2013, Publication NPC-300, Environmental Noise Guideline Stationary and Transportation Sources Approval and Planning (MOE, 2013).
- 2. Ontario Ministry of the Environment and Energy (MOE), 1993, Publication NPC-216, Residential Air Conditioning Devices (MOE, 1993).
- 3. Richtlinien für den Lärmschutz an Strassen (RLS). BM für Verkehr, Bonn, 1990 (RLS, 1990).
- 4. Controlling Sound Transmission into Buildings (BPN-56), National Research Council Canada (NRCC, 1985).
- 5. Institute of Transportation Engineers (ITE), 2010, Traffic Engineering Handbook, 6th Edition (ITE, 2010)
- 6. International Organization for Standardization (ISO), 1994b, International Standard ISO 9613-1:1994, Acoustics Attenuation of Sound during propagation outdoors. Part 1: Calculation of the absorption of sound by the atmosphere. (ISO, 1994)
- 7. International Organization for Standardization (ISO), 1996, International Standard ISO 9613-2:1996, Acoustics Attenuation of sound during propagation outdoors Part 2: General method of calculation (ISO, 1996)
- 8. Bies, H. and Hanson, C. H. (2009), Engineering Noise Control: Theory and Practice. Spon Press, New York, USA.
- 9. Crocker, M. (2007), Handbook of Noise and Vibration Control. John Wiley & Sons, Inc.
- 10. The Corporation of the City of Owen Sound, Consolidated Version April 23, 2014, *By-law No. 2001-034 "A By-law to Prohibit and Regulate Unusual Noises or Noises Likely to Disturb the Inhabitants of the City of Owen Sound"*. (OS, 2014)

# 8 STATEMENT OF LIMITATIONS


This report entitled "1555 18th Street East Noise Impact Study" dated April,19, 2023, was prepared by Rowan Williams Davies & Irwin Inc. ("RWDI") for SmartCentres ("Client"). The findings and conclusions presented in this report have been prepared for the Client and are specific to the project described herein ("Project"). The conclusions and recommendations contained in this report are based on the information available to RWDI when this report was prepared. Because the contents of this report may not reflect the final design of the Project or subsequent changes made after the date of this report, RWDI recommends that it be retained by Client during the final stages of the project to verify that the results and recommendations provided in this report have been correctly interpreted in the final design of the Project.

The conclusions and recommendations contained in this report have also been made for the specific purpose(s) set out herein. Should the Client or any other third party utilize the report and/or implement the conclusions and recommendations contained therein for any other purpose or project without the involvement of RWDI, the Client or such third party assumes any and all risk of any and all consequences arising from such use and RWDI accepts no responsibility for any liability, loss, or damage of any kind suffered by Client or any other third party arising therefrom.

Finally, it is imperative that the Client and/or any party relying on the conclusions and recommendations in this report carefully review the stated assumptions contained herein and to understand the different factors which may impact the conclusions and recommendations provided.

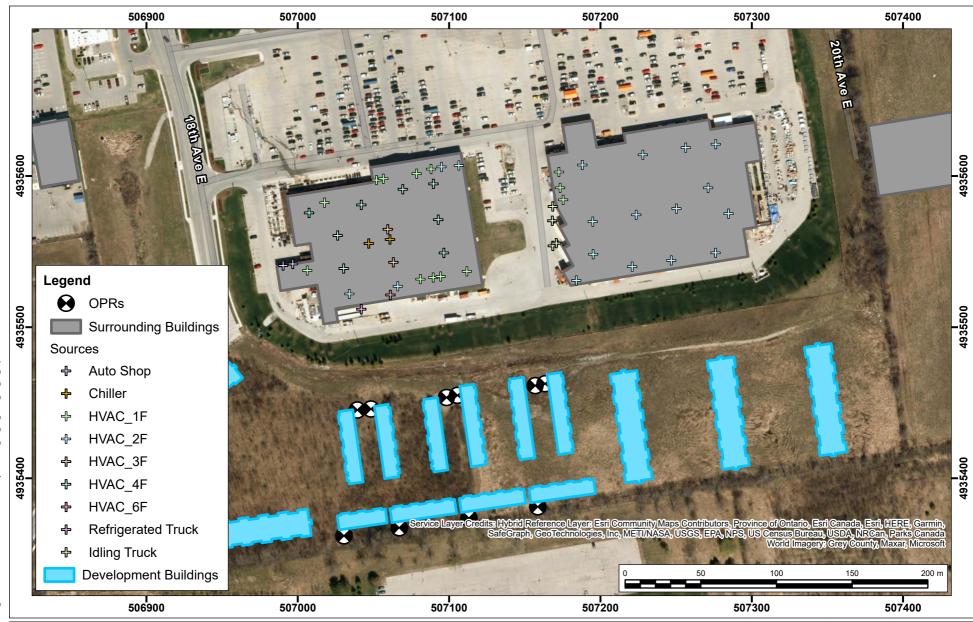


# **FIGURES**



Site Context Plan

Drawn by: LRC Figure:


Approx. Scale: 1:4,500

Date Revised: Jan 16, 2023

Project #: 2204035

True North

Map Projection: NAD 1983 UTM Zone 17N 1555 18th Street East - Owen Sound, Ontario



#### **Stationary Source Locations** Standard Non-Permitted

Map Projection: NAD 1983 UTM Zone 17N 1555 18th Street East - Owen Sound, Ontario True North

Drawn by: LRC Figure: 4.1

Approx. Scale:

1:2,500

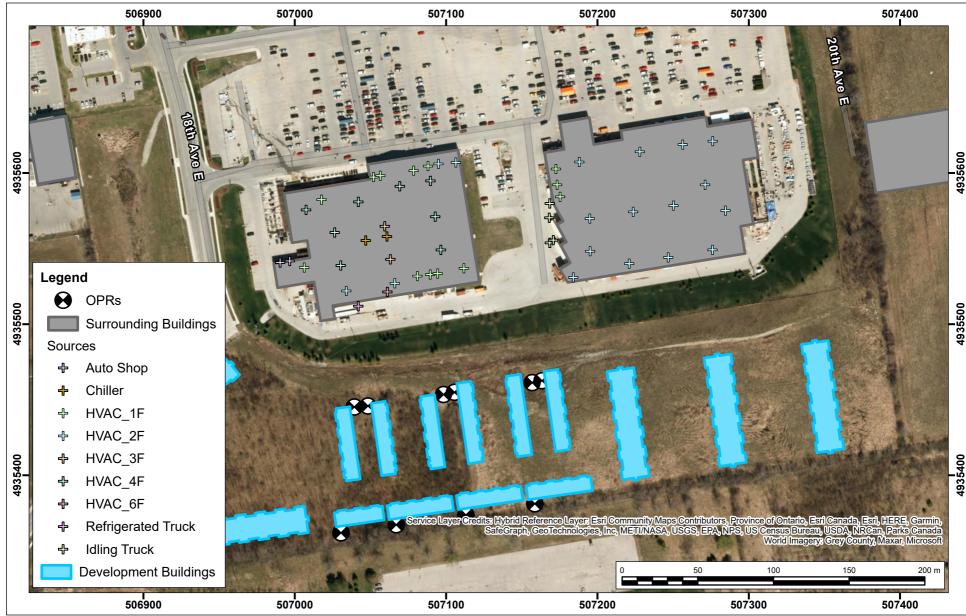
Date Revised: Jan 16, 2023 Project #: 2204035





## **Outdoor Point of Reception Locations**

Map Projection: NAD 1983 UTM Zone 17N 1555 18th Street East - Owen Sound, Ontario True North


Drawn by: LRC Figure: 3

Approx. Scale: 1:1,000

Date Revised: Jan 16, 2023



Project #: 2204035



# Stationary Source Locations Standard Non-Permitted

Map Projection: NAD 1983 UTM Zone 17N 1555 18th Street East - Owen Sound, Ontario True North

Drawn by: LRC Figure: 4.1

Approx. Scale: 1:2,500

#. 2204025 Date Revised: Jan 16, 2023



Project #: 2204035

# Stationary Source Locations Standard Permitted

Map Projection: NAD 1983 UTM Zone 17N 1555 18th Street East - Owen Sound, Ontario True North

Drawn by: LRC Figure: 4.2

Approx. Scale: 1:2,500

Date Revised: Jan 16, 2023



Project #: 2204035

### Stationary Source Locations Emergency Permitted

Map Projection: NAD 1983 UTM Zone 17N 1555 18th Street East - Owen Sound, Ontario True North

Drawn by: LRC Figure: 4.3

Approx. Scale: 1:2,500

Project #: 2204035 Date Revised: Jan 16, 2023



Stationary Source Locations Stationary Sources on Site

Map Projection: NAD 1983 UTM Zone 17N 1555 18th Street East - Owen Sound, Ontario True North

Drawn by: CJ Figure: 4.4

Approx. Scale: 1:1,600

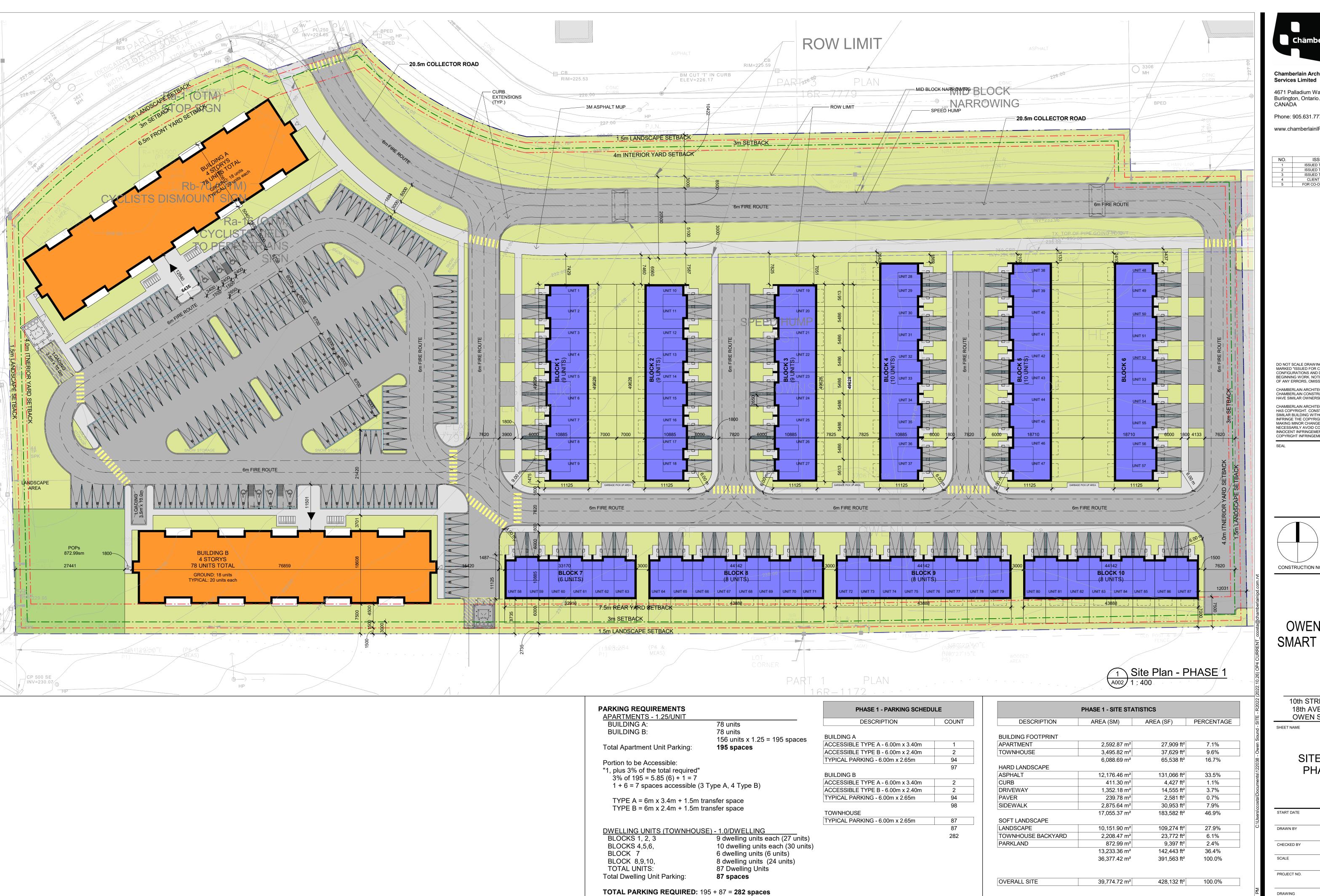
Project #: 2204035 Date Revised: Apr 19, 2023



**Stationary Source Locations** Stationary Sources on Site

Map Projection: NAD 1983 UTM Zone 17N 1555 18th Street East - Owen Sound, Ontario True North

Drawn by: CJ Figure:


Approx. Scale: 1:1,600

Date Revised: Apr 19, 2023 Project #: 2204035





# APPENDIX A

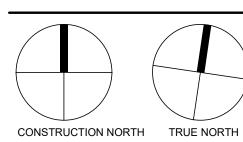




**Chamberlain Architect** 

4671 Palladium Way (Unit 1) Burlington, Ontario. L7M 0W9

Phone: 905.631.7777


www.chamberlainIPD.com

| NO. | ISSUED            | DATE       |
|-----|-------------------|------------|
| 1   | ISSUED TO CLIENT  | 2022-09-12 |
| 2   | ISSUED TO CLIENT  | 2022-10-26 |
| 3   | ISSUED TO CLIENT  | 2022-10-27 |
| 4   | CLIENT REVIEW     | 2022-11-17 |
| 5   | FOR CO-ORDINATION | 2022-12-07 |
|     | •                 |            |

DO NOT SCALE DRAWINGS. USE ONLY DRAWINGS MARKED "ISSUED FOR CONSTRUCTION". VERIFY CONFIGURATIONS AND DIMENSIONS ON SITE BEFORE BEGINNING WORK. NOTIFY ARCHITECT IMMEDIATELY CHAMBERLAIN ARCHITECT SERVICES LIMITED AND CHAMBERLAIN CONSTRUCTION SERVICES LIMITED HAVE SIMILAR OWNERSHIP.

CHAMBERLAIN ARCHITECT SERVICES LIMITED
HAS COPYRIGHT. CONSTRUCTING A SUBSTANTIALLY
SIMILAR BUILDING WITHOUT PERMISSION MAY
INFRINGE THE COPYRIGHT OWNER'S RIGHTS.

NECESSARILY AVOID COPYRIGHT INFRINGEMENT INNOCENT INFRINGEMENT IS NOT A DEFENSE TO COPYRIGHT INFRINGEMENT. ©



OWEN SOUND SMART CENTRES

10th STREET EAST & 18th AVENUE EAST OWEN SOUND, ON

SHEET NAME

SITE PLAN PHASE 1

| START DATE  | 2022.09.12 |
|-------------|------------|
| DRAWN BY    | MMW/ SS    |
| CHECKED BY  | CC         |
| SCALE       | 1 : 400    |
| PROJECT NO. | 122038     |
| DDAWING     |            |



# **APPENDIX B**



# **CRITERIA**

### **Transportation Sources**

Guidance from the Ontario Ministry of the Environment, Conservation and Parks (MECP) NPC-300 Environmental Noise Guideline was used to assess environmental noise generated by transportation-related sources. There are three aspects to consider, which include the following:

- Transportation source sound levels in indoor living areas (living rooms and sleeping quarters), which
  determines building façade elements (windows, exterior walls, doors) sound insulation design
  recommendations.
- ii. Transportation source sound levels at the plane of the window, which determines air-conditioning and ventilation system recommendations and associated warning clauses which inform the future occupants that windows and doors must be closed in order to meet the indoor sound level criteria.
- iii. Transportation source sound levels in Outdoor Living Areas (OLAs), which determines OLA noise mitigation and related warning clause recommendations.

#### **Road and Rail**

#### **Indoor Sound Level Criteria**

For assessing sound originating from transportation sources, NPC-300 defines sound level criteria as summarized in **Table 1** for indoor areas of sensitive uses. The specified values are maximum sound levels and apply to the indicated indoor spaces with the windows and doors closed.

**Table 1: Indoor Sound Level Criteria for Road and Rail Sources** 

|                                                                                                                              |        | Sound Level Criteria (Indoors)                   |                                                   |  |  |
|------------------------------------------------------------------------------------------------------------------------------|--------|--------------------------------------------------|---------------------------------------------------|--|--|
| Type of Space                                                                                                                | Source | Daytime L <sub>eq,16-hr</sub><br>07:00h – 23:00h | Nighttime L <sub>eq,8-hr</sub><br>23:00h - 07:00h |  |  |
| Living Quarters  Examples: Living, dining and den areas of residences, hospitals, nursing homes, schools and daycare centres | Road   | 45 dBA                                           |                                                   |  |  |
|                                                                                                                              | Rail   | 40 dBA                                           |                                                   |  |  |
| Sleeping Quarters                                                                                                            | Road   | 45 dBA                                           | 40 dBA                                            |  |  |
| Siestim & Again seis                                                                                                         | Rail   | 40 dBA                                           | 35 dBA                                            |  |  |

NPC-300 also provides guidelines for acceptable indoor sound levels that are extended to land uses and developments which are not normally considered noise sensitive. The guideline sound level criteria presented in **Table 2** are provided to inform good-practice design objectives.



Table 2: Supplementary Indoor Sound Level Criteria for Road and Rail Sources

|                                                             |        | Sound Level Criteria (Indoors)                   |                                                   |  |  |
|-------------------------------------------------------------|--------|--------------------------------------------------|---------------------------------------------------|--|--|
| Type of Space                                               | Source | Daytime L <sub>eq,16-hr</sub><br>07:00h – 23:00h | Nighttime L <sub>eq,8-hr</sub><br>23:00h - 07:00h |  |  |
| Conoral offices recention areas retail stores etc           |        | 50 dBA                                           | -                                                 |  |  |
| General offices, reception areas, retail stores, etc.       | Rail   | 45 dBA                                           | -                                                 |  |  |
| Theatres, places of worship, libraries, individual or semi- | Road   | 45 dBA                                           | -                                                 |  |  |
| private offices, conference rooms, reading rooms, etc.      | Rail   | 40 dBA                                           | -                                                 |  |  |
| Sleeping quarters of residences, hospitals,                 | Road   | -                                                | 40 dBA                                            |  |  |
| nursing/retirement homes, etc.                              | Rail   | -                                                | 35 dBA                                            |  |  |
| Sleeping quarters of hotels/motels                          | Road   | -                                                | 45 dBA                                            |  |  |
| Siceping quarters of flotels/flotels                        | Rail   | -                                                | 40 dBA                                            |  |  |

#### **Outdoor Living Areas (OLAs)**

Outdoor Living Areas (OLAs) would include outdoor areas intended and designed for the quiet enjoyment of the outdoor environment and which are readily accessible from the building.

OLAs may include any common outdoor amenity spaces associated with a multi-unit residential development (e.g. courtyards, roof-top terraces), and/or private backyards and terraces with a minimum depth of 4m provided they are the only outdoor living area for the occupant. The sound level criteria for outdoor living areas is summarized in **Table 3**.

Table 3: Sound Level Criteria - Outdoor Living Area

|                                                       | Sound Level Criteria (Outdoors)                  |                                                   |  |
|-------------------------------------------------------|--------------------------------------------------|---------------------------------------------------|--|
| Assessment Location                                   | Daytime L <sub>eq,16-hr</sub><br>07:00h – 23:00h | Nighttime L <sub>eq,8-hr</sub><br>23:00h - 07:00h |  |
| Outdoor Living Area (OLA)<br>(Combined Road and Rail) | 55 dBA                                           | -                                                 |  |

#### **Outdoor and Plane of Window Sound Levels**

In addition to the sound level criteria, noise control measures and requirements for ventilation and warning clauses requirements are recommended for residential land-uses based on predicted transportation source sound levels incident in the plane of window at bedrooms and living/dining rooms, and/or at outdoor living areas. These recommendations are summarized in **Table 4** below.

#### rwdi.com



Table 4: Ventilation, Building Component, and Warning Clauses Recommendations for Road/Rail Sources

|                                             | I                                                | nd Level (Outdoors)                               |                                                                                                                                                                                                                                                          |  |  |  |
|---------------------------------------------|--------------------------------------------------|---------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|
| Assessment<br>Location                      | Daytime L <sub>eq,16-hr</sub><br>07:00h – 23:00h | Nighttime L <sub>eq,8-hr</sub><br>23:00h - 07:00h | Recommendations                                                                                                                                                                                                                                          |  |  |  |
|                                             |                                                  |                                                   | Installation of air conditioning to allow windows to remained closed.                                                                                                                                                                                    |  |  |  |
| wop                                         | > 65 dBA                                         | > 60 dBA                                          | The sound insulation performance of building components must be specified and designed to meet the indoor sound level criteria.                                                                                                                          |  |  |  |
| Winc<br>ad)                                 |                                                  |                                                   | Warning clause "Type D" is recommended.                                                                                                                                                                                                                  |  |  |  |
| Plane of Window<br>(Road)                   | > 55 dBA                                         | > 50 dBA                                          | Applicable for low and medium density development: Forced-air ventilation system to allow for the future installation of air-conditioning. Warning clause "Type C" is recommended.                                                                       |  |  |  |
|                                             |                                                  |                                                   | Applicable for high density development: Air conditioning to allow windows to remained closed. Warning clause "Type D" is recommended.                                                                                                                   |  |  |  |
| Plane of Window<br>(Rail <sup>1, 2</sup> )  | > 60 dBA                                         | > 55 dBA                                          | The acoustical performance of building façade components should be specified such that the indoor sound level limits are predicted to be achieved.                                                                                                       |  |  |  |
| e of Wind<br>(Rail <sup>1, 2</sup> )        |                                                  |                                                   | Warning clause "Type D" is recommended.                                                                                                                                                                                                                  |  |  |  |
| Plane<br>()                                 |                                                  | _eq, 24hr <b>) and</b>                            | Exterior walls consisting of a brick veneer or masonry equivalent for the first row of dwellings.                                                                                                                                                        |  |  |  |
|                                             | < 100m fr                                        | om tracks                                         | Warning clause "Type D" is recommended.                                                                                                                                                                                                                  |  |  |  |
| ( <sub>E</sub>                              | ≤ 60 dBA                                         | -                                                 | If sound levels are predicted to exceed 55 dBA, but are less than 60 dBA, noise controls may be applied to reduce the sound level to 55 dBA.                                                                                                             |  |  |  |
| Living Area<br>:oad and Rail <sup>3</sup> ) | > 55 dBA                                         |                                                   | If noise control measures are not provided, a warning clause "Type A" is recommended.                                                                                                                                                                    |  |  |  |
|                                             |                                                  |                                                   | Noise controls (barriers) should be implemented to meet the 55 dBA criterion.                                                                                                                                                                            |  |  |  |
| Outdoor  <br>(Combined R                    | > 60 dBA                                         | -                                                 | If mitigation is not feasible to meet the 55 dBA criterion for technical, economic or administrative reasons, an exceedance of 5 dB may be acceptable (to a maximum sound level of 60 dBA). In this case a warning clause "Type B" would be recommended. |  |  |  |

#### Note(s):

- 1. Whistle noise is included (if applicable) in the determination of the sound level at the plane of window.
- 2. Some railway companies (e.g. CN, CP) may require that the exterior walls include a brick veneer or masonry equivalent for the façade facing the railway line, regardless of the sound level.
- Whistle noise is not included in the determination of the sound level at the OLA.



#### **Rail Layover Sites**

NPC-300 provides a sound level limit for rail layover sites to be the higher of the background sound level or 55 dBA Leq,1-hr, for any one-hour period.

#### **Rail Vibration Criteria**

An assessment of rail vibration is generally recommended for developments within 75m of a rail corridor or rail yard, and adjacent to or within a setback of 15m of a transit (subway or light-rail) rail line.

The generally accepted vibration criterion for sensitive land-uses is the threshold of perception for human exposure to vibration, being a vibration velocity level of 0.14 mm/s RMS in any one-third octave band centre frequency in the range of 4 Hz to 200 Hz.

This vibration criterion is based on a one-second exponential time-averaged maximum hold root-mean-square (RMS) vibration velocity level and is consistent with the Railway Associations of Canada (RAC, 2013) guideline, the U.S. Federal Transit Authority (FTA, 2018) criterion for residential land-uses, the Toronto Transit Commission (TTC) guidelines for the assessment of potential vibration impact of future expansion (MOEE/TTC, 1993).

#### Aircraft

Land-use compatibility in the vicinity of airports is addressed in Ministry of the Environment, Conservation, and Parks (MECP) Guideline NPC-300 (MOE, 2013). The guideline provides recommendations for ventilation, and noise control for different Noise Exposure Forecast (NEF) values, which would be based on NEF contour maps available from the airport authority. The NEF values can be expressed as  $L_{A,eq,24hr}$  sound levels by using the expression NEF =  $L_{Aeq,24hr}$  -32 dBA.

Table 5: Indoor Sound Level Criteria for Aircraft Sources

| Assessment Location                                                                                        | Indoor Sound Level Criteria<br>NEF (L <sub>eq, 24hr</sub> ) <sup>1</sup> |
|------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------|
| Living/dining/den areas of residences, hospitals, schools, nursing/retirement homes, daycare centres, etc. | NEF- 5 (37 dBA)                                                          |
| Sleeping quarters                                                                                          | NEF-0 (32 dBA)                                                           |

NPC-300 also provides guidelines for acceptable indoor sound levels that are extended to land uses and developments which are not normally considered noise sensitive. The guideline sound level criteria presented in **Table 6** are provided to inform good-practice design objectives.

Table 6: Supplementary Indoor Sound Level Criteria for Aircraft Sources

| Assessment Location                                                              | Indoor Sound Level Criteria <sup>1</sup> |
|----------------------------------------------------------------------------------|------------------------------------------|
| General offices, reception areas, retail stores, etc.                            | NEF-15 (47 dBA)                          |
| Individual or semi-private offices, conference rooms, etc.                       | NEF-10 (42 dBA)                          |
| Sleeping quarters of hotels/motels, theatres, libraries, places of worship, etc. | NEF-5 (37 dBA)                           |



Table 7: NPC-300 Sound Level Criteria for Aircraft (Outdoors)

| Assessment Location          | Outdoor Sound Level Criteria <sup>1</sup> |
|------------------------------|-------------------------------------------|
| Outdoor areas, including OLA | NEF-30 (62 dBA)                           |

Table 8: Ventilation, Building Component, and Warning Clauses Recommendations for Aircraft Sources

| Assessment | Aircraft Sound Level | NPC-300 Requirements                                                                                                                                                               |  |  |  |  |
|------------|----------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|--|--|--|--|
| Location   | NEF (LEQ,24-hr)      |                                                                                                                                                                                    |  |  |  |  |
|            |                      | Air conditioning to allow windows to remained closed.                                                                                                                              |  |  |  |  |
|            | ≥NEF 30              | The sound insulation performance of building components must be specified and designed to meet the indoor sound level criteria.                                                    |  |  |  |  |
|            |                      | Warning clauses "Type D" and "Type B" are recommended.                                                                                                                             |  |  |  |  |
| Outdoors   |                      | The sound insulation performance of building components must be specified and designed to meet the indoor sound level criteria.                                                    |  |  |  |  |
| Outdoors   | < NEF 30<br>≥ NEF 25 | Applicable for low and medium density development: Forced-air ventilation system to allow for the future installation of air-conditioning. Warning clause "Type C" is recommended. |  |  |  |  |
|            |                      | Applicable for high density development: Air conditioning to allow windows to remained closed. Warning clause "Type D" is recommended.                                             |  |  |  |  |
|            | < NEF 25             | Further assessment not required                                                                                                                                                    |  |  |  |  |

# **Stationary Sources**

## **NPC-300 Sound Level Criteria – Stationary Sources**

Guidance from the MECP NPC-300 Environmental Noise Guideline is used to assess environmental noise generated by stationary sources, for example industrial and commercial facilities.

Noise from stationary sources is treated differently from transportation sources and requires sound levels be assessed for the predictable worst-case one-hour average sound level (L<sub>eq</sub>) for each period of the day. For assessing sound originating from stationary sources, NPC-300 defines sound level criteria for two types of Points of Reception (PORs): outdoor and plane of window.

The assessment criteria for all PORs is the higher of either the exclusion limit per NPC-300 or the minimum background sound level that occurs or is likely to occur at a POR. The applicable exclusion limit is determined based on the level of urbanization or "Class" of the area. The NPC-300 exclusion limits for continuously operating stationary sources are summarized in **Table 9**.



Table 9: NPC-300 Exclusion Limits - Continuous and Quasi-Steady Impulsive Stationary Sources (LAeq-1hr)

| Time                    | Class 1 Area |                    | Class 2 Area |                    | Class 3 Area |                    | Class 4 Area |                    |
|-------------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|--------------|--------------------|
| Period                  | Outdoor      | Plane of<br>Window |
| Daytime<br>0700-1900h   | 50 dBA       | 50 dBA             | 50 dBA       | 50 dBA             | 45 dBA       | 45 dBA             | 55 dBA       | 60 dBA             |
| Evening<br>1900-2300h   | 50 dBA       | 50 dBA             | 45 dBA       | 50 dBA             | 40 dBA       | 40 dBA             | 55 dBA       | 60 dBA             |
| Nighttime<br>2300-0700h |              | 45 dBA             |              | 45 dBA             |              | 40 dBA             |              | 55 dBA             |

#### Note(s):

- The applicable sound level criterion is the background sound level or the exclusion limit, whichever is higher. 1.
- 2. Class 1, 2 and 3 sound level criteria apply to a window that is assumed to be open.
- 3.
- Class 4 area criteria apply to a window that is assumed closed. Class 4 area requires formal designation by the land-use planning authority.

  Sound level criteria for emergency backup equipment (e.g. generators) operating in non-emergency situations such as testing or maintenance are 5 dB greater than the applicable sound level criteria for stationary sources.

For impulsive sound, other than quasi-steady impulsive sound, from a stationary source, the sound level criteria at a POR is expressed in terms of the Logarithmic Mean Impulse Sound Level (LLM), and is summarized in **Table** 10.



Table 10: NPC-300 Exclusion Limits - Impulsive Stationary Sources (LLM)

| Table 10: NPC-30                      | Number of                            | Class 1 and 2 Areas |                    | Class 3 |                    | Class 4 Areas |                    |
|---------------------------------------|--------------------------------------|---------------------|--------------------|---------|--------------------|---------------|--------------------|
| Time Period                           | Impulses in<br>Period of<br>One-Hour | Outdoor             | Plane of<br>Window | Outdoor | Plane of<br>Window | Outdoor       | Plane of<br>Window |
| Daytime<br>(0700-2300h)               |                                      | 50 dBAI             | 50 dBAI            | 45 dBAI | 45 dBAI            | 55 dBAI       | 60 dBAI            |
| Nighttime<br>(2300-0700h)             | 9 or more                            | -                   | 45 dBAI            | -       | 40 dBAI            | -             | 55 dBAI            |
| Daytime<br>(0700-2300h)               | 7 to 8                               | 55 dBAI             | 55 dBAI            | 50 dBAI | 50 dBAI            | 60dBAI        | 65 dBAI            |
| Nighttime<br>(2300-0700h)             | 7 10 8                               | -                   | 50 dBAI            | -       | 45 dBAI            | -             | 60 dBAI            |
| Daytime<br>(0700-2300h)               | 5 to 6                               | 60 dBAI             | 60 dBAI            | 55 dBAI | 55 dBAI            | 65 dBAI       | 70 dBAI            |
| Nighttime<br>(2300-0700h)             |                                      | -                   | 55 dBAI            | -       | 50 dBAI            | -             | 65 dBAI            |
| Daytime<br>(0700-2300h)               | _                                    | 65 dBAI             | 65 dBAI            | 60 dBAI | 60 dBAI            | 70 dBAI       | 75 dBAI            |
| Nighttime<br>(2300-0700h)             | 4                                    | -                   | 60 dBAI            | -       | 55 dBAI            | -             | 70 dBAI            |
| Daytime<br>(0700-2300h)               | 3                                    | 70 dBAI             | 70 dBAI            | 65 dBAI | 65 dBAI            | 75 dBAI       | 80 dBAI            |
| Nighttime<br>(2300-0700h)             | 3                                    | -                   | 65 dBAI            | -       | 60 dBAI            | -             | 75 dBAI            |
| Daytime<br>(0700-2300h)               | 2                                    | 75 dBAI             | 75 dBAI            | 70 dBAI | 70 dBAI            | 80 dBAI       | 85 dBAI            |
| Nighttime<br>(2300-0700h)             | 2                                    | -                   | 70 dBAI            | -       | 65 dBAI            | -             | 80 dBAI            |
| Daytime<br>(0700-2300h)               | 1                                    | 80 dBAI             | 80 dBAI            | 75 dBAI | 75 dBAI            | 85 dBAI       | 90 dBAI            |
| Nighttime<br>(2300-0700h)<br>Note(s): | 1                                    | -                   | 75 dBAI            | -       | 70 dBAI            | -             | 85 dBAI            |

Note(s):

<sup>1.</sup> The applicable sound level criterion is the background sound level or the exclusion limit, whichever is higher.



#### **D-Series Guidelines**

The MECP D-series guidelines (MOE, 1995) provide direction for land use planning to maximize compatibility of industrial uses with adjacent land uses. The goal of Guideline D-6 is to minimize encroachment of sensitive land uses on industrial facilities and vice versa, in order to address potential incompatibility due to adverse effects such as noise, odour and dust.

For each class of industry, the guideline provides an estimate of potential influence area and states that this influence area shall be used in the absence of the recommended technical studies. Guideline D-6 also recommends a minimum separation distance between each class of industry and sensitive land uses (see **Table 11**). Section 4.10 of D-6 identifies exceptional circumstances with respect to redevelopment, infill and mixed-use areas. In these cases, the guideline suggests that separation distances at, or less than, the recommended minimum separation distance may be acceptable if a justifying impact assessment is provided.

Table 11: Summary of Guideline D-6

| Industry<br>Class | Definition                                                                                                                                                       | Potential<br>Influence<br>Area | Recommended Minimum Separation Distance (property line to property line) |
|-------------------|------------------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------|--------------------------------------------------------------------------|
| Class I           | Small scale, self-contained, daytime only, infrequent heavy vehicle movements, no outside storage.                                                               | 70 m                           | 20 m                                                                     |
| Class II          | Medium scale, outdoor storage of wastes or materials, shift operations and frequent heavy equipment movement during the daytime.                                 | 300 m                          | 70 m                                                                     |
| Class III         | Large scale, outdoor storage of raw and finished products, large production volume, continuous movement of products and employees during daily shift operations. | 1000 m                         | 300 m                                                                    |

Guideline D-6 provides criteria for classifying industrial land uses, based on their outputs, scale of operations, processes, schedule and intensity of operations. **Table 12** provides the classification criteria and examples.



Table 12: Guideline D-6 Industrial Categorization Criteria

| Criteria                 | Class I                                                                                                                                                                                                               | Class II                                                                                                                                                                                     | Class III                                                                                                                                                                                                |
|--------------------------|-----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
| Outputs                  | <ul> <li>Sound not audible off<br/>property</li> <li>Infrequent dust and/ or<br/>odour emissions and not<br/>intense</li> <li>No ground-borne vibration</li> </ul>                                                    | <ul> <li>Sound occasionally audible off property</li> <li>Frequent dust and/ or odour emissions and occasionally intense</li> <li>Possible ground-borne vibration</li> </ul>                 | <ul> <li>Sound frequently audible<br/>off property</li> <li>Persistent and intense dust<br/>and/ or odour emissions</li> <li>Frequent ground-borne<br/>vibration</li> </ul>                              |
| Scale                    | <ul> <li>No outside storage</li> <li>Small scale plant or scale is<br/>irrelevant in relation to all<br/>other criteria</li> </ul>                                                                                    | <ul><li>Outside storage permitted</li><li>Medium level of production</li></ul>                                                                                                               | <ul><li>Outside storage of raw and<br/>finished products</li><li>Large production levels</li></ul>                                                                                                       |
| Process                  | <ul> <li>Self-contained plant or<br/>building which produces /<br/>stores a packaged product</li> <li>Low probability of fugitive<br/>emissions</li> </ul>                                                            | <ul> <li>Open process</li> <li>Periodic outputs of minor<br/>annoyance</li> <li>Low probability of fugitive<br/>emissions</li> </ul>                                                         | <ul> <li>Open process</li> <li>Frequent outputs of major<br/>annoyances</li> <li>High probability of fugitive<br/>emissions</li> </ul>                                                                   |
| Operation /<br>Intensity | <ul> <li>Daytime operations only</li> <li>Infrequent movement of products and/or heavy trucks</li> </ul>                                                                                                              | <ul> <li>Shift operations permitted</li> <li>Frequent movements of<br/>products and/or heavy<br/>trucks with majority of<br/>movements during<br/>daytime hours</li> </ul>                   | <ul> <li>Continuous movement of<br/>products and employees</li> <li>Daily shift operations<br/>permitted</li> </ul>                                                                                      |
| Examples                 | <ul> <li>Electronics Manufacturing</li> <li>Furniture refinishing</li> <li>Beverage bottling</li> <li>Auto parts</li> <li>Packaging services</li> <li>Dairy distribution</li> <li>Laundry and linen supply</li> </ul> | <ul> <li>Magazine printing</li> <li>Paint spray booths</li> <li>Metal command</li> <li>Electrical production</li> <li>Dairy product<br/>manufacturing</li> <li>Feed packing plant</li> </ul> | <ul> <li>Paint and varnish manufacturing</li> <li>Organic chemicals manufacturing</li> <li>Breweries</li> <li>Solvent recovery plant</li> <li>Soap manufacturing</li> <li>Metal manufacturing</li> </ul> |



# **APPENDIX C**

| Street 1  | Col<br>um | Street 2     | Location  | 2016   | 2006<br>Volume | Change  | %      |     |
|-----------|-----------|--------------|-----------|--------|----------------|---------|--------|-----|
|           | n1        |              |           | Total  |                |         | Change |     |
| 1st St SW |           | 4th Ave W    | East Leg  | 1,625  | 1,548          |         | 5%     | 22% |
| 1st St SW | &         | 4th Ave W    | North Leg | 1,769  | 1,692          |         | 5%     | 20% |
| 1st St SW | &         | Deviation Rd | North Leg | 3,079  | 2,923          | 156     | 5%     | 26% |
| 10th St E | &         | 10 Ave E     | West Leg  | 6,948  | 17,132         | -10,184 | -59%   | 24% |
| 10th St E | &         | 10th Ave E   | East Leg  | 6,628  | 2,658          | 3,970   | 149%   | 26% |
| 10th St E | &         | 10th Ave E   | South Leg | 9,020  | 11,379         | -2,359  | -21%   | 26% |
| 10th St E | &         | 16th Ave E   | East Leg  | 4,767  | 3,406          | 1,361   | 40%    | 28% |
| 10th St E | &         | 2nd Ave E    | North Leg | 9,402  | 13,207         | -3,805  | -29%   | 37% |
| 10th St E | &         | 2nd Ave E    | South Leg | 4,200  | 6,604          | -2,404  | -36%   | 34% |
| 10th St E | &         | 2nd Ave E    | East Leg  | 14,923 | 19,504         | -4,581  | -23%   | 32% |
| 10th St E | &         | 3rd Ave E    | North Leg | 4,871  | 7,562          | -2,691  | -36%   | 28% |
| 10th St E | &         | 3rd Ave E    | South Leg | 4,959  | 8,503          | -3,544  | -42%   | 31% |
| 10th St E | &         | 4th Ave E    | North Leg | 1,935  | 2,482          | -547    | -22%   | 26% |
| 10th St E | &         | 4th Ave E    | South Leg | 2,914  | 2,971          | -57     | -2%    | 19% |
| 10th St E | &         | 7th Ave E    | South Leg | 1,918  | 1,960          | -42     | -2%    | 20% |
| 10th St E | &         | 8th Ave E    | South Leg | 1,920  | 3,373          | -1,453  | -43%   | 27% |
| 10th St W | &         | 1st Ave W    | North Leg | 8,264  | 9,939          | -1,675  | -17%   | 27% |
| 10th St W | &         | 1st Ave W    | South Leg | 2,489  | 2,756          | -267    | -10%   | 25% |
| 10th St W | &         | 1st Ave W    | East Leg  | 17,142 | 25,361         | -8,219  | -32%   | 32% |
| 10th St W | &         | 2nd Ave W    | North Leg | 5,107  | 7,998          | -2,891  | -36%   | 29% |
| 10th St W | &         | 2nd Ave W    | South Leg | 5,778  | 7,825          | -2,047  | -26%   | 25% |
| 10th St W | &         | 3rd Ave W    | North Leg | 1,291  | 1,584          | -293    | -18%   | 25% |
| 10th St W | &         | 3rd Ave W    | South Leg | 2,243  | 2,750          | -507    | -18%   | n/a |
| 10th St W | &         | 3rd Ave W    | East Leg  | 12,936 | 19,621         | -6,685  | -34%   | 38% |
| 10th St W | &         | 4th Ave W    | North Leg | 2,445  | 2,508          | -63     | -3%    | 20% |
| 10th St W | &         | 6th Ave W    | South Leg | 1,279  | 1,588          | -309    | -19%   | 30% |
| 10th St W | &         | 6th Ave W    | East Leg  | 14,640 | 18,542         | -3,902  | -21%   | 33% |
| 10th St W | &         | 8th Ave W    | South Leg | 4,074  | 5,249          | -1,175  | -22%   | 24% |



# APPENDIX D

### Cadna/A RLS-90 Calculation Protocol - Definitions

#### Parameter Unit Definition

| Nr    |       | Ray Number                                             |
|-------|-------|--------------------------------------------------------|
| Х     | (m)   | X-axis Cartesian Coordinate                            |
| Υ     | (m)   | Y-axis Cartesian Coordinate                            |
| Z     | (m)   | Z-axis Cartesian Coordinate                            |
| Refl. | order | Order of Reflection                                    |
| DEN   | D/E/N | Time of Day (Day, Evening, or Night)                   |
| LmE   | (dBA) | Emission level 25 m perpendicular from the road's axis |
| DI    | (dB)  | 10 log (length)                                        |
| Dstg  | (dB)  | Gradient correction                                    |
| Drefl | (dB)  | Level increase due to multiple reflection              |
| К     | (dB)  | Model correction                                       |
| Ds    | (dB)  | Attenuation due to divergence                          |
| Dbm   | (dB)  | Attenuation due to meteorology and ground              |
| Dz    | (dB)  | Screening attenuation of a barrier                     |

Receiver

Name: OLA Block 01 ID: !0F00!OLA\_Block01 X: 507040.99 m Y: 4935444.93 m

Z: 12.50 m

|      |           |            | Ro   | nad R  | 1 S-90   | ), Name | ə· '''' | D: "I00 | ייור" |     |       |      |      |     |       |
|------|-----------|------------|------|--------|----------|---------|---------|---------|-------|-----|-------|------|------|-----|-------|
| Nr.  | Х         | Υ          | Z    |        |          | LmE     | DI      |         | Drefl | K   | Ds    | Dbm  | Dz   | RL  | Lr    |
| 1411 | (m)       | (m)        | (m)  | r ton. |          | dB(A)   | dB      | dB      | dB    | dB  | (dB)  | (dB) | (dB) |     | dB(A) |
| 1    | 506942.11 | 4935550.94 | 0.50 | 0      | D        | 64.9    | 16.4    | 0.0     | 0.0   |     | -32.8 | 0.0  | 7.4  | 0.0 |       |
| 1    | 506942.11 |            | 0.50 |        | N        | 58.4    | 16.4    | 0.0     | 0.0   |     | -32.8 | 0.0  | 7.4  | 0.0 |       |
| 1    | 506942.11 | 4935550.94 | 0.50 | 0      |          | -6.6    | 16.4    | 0.0     | 0.0   |     | -32.8 | 0.0  | 7.4  | 0.0 |       |
| 2    | 506932.90 |            | 0.50 |        | D        | 64.9    | 16.4    | 0.0     | 0.0   |     | -35.0 | 0.0  | 4.9  | 0.0 | 41.4  |
| 2    | 506932.90 |            | 0.50 |        | N        | 58.4    | 16.4    | 0.0     | 0.0   |     | -35.0 | 0.0  | 4.9  | 0.0 | 34.9  |
| 2    | 506932.90 |            | 0.50 |        | Ē        | -6.6    | 16.4    | 0.0     | 0.0   | 0.0 |       | 0.0  | 4.9  |     |       |
| 4    | 506920.47 | 4935651.79 | 0.50 | _      | <u> </u> | 64.9    | 18.7    | 0.0     | 0.0   |     | -37.6 | 0.0  | 4.8  | 0.0 | 41.3  |
| 4    | 506920.47 | 4935651.79 | 0.50 |        | N        | 58.4    | 18.7    | 0.0     | 0.0   |     | -37.6 | 0.0  | 4.8  | _   |       |
| 4    | 506920.47 | 4935651.79 | 0.50 |        | E        | -6.6    | 18.7    | 0.0     | 0.0   |     | -37.6 | 0.0  | 4.8  | _   |       |
| 9    | 506904.81 | 4935724.75 | 0.50 | 0      |          | 64.9    | 18.7    | 0.0     | 0.0   |     | -40.2 | -4.2 | 0.0  |     | 39.2  |
| 9    | 506904.81 | 4935724.75 | 0.50 |        | N        | 58.4    | 18.7    | 0.0     | 0.0   |     | -40.2 | -4.2 | 0.0  | 0.0 | 32.7  |
| 9    | 506904.81 | 4935724.75 | 0.50 |        | E        | -6.6    | 18.7    | 0.0     | 0.0   |     | -40.2 | -4.2 | 0.0  | 0.0 |       |
| 16   | 506905.80 |            | 0.50 |        | D        | 64.9    | 17.6    | 0.0     | 0.0   |     | -42.1 | 0.0  | 4.8  | 1.0 | 34.6  |
| 16   | 506905.80 |            | 0.50 |        | N        | 58.4    | 17.6    | 0.0     | 0.0   |     | -42.1 | 0.0  | 4.8  |     | 28.1  |
| 16   | 506905.80 | 4935720.15 | 0.50 |        | E        | -6.6    | 17.6    | 0.0     | 0.0   | 0.0 |       | 0.0  | 4.8  | 1.0 | -36.9 |
| 23   | 506810.52 | 4935347.55 | 7.49 |        |          | 64.9    | 16.1    | 0.0     | 0.0   |     | -38.0 | 0.0  |      | _   | 16.6  |
| 23   | 506810.52 | 4935347.55 | 7.49 |        | N        | 58.4    | 16.1    | 0.0     | 0.0   |     | -38.0 | 0.0  |      | _   |       |
| 23   |           | 4935347.55 | 7.49 | 0      |          | -6.6    | 16.1    | 0.0     | 0.0   |     | -38.0 | 0.0  |      | 0.0 | _     |
| 30   | 506833.85 |            | 5.29 | 0      |          | 64.9    | 15.8    | 0.0     | 0.0   |     | -36.6 | 0.0  |      | 0.0 | 17.6  |
| 30   | 506833.85 | 4935378.98 | 5.29 |        | N        | 58.4    | 15.8    | 0.0     | 0.0   |     | -36.6 | 0.0  |      | 0.0 | 11.0  |
| 30   | 506833.85 | 4935378.98 | 5.29 |        | E        | -6.6    | 15.8    | 0.0     | 0.0   | 0.0 |       | 0.0  | 26.5 | 0.0 | -53.9 |
| 32   | 506845.81 | 4935395.11 | 4.16 |        |          | 64.9    | 3.7     | 0.0     | 0.0   |     | -35.9 | 0.0  |      | 0.0 | 5.8   |
| 32   | 506845.81 | 4935395.11 | 4.16 | 0      |          | 58.4    | 3.7     | 0.0     | 0.0   |     | -35.9 | 0.0  |      | 0.0 |       |
| 32   | 506845.81 | 4935395.11 | 4.16 |        | E        | -6.6    | 3.7     | 0.0     | 0.0   |     | -35.9 | 0.0  |      | _   | _     |
| 33   | 506850.21 | 4935401.04 | 3.75 |        | D        | 64.9    | 11.0    | 0.0     | 0.0   |     | -35.6 | 0.0  |      | 0.0 |       |
| 33   | 506850.21 | 4935401.04 | 3.75 |        | N        | 58.4    | 11.0    | 0.0     | 0.0   |     | -35.6 | 0.0  |      | 0.0 |       |
| 33   | 506850.21 | 4935401.04 | 3.75 | 0      |          | -6.6    | 11.0    | 0.0     | 0.0   |     | -35.6 | 0.0  |      | 0.0 |       |
| 40   | 506864.38 | 4935420.13 | 2.41 |        | D        | 64.9    | 15.5    | 0.0     | 0.0   |     | -34.7 | 0.0  |      | 0.0 | 16.9  |
| 40   | 506864.38 |            | 2.41 |        | N        | 58.4    | 15.5    | 0.0     | 0.0   | 0.0 |       | 0.0  |      | 0.0 | 10.4  |
| 40   | 506864.38 | 4935420.13 | 2.41 |        | Е        | -6.6    | 15.5    | 0.0     | 0.0   |     | -34.7 | 0.0  |      | 0.0 |       |
| 51   | 506879.76 |            | 0.96 | 0      |          | 64.9    | 12.2    | 0.0     | 0.0   |     | -33.8 | 0.0  |      | 0.0 | 13.8  |
| 51   | 506879.76 |            | 0.96 | _      | N        | 58.4    | 12.2    | 0.0     | 0.0   |     | -33.8 | 0.0  |      | 0.0 | 7.3   |
| 51   | 506879.76 |            | 0.96 |        | E        | -6.6    | 12.2    | 0.0     | 0.0   |     | -33.8 | 0.0  | 29.5 | 0.0 |       |
| 65   | 506861.05 |            | 2.73 | 1      | D        | 64.9    | 15.4    | 0.0     | 0.0   |     | -41.6 | 0.0  |      | 1.0 | 11.8  |
| 65   |           | 4935415.65 | 2.73 | 1      | N        | 58.4    | 15.4    | 0.0     | 0.0   |     | -41.6 | 0.0  |      | _   | 5.3   |
| 65   |           | 4935415.65 | 2.73 |        | Е        | -6.6    | 15.4    | 0.0     | 0.0   |     | -41.6 | 0.0  |      | 1.0 |       |
| 70   | 506892.57 | 4935455.01 | 0.50 | 0      | D        | 64.9    | 13.4    | 0.0     | 0.0   |     | -33.0 | 0.0  | 29.6 | 0.0 |       |
| 70   | 506892.57 | 4935455.01 | 0.50 | 0      | N        | 58.4    | 13.4    | 0.0     | 0.0   |     | -33.0 | 0.0  | 29.6 | 0.0 | 9.2   |
| 70   | 506892.57 | 4935455.01 | 0.50 | 0      | E        | -6.6    | 13.4    |         | 0.0   |     | -33.0 |      | 29.6 |     |       |
| 90   |           | 4935468.51 | 0.50 |        | D        | 64.9    | 12.4    | 0.0     | 0.0   |     | -32.2 |      | 27.7 | 0.0 | 17.4  |
| 90   | 506906.73 | 4935468.51 | 0.50 | 0      | N        |         | 12.4    | 0.0     | 0.0   |     | -32.2 | 0.0  | 27.7 | 0.0 | 10.9  |
| 90   | 506906.73 | 4935468.51 | 0.50 | 0      | Е        | -6.6    | 12.4    | 0.0     | 0.0   | 0.0 | -32.2 | 0.0  | 27.7 | 0.0 | -54.1 |
| 98   | 506921.57 | 4935480.98 | 0.50 | 0      | D        | 64.9    | 13.3    | 0.0     | 0.0   |     | -31.4 | 0.0  | 28.0 | 0.0 | 18.9  |
| 98   | 506921.57 | 4935480.98 | 0.50 |        | N        | 58.4    | 13.3    | 0.0     | 0.0   |     | -31.4 | 0.0  | 28.0 | 0.0 | 12.4  |
| 98   | 506921.57 | 4935480.98 | 0.50 | 0      |          | -6.6    | 13.3    | 0.0     | 0.0   | 0.0 | -31.4 | 0.0  | 28.0 | 0.0 | -52.6 |
| 100  | 506932.65 | 4935489.35 | 0.50 |        | D        | 64.9    | 8.0     | 0.0     | 0.0   |     | -30.8 |      | 24.5 | 0.0 |       |
| 100  | 506932.65 |            | 0.50 |        | N        | 58.4    | 8.0     | 0.0     | 0.0   |     | -30.8 | _    | 24.5 | 0.0 |       |
| 100  | 506932.65 |            | 0.50 | 0      |          | -6.6    | 8.0     | 0.0     | 0.0   |     | -30.8 | 0.0  | 24.5 | 0.0 | -53.9 |
| 106  | 506940.62 | 4935500.07 | 0.50 |        | D        | 64.9    | 13.2    | 0.0     | 0.0   | 0.0 | -30.6 | 0.0  | 22.5 | 0.0 | 24.9  |
| 106  | 506940.62 | 4935500.07 | 0.50 |        | N        | 58.4    |         | 0.0     | 0.0   | 0.0 | -30.6 |      | 22.5 | 0.0 |       |
| 106  |           | 4935500.07 | 0.50 |        | E        | -6.6    | 13.2    | 0.0     | 0.0   |     | -30.6 |      | 22.5 |     |       |
| 114  | 506946.39 | 4935519.19 | 0.50 |        | D        | 64.9    | 13.1    | 0.0     | 0.0   |     | -31.0 | 0.0  | 13.6 | 0.0 | 33.4  |

|     |           |            | Ro    | oad, F | RLS-90 | ), Name | e: "", I | D: "!0 | 0!"   |     |       |      |      |      |       |
|-----|-----------|------------|-------|--------|--------|---------|----------|--------|-------|-----|-------|------|------|------|-------|
| Nr. | Х         | Y          | Z     | Refl.  | DEN    | LmE     | DI       | Dstg   | Drefl | K   | Ds    | Dbm  | Dz   | RL   | Lr    |
|     | (m)       | (m)        | (m)   |        |        | dB(A)   | dB       | dB     | dB    | dB  | (dB)  | (dB) | (dB) | (dB) | dB(A) |
| 114 | 506946.39 | 4935519.19 | 0.50  | 0      | N      | 58.4    | 13.1     | 0.0    | 0.0   | 0.0 | -31.0 | 0.0  | 13.6 | 0.0  | 26.9  |
| 114 | 506946.39 | 4935519.19 | 0.50  | 0      | E      | -6.6    | 13.1     | 0.0    | 0.0   | 0.0 | -31.0 | 0.0  | 13.6 | 0.0  | -38.1 |
| 123 | 506788.28 | 4935321.32 | 9.38  | 0      | D      | 64.9    | 14.6     | 0.0    | 0.0   | 0.0 | -39.2 | 0.0  | 25.9 | 0.0  | 14.4  |
| 123 | 506788.28 | 4935321.32 | 9.38  | 0      | N      | 58.4    | 14.6     | 0.0    | 0.0   | 0.0 | -39.2 | 0.0  | 25.9 | 0.0  | 7.9   |
| 123 | 506788.28 | 4935321.32 | 9.38  | 0      | E      | -6.6    | 14.6     | 0.0    | 0.0   | 0.0 | -39.2 | 0.0  | 25.9 | 0.0  | -57.1 |
| 128 | 506763.70 | 4935304.94 | 10.41 | 0      | D      | 64.9    | 15.0     | 0.0    | 0.0   | 0.0 | -40.2 | 0.0  | 25.5 | 0.0  | 14.2  |
| 128 | 506763.70 | 4935304.94 | 10.41 | 0      | N      | 58.4    | 15.0     | 0.0    | 0.0   | 0.0 | -40.2 | 0.0  | 25.5 | 0.0  | 7.6   |
| 128 | 506763.70 | 4935304.94 | 10.41 | 0      | E      | -6.6    | 15.0     | 0.0    | 0.0   | 0.0 | -40.2 | 0.0  | 25.5 | 0.0  | -57.3 |
| 140 | 506735.75 | 4935296.27 | 11.05 | 0      | D      | 64.9    | 14.4     | 0.0    | 0.0   | 0.0 | -41.1 | 0.0  | 25.3 | 0.0  | 12.8  |
| 140 | 506735.75 | 4935296.27 | 11.05 | 0      | N      | 58.4    | 14.4     | 0.0    | 0.0   | 0.0 | -41.1 | 0.0  | 25.3 | 0.0  | 6.3   |
| 140 | 506735.75 | 4935296.27 | 11.05 | 0      | Е      | -6.6    | 14.4     | 0.0    | 0.0   | 0.0 | -41.1 | 0.0  | 25.3 | 0.0  | -58.7 |

### Cadna/A ISO-9613 Calculation Protocol - Definitions

#### Parameter Unit Definition

| Nr     |       | Ray Number                                                                        |
|--------|-------|-----------------------------------------------------------------------------------|
| Х      | (m)   | X-axis Cartesian Coordinate                                                       |
| Υ      | (m)   | Y-axis Cartesian Coordinate                                                       |
| Z      | (m)   | Z-axis Cartesian Coordinate                                                       |
| Refl.  | order | Order of Reflection                                                               |
| DEN    | D/E/N | Time of Day (Day, Evening, or Night)                                              |
| Freq.  | (Hz)  | 1/1 Octave Band Dominant Frequency or Frequency Type ("A" for A-weighted)         |
| Lw     | (dBA) | Overall Sound Power Level                                                         |
| I/a    | dB    | Line/Area Source Correction                                                       |
| Optime | dB    | Operating Time Correction                                                         |
| K0     | (dB)  | D_omega in ISO 9613-2 (correction for radiation into solid angles less than 4 Pi) |
| Di     | (dB)  | Directivity Index                                                                 |
| Adiv   | (dB)  | Attenuation Due to Divergence                                                     |
| Aatm   | (dB)  | Atmospheric Attenuation                                                           |
| Agr    | (dB)  | Ground Attenuation                                                                |
| Afol   | (dB)  | Attenuation Due to Foliage                                                        |
| Ahous  | (dB)  | Attenuation from Houses                                                           |
| Abar   | (dB)  | Barrier Attenuation                                                               |
| Cmet   | (dB)  | Meteorological Correction                                                         |
| RL     | (dB)  | Reflection Loss                                                                   |
| Lr     | (dBA) | Resulting Noise Impact at Receptor - Leq (1-Hr)                                   |

#### Receiver

Name: OPR Block 07 ID: !0F02!OPR\_Block07

X: 507030.52 m Y: 4935361.97 m Z: 12.50 m

|     | Point Source, ISO 9613, Name: "Hospital", ID: "!0502!" |            |       |       |     |       |       |     |        |      |      |      |      |      |      |       |      |      |      |       |
|-----|--------------------------------------------------------|------------|-------|-------|-----|-------|-------|-----|--------|------|------|------|------|------|------|-------|------|------|------|-------|
| Nr. | Х                                                      | Y          | Z     | Refl. | DEN | Freq. | Lw    | l/a | Optime | K0   | Di   | Adiv | Aatm | Agr  | Afol | Ahous | Abar | Cmet | RL   | Lr    |
|     | (m)                                                    | (m)        | (m)   |       |     | (Hz)  | dB(A) | dB  | dB     | (dB)  | (dB) | (dB) | (dB) | dB(A) |
| 6   | 507059.94                                              | 4935212.06 | 29.00 | 0     | DEN | Α     | 91.5  | 0.0 | 0.0    | 3.0  | 0.0  | 54.7 | 0.8  | -0.4 | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 39.4  |
| 10  | 507059.94                                              | 4935212.06 | 29.00 | 1     | DEN | Α     | 91.5  | 0.0 | 0.0    | 3.0  | 0.0  | 55.2 | 0.9  | -0.4 | 0.0  | 0.0   | 0.0  | 0.0  | 1.0  | 37.9  |

|     |           |            |       | Po    | oint So | ource, | ISO 96 | 13, N | ame: "Ho | spita | I", ID: | "!050 | 2!"  |      |      |       |      |      |      |       |
|-----|-----------|------------|-------|-------|---------|--------|--------|-------|----------|-------|---------|-------|------|------|------|-------|------|------|------|-------|
| Nr. | X         | Y          | Z     | Refl. | DEN     | Freq.  | Lw     | l/a   | Optime   | K0    | Di      | Adiv  | Aatm | Agr  | Afol | Ahous | Abar | Cmet | RL   | Lr    |
|     | (m)       | (m)        | (m)   |       |         | (Hz)   | dB(A)  | dB    | dB       | (dB)  | (dB)    | (dB)  | (dB) | (dB) | (dB) | (dB)  | (dB) | (dB) | (dB) | dB(A) |
| 17  | 507017.12 | 4935204.28 | 29.00 | 0     | DEN     | Α      | 91.5   | 0.0   | 0.0      | 3.0   | 0.0     | 55.0  | 0.9  | -0.4 | 0.0  | 0.0   | 0.0  | 0.0  | 0.0  | 39.1  |
| 19  | 507017.12 | 4935204.28 | 29.00 | 1     | DEN     | Α      | 91.5   | 0.0   | 0.0      | 3.0   | 0.0     | 55.4  | 0.9  | -0.4 | 0.0  | 0.0   | 0.0  | 0.0  | 1.0  | 37.6  |

|     |                                                                                        |            |       | Po | oint So | ource, | ISO 96 | 13, Na | ame: "Ho | spita | l", ID | "!050 | 2!"  |      |      |      |      |      |      |       |
|-----|----------------------------------------------------------------------------------------|------------|-------|----|---------|--------|--------|--------|----------|-------|--------|-------|------|------|------|------|------|------|------|-------|
| Nr. | Nr. X Y Z Refl. DEN Freq. Lw I/a Optime K0 Di Adiv Aatm Agr Afol Ahous Abar Cmet RL Lr |            |       |    |         |        |        |        |          |       |        |       |      |      |      |      |      |      |      |       |
|     | (m)                                                                                    | (m)        | (m)   |    |         | (Hz)   | dB(A)  | dB     | dB       | (dB)  | (dB)   | (dB)  | (dB) | (dB) | (dB) | (dB) | (dB) | (dB) | (dB) | dB(A) |
| 26  | 506974.09                                                                              | 4935196.46 | 29.00 | 0  | DEN     | Α      | 91.5   | 0.0    | 0.0      | 3.0   | 0.0    | 55.9  | 0.9  | -0.4 | 0.0  | 0.0  | 0.0  | 0.0  | 0.0  | 38.1  |

|     |           |            |       | Po | oint So | ource, | ISO 96 | 13, N | ame: "Ho | spita | I", ID: | "!050 | 2!"  |      |      |      |      |      |      |       |
|-----|-----------|------------|-------|----|---------|--------|--------|-------|----------|-------|---------|-------|------|------|------|------|------|------|------|-------|
| Nr. |           |            |       |    |         |        |        |       |          |       |         |       |      |      |      |      |      |      |      |       |
|     | (m)       | (m)        | (m)   |    |         | (Hz)   | dB(A)  | dB    | dB       | (dB)  | (dB)    | (dB)  | (dB) | (dB) | (dB) | (dB) | (dB) | (dB) | (dB) | dB(A) |
| 33  | 507080.38 | 4935203.88 | 29.00 | 0  | DEN     | Α      | 83.0   | 0.0   | 0.0      | 3.0   | 0.0     | 55.4  | 2.0  | -0.6 | 0.0  | 0.0  | 9.9  | 0.0  | 0.0  | 19.3  |
| 39  | 507080.38 | 4935203.88 | 29.00 | 1  | DEN     | Α      | 83.0   | 0.0   | 0.0      | 3.0   | 0.0     | 55.8  | 2.0  | -0.6 | 0.0  | 0.0  | 21.5 | 0.0  | 1.1  | 6.1   |

|     |           |            |       | Po | oint So | ource, | ISO 96 | 13, N | ame: "Ho | spita | l", ID: | "!050 | 2!"  |      |      |      |      |      |      |       |
|-----|-----------|------------|-------|----|---------|--------|--------|-------|----------|-------|---------|-------|------|------|------|------|------|------|------|-------|
| Nr. |           |            |       |    |         |        |        |       |          |       |         |       |      |      |      |      |      |      |      |       |
|     | (m)       | (m)        | (m)   |    |         | (Hz)   | dB(A)  | dB    | dB       | (dB)  | (dB)    | (dB)  | (dB) | (dB) | (dB) | (dB) | (dB) | (dB) | (dB) | dB(A) |
| 49  | 507083.34 | 4935183.80 | 29.00 | 0  | DEN     | Α      | 80.2   | 0.0   | 0.0      | 3.0   | 0.0     | 56.4  | 2.6  | -0.5 | 0.0  | 0.0  | 11.9 | 0.0  | 0.0  | 12.8  |
| 53  | 507083.34 | 4935183.80 | 29.00 | 1  | DEN     | Α      | 80.2   | 0.0   | 0.0      | 3.0   | 0.0     | 56.8  | 2.6  | -0.5 | 0.0  | 0.0  | 21.8 | 0.0  | 1.1  | 1.4   |

| Point Source, ISO 9613, Name: "Hospital", ID: "!0502!" |           |            |       |       |     |       |       |     |        |      |      |      |      |      |      |       |      |      |      |       |
|--------------------------------------------------------|-----------|------------|-------|-------|-----|-------|-------|-----|--------|------|------|------|------|------|------|-------|------|------|------|-------|
| Nr.                                                    | Х         | Y          | Z     | Refl. | DEN | Freq. | Lw    | l/a | Optime | K0   | Di   | Adiv | Aatm | Agr  | Afol | Ahous | Abar | Cmet | RL   | Lr    |
|                                                        | (m)       | (m)        | (m)   |       |     | (Hz)  | dB(A) | dB  | dB     | (dB)  | (dB) | (dB) | (dB) | dB(A) |
| 63                                                     | 507086.18 | 4935164.49 | 29.00 | 0     | DEN | Α     | 79.1  | 0.0 | 0.0    | 3.0  | 0.0  | 57.3 | 3.7  | -0.5 | 0.0  | 0.0   | 13.0 | 0.0  | 0.0  | 8.6   |
| 68                                                     | 507086.18 | 4935164.49 | 29.00 | 1     | DEN | Α     | 79.1  | 0.0 | 0.0    | 3.0  | 0.0  | 57.6 | 3.8  | -0.5 | 0.0  | 0.0   | 21.9 | 0.0  | 1.2  | -2.0  |



## **APPENDIX E**



By-law No. 2001-034

# A By-law to Prohibit and Regulate Unusual Noises or Noises Likely to Disturb the Inhabitants of the City of Owen Sound

#### Originally Passed and Enacted October 18, 1999

| Amended By By-law: | Passed On:    |
|--------------------|---------------|
| 2004-098           | July 12, 2004 |
| 2008-096           | June 16, 2008 |
|                    |               |
|                    |               |

#### Consolidated Version

Revised and Verified April 23, 2014

## Consolidated for Convenience Only

This is a consolidation copy of a City of Owen Sound By-law for convenience and information. While every effort is made to ensure the accuracies of these by-laws, they are not official versions or legal documents. The original by-laws should be consulted for all interpretations and applications on this subject. For more information or original signed copies of by-laws please contact the City Clerk's Department.

#### THE CORPORATION OF THE CITY OF OWEN SOUND

#### BY-LAW NO. 2001-034

# A BY-LAW TO PROHIBIT AND REGULATE UNUSUAL NOISES OR NOISES LIKELY TO DISTURB THE INHABITANTS OF THE CITY OF OWEN SOUND

THE COUNCIL OF THE CORPORATION OF THE CITY OF OWEN SOUND HEREBY ENACTS AS FOLLOWS:

#### SHORT TITLE

1. This Bylaw may be cited as the "Noise Control Bylaw".

#### **INTERPRETATION**

- 2.0 For the purposes of this Bylaw the following terms shall have the corresponding meanings:
- 2.1 "City" means the Corporation of the City of Owen Sound;
- 2.2 "Construction equipment" includes a bulldozer, excavator, trencher, jack hammer, crane, loader, scraper, paver, compactor, roller, grader, concrete mixer and the like;
- 2.3 "Council" means the Council of the City;
- 2.4 "Holiday" means any holiday set out as a holiday in the Retail Business Holidays Act, R.S.O. 1990, Chap. R. 30, or any successor thereof:
- 2.5 "Noise" means sound that is of such a volume or nature that it is likely to disturb the inhabitants of the City;
- "Other area" means all of the area of the City set out on Schedule "B" of this Bylaw which is shaded;
- 2.7 "Person" includes a corporation, organization, association, partnership and the like; and
  - "Residential area" means all of the area of the City set out on Schedule "B" of this Bylaw which is not shaded.

#### **GENERAL EXEMPTIONS**

- This Bylaw does not apply:
- 3.1 during an emergency involving the health, safety or welfare of the public
- where the City, its servants, employees, contractors or agents are carrying out City operations or operating, maintaining or installing municipally-owned infrastructure, facilities or the like, except for the detonation of explosives
- 3.3 to noise created by the activity of snow removal
- 3.4 to road or bicycle races, parades, circuses, entertainment activities in the public parks or neighbourhood social activities when such events are approved by Council and such activity or event is in compliance with the conditions set by Council in approving such activity or event

- to sport or recreational events in public parks where a permit has been issued by the City authorizing such event and the event complies with all of the conditions of such permit
- to the use of implements of husbandry in the operation of agricultural endeavours
- to the operation of excavation equipment when used in a cemetery in conjunction with interment services.

#### **EXEMPTIONS BY COUNCIL**

- 4.1 Despite the provisions of this Bylaw, any person may apply to Council for an exemption to any provision of this Bylaw with respect to any noise to allow such person to emit, cause or permit such noise for the period of time set out in such application, and Council may grant such exemption, grant an alternative exemption or refuse such exemption, and may set out conditions to be met as Council sees fit for any exemption granted.
- 4.2 Where an exemption is granted by Council, breach of any of the terms or conditions of the exemption shall render the exemption null and void.
- 4.3 Every person applying for an exemption shall, at least 10 business days prior to the Council meeting at which the request for exemption is to be addressed by Council, provide to the Chief Building Official of the City
- 4.3.1 a complete and accurate application form as provided by the City setting out the particulars respecting the exemption requested; and
- 4.3.2 payment of the exemption processing fee in the amount set by Council and in effect at the time of such exemption request.

#### **GENERAL PROHIBITIONS**

- No person shall, at any time, emit, cause or permit to be emitted or caused any noise created by:
- 5.1.1 the persistent barking, calling or whining of any domestic pet or any animal, except an animal used for and located on the property of an agriculture, livestock based use as set out in the City's Zoning Bylaw;
- 5.1.2 the squealing of motor vehicle tires;
- 5.1.3 the use of a horn, whistle, alarm, bell, gong or the like, except for an auditory safety or warning device or chimes used in association with a religious establishment;
- 5.1.4 the detonation of explosives;
- 5.1.5 the operation of an air conditioner, pool pump or filter, heat pump or the like that is not in proper working order;
- 5.1.6 the idling of a vehicle motor in excess of 10 minutes, except:
- 5.1.6.1 when such idling is recommended by the manufacturer of such vehicle and proof of such recommendation is provided by the vehicle operator upon the request of a police officer or by-law enforcement officer;

- when such idling is necessary to the basic function of the equipment on a vehicle, such as a concrete mixer on a concrete mixing truck, a lift platform, a refuse compactor or a heat exchange system; or
- 5.1.6.3 when the weather conditions require the vehicle to idle in order to keep in operation a heating or refrigeration system necessary for the welfare or preservation of the cargo of such vehicle;
- 5.1.7 the operation of a combustion engine without an effective exhaust muffling device in proper working order; or
- 5.1.8 the operation of a vehicle radio, stereo or the like.

#### Amended by By-law 2004-098

5.2 Notwithstanding the general provisions of this By-law, no person shall create, cause, or permit any noise likely to disturb the inhabitants.

#### PROHIBITIONS BY TIME AND PLACE

No person shall emit, cause or permit to be emitted or caused any noise created by an activity listed in Schedule "A" of this Bylaw during the time and in the area such noise is prohibited as set out in such Schedule.

#### **OFFENCE**

7. Every person who contravenes any provision of this Bylaw is guilty of an offence.

#### **PENALTY**

8. Any person who contravenes the provisions of this by-law is guilty of an offence and upon conviction therefore is subject to the penalty set out in the Provincial Offences Act.

#### SCHEDULES FORM PART OF BYLAW

9. Schedules "A" and "B" attached hereto shall form part of this Bylaw.

#### PRIOR BYLAWS REPEALED

10. Bylaw Number 1989-149 is hereby repealed as of the date and time of this Bylaw coming into effect.

#### EFFECTIVE DATE OF BYLAW

This Bylaw shall come into effect upon final passing thereof.

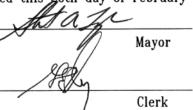
FINALLY PASSED AND ENACTED this 26<sup>th</sup> day of February, 2001.

| Signature on File |       |
|-------------------|-------|
|                   | Mayor |
|                   |       |
|                   |       |

Signature on File

Clerk

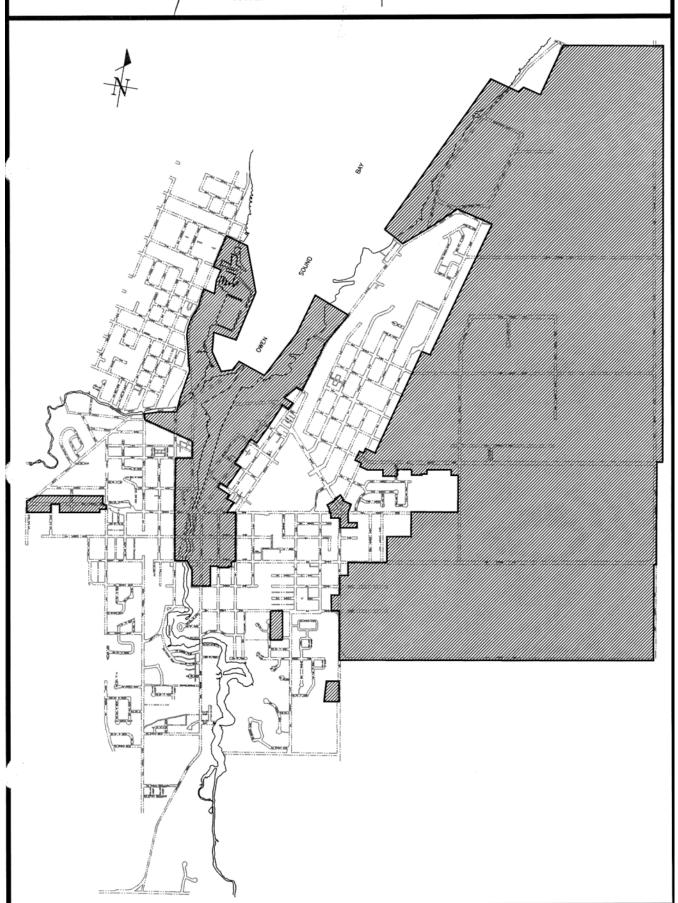
## SCHEDULE "A"


## to Bylaw No.2001-034

## Noise Control Bylaw

| NOISE CREATED FROM THE FOLLOWING ACTIVITIES IS PROHIBITED                                                                              | PROHIBITED TIME<br>OF DAY                                                                          | PROHIBITED<br>AREA       |  |
|----------------------------------------------------------------------------------------------------------------------------------------|----------------------------------------------------------------------------------------------------|--------------------------|--|
| The operation of a radio, television, stereo or other electronic device including any amplification device, or                         | At all times                                                                                       | Residential              |  |
| any musical or other sound producing instrument.                                                                                       | 11:00 p.m. to 8:00 a.m.                                                                            | other                    |  |
| Yelling, shouting or the like                                                                                                          | 11:00 p.m. to 7:00 a.m.<br>(to 8:00 a.m. on<br>Saturdays, Sundays and<br>holidays)                 | residential<br>and other |  |
| The operation of a car wash                                                                                                            | 9:00 p.m. to 7:00 a.m. (to 8:00 a.m. on Saturdays, Sundays and holidays)                           | residential<br>and other |  |
| The venting or release of steam, the                                                                                                   | 9:00 p.m. to 7:00 a.m. (to 8:00 a.m. on Saturdays, Sundays and holidays)                           | residential              |  |
| operation of a generator or air filtration system, noise from grinding, milling, the operation of machinery, or the like.              | 11:00 p.m. to 7:00 a.m.<br>(to 8:00 a.m. on<br>Saturdays, Sunday's and<br>holidays)                | other                    |  |
| The operation of waste collection                                                                                                      | 9:00 p.m. to 7:00 a.m. (to 8:00 a.m. on Saturdays, Sundays and holidays)                           | residential              |  |
| machinery or refuse compacting equipment                                                                                               | 11:00 p.m. to 7:00 a.m.<br>(to 8:00 a.m. on<br>Saturdays, Sundays and<br>holidays)                 | other                    |  |
| Loading, unloading, packing, delivering or otherwise handling any container,                                                           | 9:00 p.m. to 7:00 a.m. (to 8:00 a.m. on Saturdays, Sundays and holidays)                           | residential              |  |
| product or material unless necessary for<br>the maintenance of essential services or<br>for the moving of private household<br>effects | 11:00 p.m. to 7:00 a.m.<br>(to 8:00 a.m. on<br>Saturdays, Sundays and<br>holidays)                 | other                    |  |
| The operation of any tool including a hammer, saw, nail gun, lawnmower, staple gun, hedge trimmer, drill, or the like                  | 9:00 p.m. to 7:00 a.m. (to 8:00 a.m. on Saturdays, Sundays and holidays)                           | residential<br>and other |  |
| The operation of a combustion engine for a toy or a replica of a larger device such as a remote controlled toy aeroplane               | 9:00 p.m. to 8:00 a.m.                                                                             | residential<br>and other |  |
| The operation of a dirt bike, all-terrain cycle, snowmobile, go-cart, dune buggy or like conveyance                                    | 7:00 p.m. to 7:00 a.m. (to 8:00 a.m. on Saturdays) and at all times on Sundays and holidays        | residential<br>and other |  |
| The operation of construction equipment                                                                                                | 7:00 p.m. to 7:00 a.m. (to 8:00 a.m. on Saturdays) and at all times on Sundays and holidays        | residential<br>and other |  |
| Amended by By-law 2001-034  The operation of duct cleaning at restaurants                                                              | 11:00 p.m. to 7:00 a.m.<br>(8:00 a.m. on Saturdays)<br>and at all times on<br>Sundays and Holidays | residential<br>and other |  |

# BY-LAW 2001-034 Schedule B


This is Schedule B to By-law 2001-034 passed this 26th day of February 2001.



# LEGEND

Lands designated as Other for the purposes of Schedule
"A" to By-law 2001-034

Lands designated as Residential for the purposes of Schedule
"A" to By-law 2001-034

