

BARENCO INC.

Soil Remediation Program

2202 3rd Avenue East Owen Sound, Ontario

April 11, 2008

For

Rafa Corporation

1810 Midland Avenue Toronto, Ontario M1P 3C2

Griginal

By BARENCO INC. P. O. Box 295 2561 Stouffville Road, Suite 202 Gormley, Ontario LOH 1G0 Telephone (905) 887-6661

TABLE OF CONTENTS

1.0	INTRODUCTION	1
	1.1 Terms of Reference	1
2.0	ENVIRONMENTAL SETTING	2
	2.1 Soils, Drainage and Bedrock	
	2.2 Ground Water	
	2.3 Land Use	
3.0	REMEDIATION CRITERIA	2
	3.1 Ontario Regulation 153/04	2
	3.2 Site Remediation Standards	
4.0	SITE REMEDIATION	4
	4.1 Remedial Excavation of Impacted Soil	
5.0	CURRENT SITE STATUS	6
6.0	LIMITATION OF LIABILITY, SCOPE OF REPORT AND THIRD PARTY RELIANCE	6

LIST OF FIGURES, TABLES, AND APPENDICES

Figure 1	Locality Plan
Figure 2	Site Plan Showing Sampling Locations
Figure 3	Site Plan Showing Extent of Remedial Excavations
Table 1	Site Environmental Setting Data
Table 2	Darcy's Law Calculations
Table 3	Soil Chemical Analysis - Metals
Table 4	Soil Chemical Analysis - PAHs
Table 5	Soil Chemical Analysis - VOCs and Petroleum Parameters
Appendix A	Terms and Conditions
Appendix B	Laboratory Certificates of Analysis

1.0 INTRODUCTION

1.1 Terms of Reference

Barenco Inc. was retained by Rafa Corporation to perform a soil remediation program at the former Russel Brothers property located 2202 3rd Avenue East in Owen Sound, Ontario. The property is legally described as "In the City of Owen Sound, County of Grey and being composed of Part of the Bed of Owen's Sound, in front of Lots 7 to 10 inclusive, Bay Shore Range, now designated as Part 2, Plan 16R-5822". Previous environmental assessments have been performed at the property by others.

The assessment standards for the site were determined using the Ministry of the Environment's (MOE) Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, March 9, 2004 (Standards) referenced by the Ontario Record of Site Condition Regulation (Regulation 153/04). Soil samples were properly collected, preserved and submitted to a Canadian Accredited Environmental Analytical Laboratory (CAEAL).

The scope of work for the soil remediation program was based on the previous environmental assessments that indicated soil exceeded the Ministry of Environment (MOE) Table 3 Standards for properties with a residential land use.

Barenco performed the soil remediation program in accordance with generally accepted professional practices. Subject to this standard of care, Barenco makes no expressed or implied warranties regarding its services and no third-party beneficiaries are intended. Limitation of liability, scope of report and third party reliance are outlined in Section 6.0 of this report. Terms and Conditions are attached in Appendix A.

1.2 Site Location and Features

The property is located to the south of 24th Street East and to the north of 18th Street East on the west side of 3rd Avenue East in Owen Sound, Ontario. The subject property occupies an area of approximately 5.5 hectares (13.5 acres) and is bordered by Georgian Bay to the west. Concrete pads and foundation footings surrounded by paved and gravel driveways of the former industrial buildings were observed on the property. The remainder of the property was covered in vegetation at the time of the site visit. The property is currently vacant. A locality plan is provided as Figure 1.

2.0 ENVIRONMENTAL SETTING

2.1 Soils, Drainage and Bedrock

The property is located in the physiographic region known as the Niagara Escarpment. Vertical cliffs that are located along the top of the escarpment outline the edge of the dolostone of the Lockport and Amabel Formations while the slopes below are carved in red shale. The surface soils in this area are shallow and are composed of glacial till (sandy silt) on top of red shale (*Physiography of Southern Ontario*, Chapman and Putnam, 1984).

The hydraulic conductivity of the native soil (sandy silt till) at the site was measured to be approximately 10⁻⁵ cm/s (CG&S, 1997).

Table 1 summarizes the site environmental setting data. Table 2 shows Darcy's Law Calculations.

2.2 Ground Water and Municipal Services

The inferred regional ground water flow direction is northwest toward the Owen Sound Harbour, located to the west of the property.

The property is not currently serviced with municipal water or sewer systems.

2.3 Land Use

The property is currently vacant and is scheduled for future re-development. The intended land use is residential.

3.0 REMEDIATION CRITERIA

3.1 Ontario Regulation 153/04

Ontario Regulation 153/04 under Part XV.1 of the *Environmental Protection Act* is intended for the assessment and restoration of sites in Ontario. Regulation 153/04 provides generic remediation standards based on land use (agricultural, residential, parkland, institutional, commercial, industrial or community), ground water use (potable or non-potable), soil type (coarse or fine to medium textured) and restoration depth (full or stratified restoration).

Regulation 153/04 also provides alternate methods for assessment and remediation based on either restoring soil and ground water to background conditions or the use of a risk assessment. Generic standards for both soil and ground water are outlined in a document entitled Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act.

The Standards provide assessment standards based on land use (agricultural, residential, parkland, institutional, industrial, commercial or community), ground water use (potable or non-potable), soil type (coarse or medium to fine textured) and restoration depth (full or stratified restoration).

Assessment standards for both soil and ground water are outlined in the Standards as follows:

- Table 1 Full depth background site condition standards (e.g. sensitive site)
- Table 2 Full depth generic site condition standards in a potable ground water condition
- Table 3 Full depth generic site condition standards in a non-potable ground water condition
- Table 4 Stratified site condition standards in a potable ground water condition
- Table 5 Stratified site condition standards in a non-potable ground water condition
- Table 6 Soil extract and ground water standards to determine whether a property is a "shallow soil property"

3.2 Site Remediation Standards

Based on the environmental setting and proposed residential development, the property is classified as having a residential/parkland land use with a non-potable ground water condition. The native soil at the site is a sandy silt of fine and medium texture. The standards outlined in Table 3 and 5 of the MOE Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act are appropriate for this site.

The Table 3 and 5 site classification is based on several factors including the absence of potable water use in the area, the future land use (residential), previous reports indicating the hydraulic conductivity of approximately 10⁻⁵ cm/s (representing medium/fine soil) and test hole logs.

4.0 SITE REMEDIATION

Based on the results of previous environmental assessments, the following soil exceedances of the MOE Table 3 Standard (or MOEE Table B Guideline Criteria (1996)) found at SM1, SM4, HH8, TP104-B, MW1, TP15-B, TP1, TP2, TP3, TP4 and TP6 require remediation to bring soil concentrations to levels that are within the MOE Table 3 Standards. Figure 2, attached, shows the location of the previous exceedances.

SM1

- Lead = 398 μ g/g (MOE Table 3 Standard for lead is 200 μ g/g)
- Molybdenum = $57.9 \mu g/g$ (MOE Table 3 Standard for molybdenum is $40 \mu g/g$)

SM4

- Benzo(a)pyrene = 6.2 μ g/g (MOE Table 3 Standard for benzo(a)pyrene is 1.2 μ g/g)
- Benzo(b/j)fluoranthene = $14 \mu g/g$ (MOE Table 3 Standard for benzo(b)fluoranthene is $12 \mu g/g$)
- Dibenzo(a,h)anthracene = $2 \mu g/g$ (MOE Table 3 Standard for dibenzo(a,h)anthracene is $1.2 \mu g/g$)

HH8

• Lead = 410 μ g/g (MOE Table 3 Standard for lead is 200 μ g/g)

TP104-B

• Benzo(a)pyrene = 1.8 μ g/g (MOE Table 3 Standard for Benzo(a)pyrene is 1.2 μ g/g)

MW1

 Laboratory detection limit issues for a number of volatile organic compounds (VOCs)

TP15-B

• Petroleum fractions F1 and F2 = 310 μ g/g and 1200 μ g/g respectively (MOE Table 3 Standard for F1 is 260 μ g/g and F2 is 900 μ g/g)

TP1, TP2, TP3, TP4, TP6 (former landfill area)

• Arsenic, lead, benzo(a)pyrene and dibenzo(a,h)anthracene exceed the MOE Table 3 Standard at depths between 0.2 and 1 metre

Previous reports indicated that ground water samples were found to be within the MOE Table 3 Standard for the development lands.

4.1 Remedial Excavation of Impacted Soil

Based on the results of previous environmental assessments, concentrations of arsenic, lead, molybdenum, dibenzo(a/h)anthracene, benzo(b/j)fluoranthene, benzo(a)pyrene, VOCs and petroleum hydrocarbon fractions F1 and F2 exceeding MOE Table 3 Standards or MOEE Table B Standards (1996) were identified in the following locations as indicated on Figure 2.

Area	Location	Soil Impacts	Depth
Area 1	SM1	Lead and molybdenum	0.35 metres
Area 2	SM4	Dibenzo(a/h)anthracene, benzo(b/j)fluoranthene, and benzo(a)pyrene	0.5 metres
Area 3	TP104-B	Benzo(a)pyrene	0.6 metres
	нн8	Lead	0.6 metres
Area 4	MW1	VOCs	2.1 metres
	TP15-B	Petroleum hydrocarbon fractions F1 and F2	1.4 metres
Area 5	TP1 - TP6	Arsenic, lead, benzo(a)pyrene and dibenzo(a,h)anthracene	max depth 0.8 metres

Remedial excavation activities were conducted by Barenco at the site on September 13, November 30 and November 31, 2007. Additional sampling was completed on April 7, 2008. The five excavations totaled an area of approximately 1980 m² and extended to a maximum depth of 2.5 metres below grade.

The excavated material from activities completed on September 13, 2007 were hauled off-site to Newalta, a MOE licenced landfill for disposal at their Hamilton facility. The excavated material from activities on November 30 and 31, 2007 was temporarily stockpiled on the concrete floors of the former buildings for off-site disposal. Underwood Construction Ltd. was contracted by Barenco Inc. to supply the heavy equipment for the earthworks.

Confirmatory floor samples from the completed excavations were submitted to Maxxam Analytics Inc. for analysis of the chemical parameters of concern.

All of the soil samples obtained during the sampling programs on September 13, November 30 and November 31, 2007 were within the applicable MOE Table 3 Standards with the exception of one floor sample in the excavation in Area 2 (sample B-2). The detection limits of five VOCs were found to be slightly higher than the MOE Table 3 Standards. An additional floor sample was obtained from the same location on April 7, 2008. The soil sample was found to be within the applicable MOE Table 3 Standards for all VOCs.

Tables 3 through 5 of this report summarize the soil analytical results along with the MOE Table 3 Standards for comparison.

Approximately 5,100 tonnes of soil containing concentrations of arsenic, lead, molybdenum, dibenzo(a/h)anthracene, benzo(b/j)fluoranthene, benzo(a)pyrene, VOCs and petroleum hydrocarbon fractions F1 and F2 exceeding the Table 3 Standards were stockpiled for off-site disposal. Prior to development of the subject property, the remaining contaminated soil will be hauled to Newalta, a MOE licensed landfill for disposal at their Hamilton facility.

A site plan showing the extent of remedial excavations is provided in Figure 3. Copies of the laboratory Certificates of Analysis are provided in Appendix B.

5.0 CURRENT SITE STATUS

Based on confirmatory soil samples collected in the remediated areas, soil in the excavated areas was found to be within the MOE Table 3 Standards. No further assessment, nor remediation work is warranted at this time.

6.0 LIMITATION OF LIABILITY, SCOPE OF REPORT AND THIRD PARTY RELIANCE

This report has been prepared for and the work referred to in this report has been undertaken by Barenco Inc. for Rafa Corporation. It is intended for the sole and exclusive use of Rafa Corporation. Any use, reliance on or decision made by any person other than Rafa Corporation based on this report is the sole responsibility of such other person. Barenco Inc. makes no representation to any other person with regard to this report and the work referred to in this report and Barenco Inc. accepts no duty of care to any other person or any liability or responsibility whatsoever for any losses, expenses, damages, fines, penalties, or other harm that may be suffered or

incurred by any other person as a result of the use of, reliance on, any decision made or any action taken based on this report or the work referred to in this report.

The investigation undertaken by Barenco Inc. with respect to this report and any opinions, conclusions or recommendations made in this report reflect Barenco Inc.'s judgement based on the site conditions observed at the time of the site inspection on the date set out in this report and on information available at the time of preparation of this report. Unless otherwise stated, the findings cannot be extended to previous or future site conditions, portions of the site which were unavailable for direct investigation, subsurface locations which were not investigated directly, or chemical parameters, materials or analysis which were not addressed. Substances other than those addressed by the investigation described in this report may exist within the site; substances addressed by the investigation may exist in areas of the site not investigated and concentrations of substances addressed which are different than those reported may exist in areas other than the locations from which the samples were taken.

If site conditions or applicable standards change or if any additional information becomes available at a future date, modifications to the opinions, conclusions and recommendations in this report may be necessary.

Other than by Rafa Corporation, copying or distribution of this report or the use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of Barenco Inc. Nothing in this report is intended to constitute or provide a legal opinion.

Respectfully submitted, BARENCO INC.

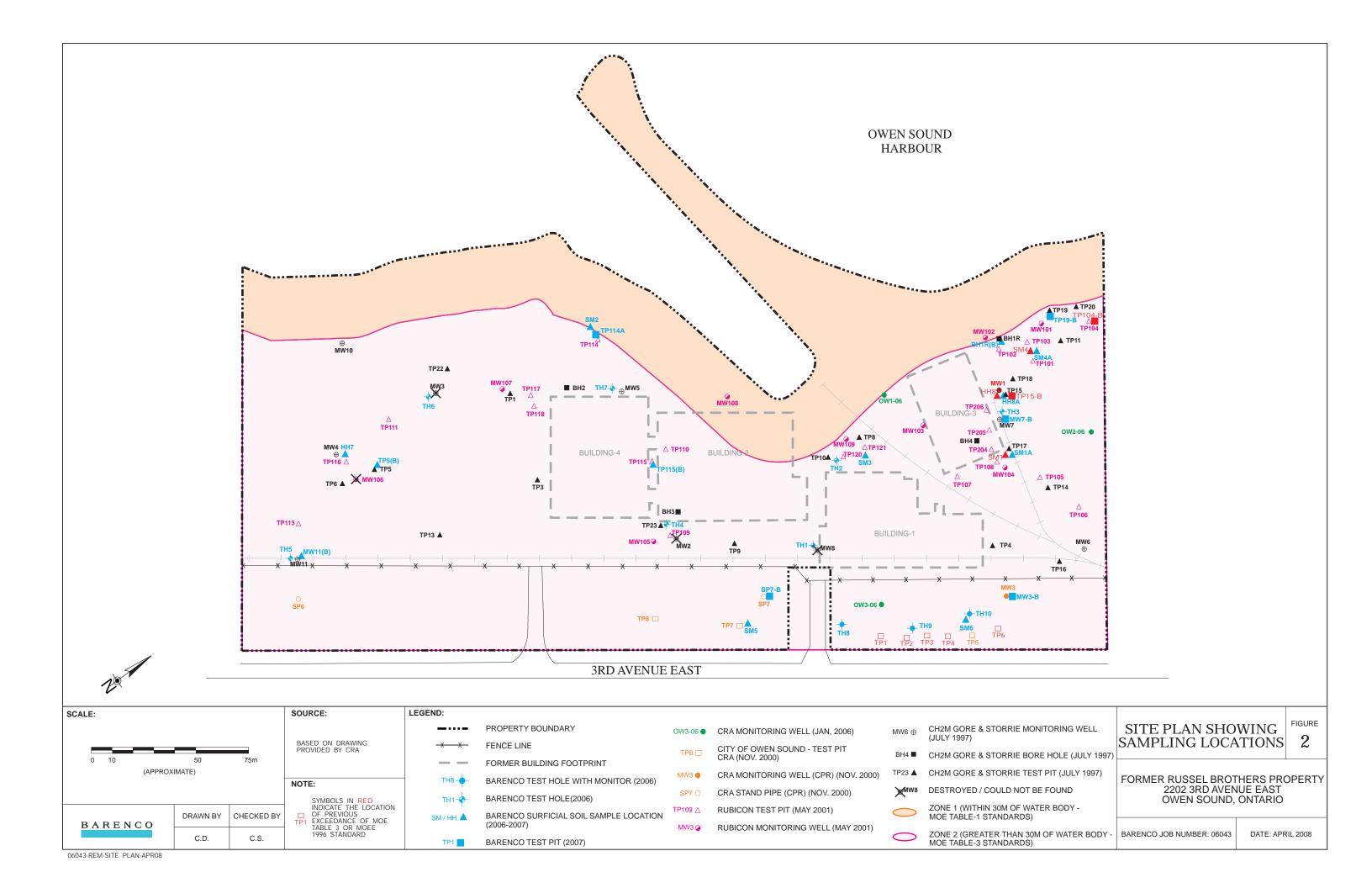
Carolyn Singer, B.Sc. (Hons), P.Ag

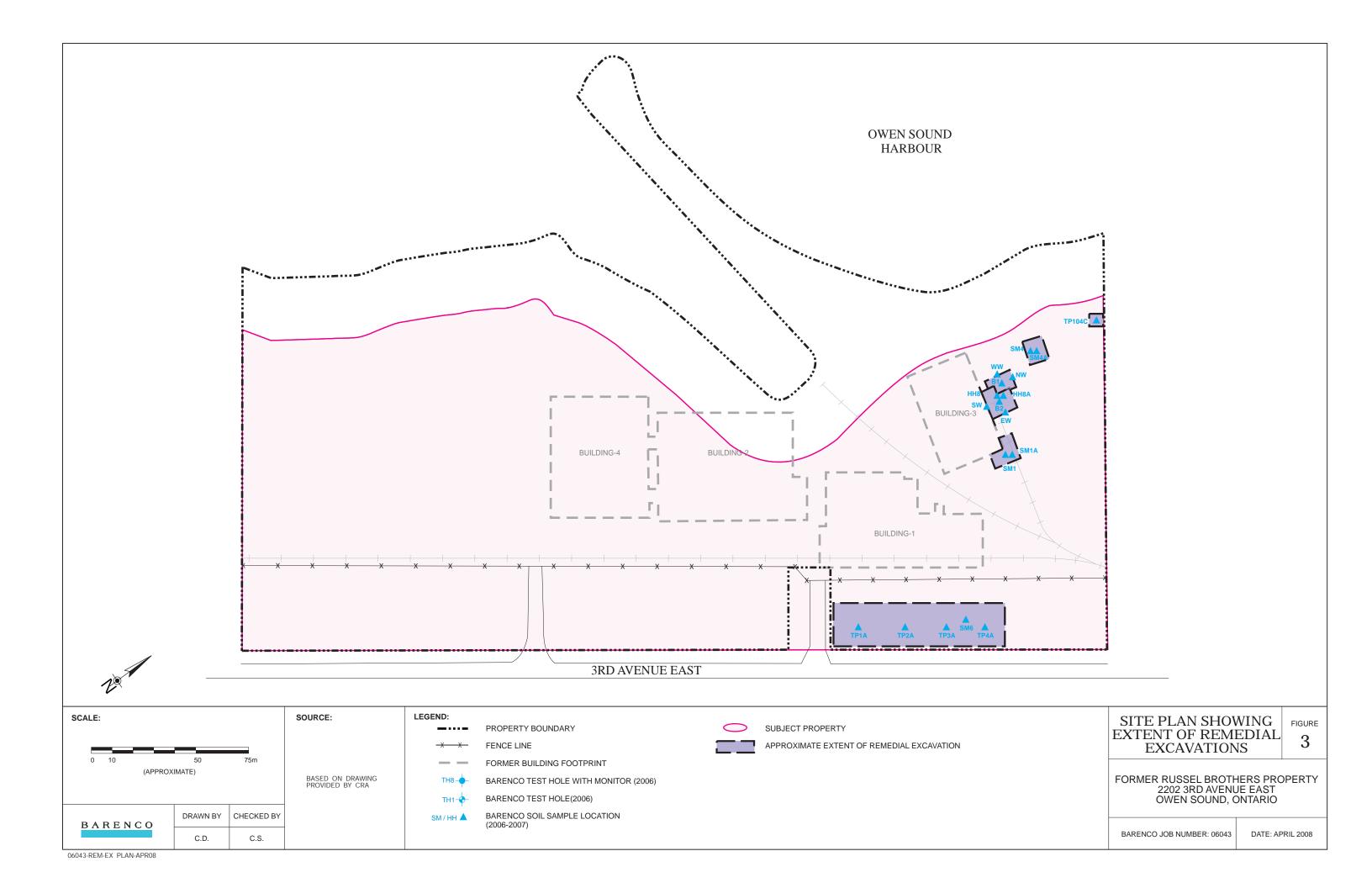
Environmental Scientist

Jim Phimister, P.Eng., P.G

Principal, Hydrogeologist

PROFESSIONAL PROFE


SOLINCE OF OME


FIGURES

BARENCO

SCALE:	NOTES:				
1:25000			,	LOCALI'	TY PLAN
1.25000	SOURCE: MAPART PUB	LISHING 2005		2202 3RD AV OWEN SOUN	
BARENCO	DRAWN BY	CHECKED BY	Ň	OWLINGOON	B, ONTARIO
	C.D.	C.S.		BARENCO JOB #: 06043	DATE: SEPTEMBER 2007

TABLES

SITE ENVIRONME	NTAL SETTING DATA
Site Location: 2202 3rd Avenue	East
Owen Sound, Or	ntario
Date: September, 2007	
NATIVE SOIL	
Type:	Sandy silt
Hydraulic Conductivity	Carray Siit
< 10-3 cm/s:	
>10-3 to <10-6 cm/s:	Estimated to be 10-5cm/s
> 10-6 cm/s:	
Percent Sand:	Not measured
GROUND WATER	
Depth to Water Table:	1.6 to 3.5 metres
Estimated or Measured:	Measured
Direction of Flow:	Northwest
Estimated or Measured:	Measured
MUNICIPAL SERVICES	
Piped Water:	N/A - site is vacant
Ground Water Source:	NA
Distance to Well:	NA
Surface Water Source:	No
Sanitary Sewer:	No
Storm Sewer:	No
PRIVATE SERVICES	
TRIVATE GERVIGES	
Distance to Nearest Well:	Unknown
Approximate Depth of Well:	Unknown
Private Sanitary Sewage:	No
SURFACE WATER	
SURFACE WATER	
Name of water body:	Georgian Bay (Owen Sound Harbour)
Distance from site:	Adjacent to site (to west)
Elevation drop from site:	None
Direct Drainage from site:	Yes

BARENCO INC. 06043

DARCY'S LAW CALCULATIONS

Table 2

2202 3rd Avenue East Owen Sound, Ontario September, 2007

v=ki/n

Hydraulic

Conductivity k (m/sec) = 1E-07

(cm/sec) = 1.00E-05

Gradient i (m/m) = 0.0100

Porosity* n = 0.35

* (from Freeze & Cherry, 1979)

Hydraulic conductivity for sandy silt in test

Velocity v (m/sec) = 2.86E-09

(feet/sec) = 9.37E-09

(feet/day) = 0.001

(feet/year) = 0.30

(metres/year) = 0.0901

BARENCO INC.

06043

SOIL CHEMICAL ANALYSIS - Metals

2202 3rd Avenue East, Owen Sound, Ontario

Page 1 of 2

Table 3

Location	SM1	SM1A	HH8	HH8A	Ontario
Pre or Post Remediation	Pre	Post	Pre	Post	Reg. 153/04
Depth (m)	0-0.35	0-1	0.3-0.6	0-1.2	Table 3
Maxxam ID	P16178	U66885	T62520	U66884	Soil Standard**
Sample Date	25-Oct-06	13-Sept-07	20-Jul-07	13-Sept-07	
Lead (Pb) Molybdenum (Mo)	<u>398</u> <u>57.9</u>	44 3	<u>410</u> NA	< 5 NA	200 40

Analysis by Maxxam Analytics Inc.

*"NA" means - not analyzed

All results in ppm (ug/g).

Exceedances of MOE Table 3 standard in bold.

** Standard shown is for fine and medium textured soil and residential/parkland/institutional land use.

BARENCO INC.

06043

SOIL CHEMICAL ANALYSIS - Metals (Landfill Excavation)

2202 3rd Avenue East, Owen Sound, Ontario

Page 2 of 2

Table 3

L						1 aye 2 01 2
Location	TP1A	TP2A	TP3A	TP4A	TP2	Ontario
Pre or Post Remediation	Post	Post	Post	Post	Post	Reg. 153/04
Depth (m)	1.0	1.0	1.0	1.0	1.0	Table 3
Maxxam ID	W22393	W22394	W22395	W22396	X97902	Soil Standard**
Sample Date	30-Nov-07	30-Nov-07	30-Nov-07	30-Nov-07	07-Apr-08	
Arsenic (As) Lead (Pb)	3 NA	3 NA	2 NA	2 NA	NA 6	25
				li .	li .	ii i

Analysis by Maxxam Analytics Inc.

*"NA" means - not analysed

All results in ppm (ug/g).

Exceedances of MOE Table 3 standard in **bold**.

** Standard shown is for fine and medium textured soil and residential/parkland/institutional land use.

BARENCO INC.

06043

<u>u</u>	2
1	-
Δ	
Ω	_
•	
U,)
\overline{v}	
۲	_
	1
7	
$\vec{-}$	>
7	
7	`
_	Į
7 10	ׅ֡֝֝֝֝֜֜֜֜֝֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜֜
)
A IACIN	
7 IVUINE	> >
4FMICAL 7)
L INCIMENT	> >
	> >
	> >
	> >
	> >
1 INCIMIENT ICK	> >
	> >

Table 4

2202 3rd Avenue East, Owen Sound, Ontario

									Page 1 of 1
Sample ID	SM4	SM4A	TP104-B	TP104C	TP1A*	TP2A*	TP3A*	TP4A*	Ontario
Pre or Post Remediation	Pre	Post	Pre	Post	Post	Post	Post	Post	Reg 153/04
Depth (m)	0-0.5	0-2.1	0.2-1	0.5-1.5	1.0	1.0	1.0	1.0	Table 3
Consultant	Barenco	Barenco	Barenco	Barenco	Barenco	Barenco	Barenco	Barenco	Soil
Maxxam ID	T62517	U66883	W04231	W22522	W22393	W22394	W22395	W22396	Standards**
Sample Date	20-Jul-07	13-Sep-07	21-Nov-07	31-Nov-07	30-Nov-07	30-Nov-07	30-Nov-07	30-Nov-07	11
Acenaphthene	<0.1	ΨN	ΑΝ	NA	NA	AN	NA	NA	1000
Acenaphthylene	<0.05	₹ Z	Ϋ́Z	Ą	Ϋ́	Ą	ΑN	ΑN	100
Anthracene	0.13	Ϋ́Z	₹ Z	Ą	Ϋ́	Ą	A A	ΑN	28
Benzo(a)anthracene	4.7	Ϋ́Z	₹ Z	Ą	Ϋ́	Ϋ́	Ϋ́	Ϋ́	40
Benzo(a)pyrene	6.2	0.127	8.1	<0.005	<0.005	<0.005	<0.005	<0.005	1.2
Benzo(b/j)fluoranthene	4	0.2	Ą	Ą	Ą	Ϋ́	Ϋ́	ΑN	12
Benzo(g,h,l)perylene	7.3	Ϋ́Z	Ϋ́	Ą	ΑN	Ϋ́	A'A	Ϋ́	40
Benzo(k)fluoranthene	4.1	Ϋ́	Ϋ́	Ą	Ϋ́	Ϋ́	Ϋ́	ΑN	12
Chrysene	5	Ϋ́	Ϋ́	Ϋ́	Ą V	Ą	ΑΝ	Ϋ́	12
Dibenzo(a,h)anthracene	71	0.04	₹Z	ď Z	Ϋ́	Ϋ́	<0.02	Ą	1.2
Fluoranthene	3.6	Ϋ́Z	₹ Z	Ϋ́	Ϋ́Z	Ϋ́	Ϋ́	Ϋ́	40
Fluorene	<0.05	₹ Z	∢ Z	Ϋ́	Ϋ́	ΑN	Ϋ́	Ϋ́	350
Indeno(1,2,3-cd)pyrne	7.7	Ϋ́	Ϋ́Z	₹Z	Ϋ́	Ϋ́	ΑN	ΥZ	12
1-Methylnaphthalene	60:0	ΑN	Ϋ́Z	₹	ΑN	Ϋ́	Ϋ́	Ϋ́	1,000
2-Methylnepthalene	0.13	ΑN	Ϋ́Z	₹	Ϋ́	ΑN	ΑN	Ϋ́	1,000
Naphthalene	0.2	Ϋ́	∀ Z	₹	Ϋ́	A A	A A	Ϋ́	40
Phenantherene	0.71	ΑN	Ϋ́	ž	Ϋ́	Ϋ́	Υ Υ	Ϋ́	40
Pyrene	3.6	NA	NA	ΑN	A N	Ϋ́	Ϋ́	Ą Z	250
Analysis of Baranco samples done by Maxyam Analytics Inc	Analytice Ir								

Analysis of Barenco samples done by Maxxam Analytics Inc.
All results in ppm (ug/g) and based on dry weight basis. "ND" means "not detected" at reporting detection limit (RDL). "-" means "not applicable".
"NA" means "not analyzed".

* Samples TP1A, TP2A, TP3A and TP4A represent soil samples obtained from the remedial excavation of the former landfill. ** Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils.

06043

Exceedances of applicable standard is shown in bold.

BARENCO INC.

SOIL CHEMICAL ANALYSIS - VOCs and Petroleum Parameters 2202 3rd Avenue East, Owen Sound, Ontario	YSIS - Vers	SOO								Table 5
Sample ID	TP15R*	*4///1*	NN	/4/4/	EW	VVS	1	6 8	B2-A	Page 1 of 1
Pre or Post Remediation	Pre	Pre	Post	Post	Post	Post	Post	Pre	Post	Rea 153/04
Depth (m)	0.5-2.1	1.5-2.1	1.5-2.0	1.5-2.0	1.5-2.0	1.5-2.0	2.0-2.5	2.0-2.5	2.0-2.5	Table 3
Consultant	Barenco	CG&S	Barenco	Barenco	Barenco	Barenco	Barenco	Barenco	Barenco	Soil
Maxxam ID	W04220	•	W22472	W22473	W22474	W22475	W22476	W22477	X97912	Standards**
Sample Date	21-Nov-07	16-Jul-97	30-Nov-07	30-Nov-07	30-Nov-07	30-Nov-07	30-Nov-07	30-Nov-07	07-Apr-08	
Acetone (2-Propanone)	AA	₹	<0.1	<0.1	<0.1	<0.1	<0.1	\$	<0.1	3.8
Benzene	<0.02	<0.5	600.0	0.01	600.0	0.014	600.0	<0.1	600'0	25
Bromodichloromethane	¥:	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	41
Bromotorm	¥:	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	4
Bromomethane Carbon Tetrachloride	∢ ∢ Z Z		<0.003	0.003 0.003	<0.003	<0.003	<0.003	<0.15	<0.003	0.38
Chlorobenzene	Ž	<0.5 0.5	<0.00	<0.00	<0.00	<0.00	<0.002	- - -	<0.002	÷ 5
Chloroform	Ϋ́	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	0,0	<0.002	9 4
Dibromochloromethane	¥	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	. 0
1,2-Dichlorobenzene	Y Y	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	0.0	<0.002	8
1,3-Dichlorobenzene	¥	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	30
1,4-Dichlorobenzene	ž	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	30
1,1-Dichloroethane	Ϋ́	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	100
1,2-Dichloroethane	Š	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	0.14
1,1-Dichloroethylene	Y :	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	100
cis-1,2-Dichloroethylene	ď s	ο ο ο	<0.002	<0.002	<0.002	<0.002	<0.002	-0°1	<0.002	2.3
Tans-1,z-Dichorogon	2 2	n u	<0.002	<0.00Z	<0.002	<0.002	<0.002	- CO.1	<0.002	4.1
1,2-7,000 parties	(d) () ()	×0.002	×0.002	\$0.00 \$0.00	700.00	×0.002	5 6	<0.002	0.12
trans-1.3-Dichloropropene	¥ Z	0.5	<0.002	<0.002	<0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00 <0.00	<0.002	×0.002		<0.002	0.041
Ethylbenzene	5.7	55.7	<0.002	0.005	0.003	0.008	0.002	0.00	0.009	900
Ethylene Dibromide	Ϋ́	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	10.0
Methylene Chloride (Dichloromethane)	Y Y		<0.003	<0.003	<0.003	<0.003	<0.003	<0.15	<0.003	120
Methyl Isobutyl Ketone	₹ :	۷ Z	<0.025	<0.025	<0.025	<0.025	<0.025	<u>^</u> 1.3	<0.025	69
Methyl Ethyl Ketone (2-Butanone)	ď :	€ :	<0.025	<0.025	<0.025	<0.025	<0.025	<u>د</u> نع	<0.025	38
Methyl-t-Butyl Etner (M BE)	ď Š	A Ç	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	9 :
Stylene 1.1.1.2. Tetrachlomethane	2 2	C.O.	20.002	20.002	×0.002	×0.002	×0.002	ć	<0.002	1.7
1.1.2.2-Tetrachloroethane	Z Z	500	, COO	<0.002	×0.002	<0.002	20.002	- F	20.002 50.002	0.12
Tetrachloroethylene (Perchloroethylene)	Ϋ́	<0.5	<0.002	<0.002	<0.002	<0.002	<0.000	- 6	<0.002	0.45
	<0.02	1.57	<0.002	0.013	0.014	0.02	600.0	0.022	0.020	150
1,1,1-Trichloroethane	Ϋ́	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	8,
1,1,2-Trichloroethane	₹ Z	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	2.3
Trichloroethylene	₹ Z	<0.5	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	3.9
Vinyl Chloride	₹ ¦	٧	<0.002	<0.002	<0.002	<0.002	<0.002	<0.1	<0.002	0.0075
Aylenes (Total)	3/	1/3.9	<0.002	900.0	0.021	0.01	0.014	4.2	0.014	210
F1 (C0-C10) - B1EA	2 5 	₹ 2	2,40	0 7	5 4	£ 8	39	4 4	ď á	260
F3 (C16+0 C34)	150	(<	7 2	7 2	7 2	060	06.4	? :	2 2	000
F3 (C19 to C34)	100	(d	(4 2 Z	2 2	χ <u>α</u>	¥ ¥	4	ζ < Ζ Ζ	₹ 4 2 2	800
					1 44.1	,,,,	CAL	VA.	141	

06043

Analysis of Barenco samples done by Maxam Analytics inc.
All results in ppm (ug/g) and based on dry weight basis.
"NA" means "not analyzed"

* TP16-B and MW1 samples represent the pre-remediation soil samples - NW/WW/EW/SW/B-1/B-2 samples represent soil samples obtained from remedial excavation.

* Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils.

Exceedances of the MOE Table 3 standard are shown in bold, exceedances caused by detection limit issues are shown underlined.

APPENDIX A

Terms and Conditions

BARENCO

Terms and Conditions

- 1. SERVICES TO BE PROVIDED AND STANDARD OF CARE. Barenco Inc. ("Barenco") agrees to provide Client for its sole benefit and exclusive use, services set forth in Barenco's Proposal. Barenco's offer to perform shall be terminated if not accepted within sixty (60) days of the date of the Proposal. Barenco's services shall be performed in accordance with the standard of care of its profession which means generally accepted professional practices, related to the nature of the work accomplished, at the time and place the services are performed. Subject to this standard of care, Barenco makes no express or implied warranties regarding its services except as otherwise expressly stated herein and all other representations and warranties, express or implied, are hereby expressly excluded. Both parties agree that no third-party beneficiaries are intended by this Agreement.
- 2. PAYMENT. Invoices will be submitted once a month for services performed during the prior month, or upon completion of the work, whichever is earlier. Payment terms are due upon receipt. Interest will be added to accounts thirty (30) days in arrears at the rate of two per cent (2%) of the arrears for each month of delinquency, not to exceed the maximum percentage rate allowed by law. In addition, Barenco may, after giving seven (7) days written notice, suspend services under this or any other Agreement with Client without liability until all past due accounts (including fees and accrued interest) have been paid. Timely payment is an essential requirement of Client's performance of any Agreement between Barenco and Client. All expenses incurred by Barenco for liening or collecting any delinquent amount including, without limitation, legal and other third-party fees and filing fees, shall be paid to Barenco by Client.
- 3. RIGHT OF ENTRY AND PROPERTY RESPONSIBILITY. Client has responsibility for obtaining a right of entry to the property which is the subject of the services. The right of entry shall allow Barenco, its agents, subcontractors and employees to enter the property, including buildings if required to complete the services as proposed, from time to time, as necessary to perform the agreed services. Barenco has responsibility for its own activities on the property including the safety of its employees; it does not assume control of nor responsibility for the property, the person in charge of the property, nor the safety of persons not in Barenco's employ.
- 4. INSURANCE. Barenco maintains Workers' Compensation insurance for its employees as required by provincial law. In addition, Barenco maintains the following insurance policies: Commercial General Liability, Pollution Liability and Professional Liability (\$1,000,000) each occurrence, \$1,000,000 Policy Aggregate) and Automobile Third Party Liability (\$2,000,000).
- 5. DOCUMENTS. Barenco will furnish Client the agreed upon number of written reports and supporting documents. All such reports and documents are furnished for Client's exclusive internal use and reliance, use of Client's counsel, and for regulatory submission as expressly contemplated in connection with the services provided for in the Agreement, but not for advertising or other type of distribution, and are subject to the following: All documents generated by Barenco under this Agreement shall remain the sole property of Barenco. Any unauthorized use or distribution of Barenco's work shall be at Client's and recipient's sole risk and without liability to Barenco. Barenco retains a confidential file copy of its work product and related documents. If Client desires to release, or for Barenco to provide, its report to a third party, which is not entitled to receive or use the reports and documents as set out above, for that third party's reliance, Barenco will agree to such release provided it receives written acceptance from such third party to be bound by acceptable terms and conditions similar to this Agreement, and provided payment by such third party of Barenco's standard fee. Reports provided for disclosure of information only will not require separate agreement. Client acknowledges and agrees to inform such third party that Barenco's report reflects conditions only at the time of the report and may not reflect conditions at a later time. Client further acknowledges that such request for release creates a potential conflict of interest for Barenco and by making any such request Client waives any such claim if Barenco complies with the request. Client agrees that all documents furnished to Client or Client's agent or designees, if not paid for, will be returned upon demand and will not be used by Client or any other person or entity for any purpose whatsoever. Client further agrees that documents produced by Barenco pursuant to this Agreement will not be used for any purpose not expressly provided for in this Agreement without Barenco's prior written approval. Client shall furnish documents or other information reasonably within Client's control and deemed necessary by Barenco for proper performance of its services. Barenco may rely, without independent investigation or enquiry, upon Client-provided documents in performing the services required under this Agreement; however, Barenco assumes no responsibility or liability for their accuracy. Client-provided documents will remain the property of Client but Barenco may retain one confidential file copy as needed to support its report.
- 6. CONFIDENTIALITY. Barenco will maintain as confidential any documents or information provided by Client and will not release, distribute or publish same to any third party without prior permission from Client, unless compelled by law or by order of a court or regulatory authority of competent jurisdiction.
- 7. INTELLECTUAL PROPERTY. All concepts, products, processes, inventions, trade-marks, works, designs and improvements to, and derivatives of, the foregoing, resulting from the services rendered by Barenco in connection with the project, or which are invented, authored, developed or first used or reduced to practise by Barenco in the performance of the services shall be and remain the property of Barenco. Client shall have a personal non-exclusive, royalty-free, non-assignable, non-sublicensable licence to use the Intellectual Property in connection with the project, for the life of the project, and for no other purpose or project. Barenco does not make any representation or warranty that such Intellectual Property does not violate the rights of any other person.
- 8. WASTE. Client warrants that, if it knows or suspects that "waste" (within the meaning of the Ontario Environmental Protection Act) may exist on the property, it has so informed Barenco. Client also agrees that Barenco accepts no ownership of any waste and has no responsibility as a generator of any waste found or identified at the project property.
- 9. LIMITATION OF LIABILITY. CLIENT EXPRESSLY AGREES THAT, TO THE FULLEST EXTENT PERMIT TED BY LAW, ITS MAXIMUM AGGREGATE RECOVERY AGAINST BARENCO, ITS DIRECTORS, EMPLOYEES, SUB-CONTRACTORS AND REPRESENTATIVES, FOR ANY AND ALL CLAIMS BY CLIENT FOR ALL CAUSES INCLUDING, BUT NOT LIMITED TO, CLAIMS OF BREACH OF CONTRACT, BREACH OF WARRANTY AND/OR NEGLIGENCE, SHALL BE THE AMOUNT OF THE FEE PAID TO BARENCO FOR ITS PROFESSIONAL SERVICES RENDERED UNDER THE AGREEMENT WITH RESPECT TO THE PARTICULAR SITE WHICH IS THE SUBJECT OF THE CLAIM BY CLIENT. PROVIDED THAT, IF THERE IS AN EVENTUAL FINAL DETERMINATION BY A COURT OF COMPETENT JURISDICTION OF GROSS NEGLIGENCE OR WILLFUL MISCONDUCT BY BARENCO, THEN THE MAXIMUM AGGREGATE RECOVERY SHALL BE LIMITED AS FOLLOWS: THE GREATER OF (A) THE FEE OR (B) THE LESSER OF TWO TIMES (2x) THE FEE AND \$25,000.

Terms and Conditions (cont.)

- 10. INDEMNIFICATION. To the fullest extent permitted by law, Client agrees to defend, indemnify, and hold Barenco, its agents, subcontractors, and employees harmless from and against any and all claims, defence costs, including legal fees, damages and other liabilities arising out of or in any way related to Barenco's reports or recommendations concerning this Agreement, Barenco's presence on the project property, or the presence, release or threatened release of contaminants on or from the project property provided that Client shall not indemnify Barenco against liability for damages caused by or resulting from the sole negligence of Barenco, its agents, subcontractors or employees or against penalties or fines resulting from violations by Barenco of its own Certificates of Approval; and provided further that Client shall indemnify Barenco against liability for damages caused by or resulting from the concurrent or contributory negligence of (a) Client, its agents, or employees and (b) Barenco, its agents, subcontractors, or employees, only to the extent of Client's negligence or the negligence of Client's agents or subcontractors. Provided further that Barenco's obligation hereunder shall not extend to indemnification or holding harmless for any claims of loss of profits or any other indirect, special, incidental, or consequential damages of any nature whatsoever.
- 11. UNFORESEEN OCCURRENCES. If any unforeseen conditions or occurrences are encountered which, in Barenco's judgement, significantly affect or may affect the original services as proposed, then Barenco will promptly notify Client. After such notification, the parties agree that Barenco has the unilateral right to complete the original services as proposed, if appropriate, or agree with Client to modify the Agreement, or terminate the Agreement.
- 12. TERMINATION AND RESTART. In the event that Client requests termination of work prior to completion or Barenco terminates work under Paragraph 11, a final invoice will be rendered. Where the method of payment is based on time and materials, Barenco will be paid for all work performed up to notice of termination and for all expenses incurred or committed to that cannot be cancelled. Where the method of payment is based on a fixed price, the final invoice will be based on the percentage of work completed by the date of termination. Barenco also has the right to complete at client's expense the analyses and records Barenco considers necessary to protect its professional reputation.
- 13. WELL ABANDONMENT. Any monitoring wells installed as part of Barenco's work may later need to be abandoned in accordance with applicable law. Unless expressly provided for in the proposal, well abandonment is not included in the work.
- 14. DISPOSAL OF SAMPLES. Samples not submitted for analysis will be discarded 90 days after sampling unless different arrangements are agreed to in writing.
- 15. SUBSURFACE RISKS AND SITE DAMAGE. Client recognizes that special risks occur and guarantees cannot be expected whenever professional consulting services are applied to determine the composition of a site's subsurface or the existence or non-existence of waste materials. Barenco cannot eliminate these risks altogether, but Barenco can apply professional techniques to reduce the risks to a level deemed tolerable and Client agrees to accept that level of risk. Whenever Barenco is providing field services, Client recognizes that the use of exploration and test equipment may unavoidably damage or alter the property surface or subsurface. Barenco will not be responsible for personal and property damages due to its interference with subterranean structures, such as pipes, tanks, and utility lines that are not called to Barenco's attention in writing or correctly shown on plans provided by Client, or for which clearances cannot be obtained from utility owners or their agents, or which are incorrectly cleared by utility owners or their agents.
- 16. SEVERABILITY AND SURVIVAL. Any element of this Agreement later held to violate a law shall be deemed void, and all remaining provisions shall continue in force. However, Client and Barenco will in good faith attempt to replace any invalid or unenforceable provision with one that is valid and enforceable, and which comes as close as possible to expressing the intent of the original provision. All terms and conditions of this Agreement allocating liability between Client and Barenco shall survive the completion of the services hereunder and the termination of the Agreement.
- 17. DISPUTES RESOLUTION. All matters in dispute howsoever caused may with the consent of both parties be referred to arbitration. The award of the arbitrator shall be final and binding upon the parties. The provisions of the Ontario Arbitrations Act, 1991, shall apply. Alternatively, if the dispute requires litigation, (a) Client assents to exclusive jurisdiction of the courts of the Province of Ontario (b) the claim will be brought and tried in the judicial jurisdiction where Barenco's principal place of business is located and Client waives the right to move the action to any other judicial jurisdiction and (c) the prevailing party will be entitled to recovery of all reasonable costs incurred, including staff time, court costs, legal fees and other claim-related expenses.
- 18. PRECEDENCE. These terms and conditions shall take precedence over any inconsistent or contradictory provisions contained in any proposal, contract, purchase order, requisition, or like document concerning Barenco's services.
- 19. GOVERNING LAW. This Agreement shall be governed in all respects by the laws of the Province of Ontario.
- 20. ENTIRE AGREEMENT. This Agreement, together with Barenco's Proposal, constitutes the entire agreement between Client and Barenco pertaining to the subject matter of this Agreement and supersedes all other agreements, understandings, negotiations and discussions, whether oral or written. There are no conditions, warranties, representations or other agreements between the parties in connection with the subject matter of this Agreement (whether oral or written, express or implied, statutory or otherwise) except as specifically set out in this Agreement. Barenco shall not be bound or deemed to be bound by any other document or instrument issued by the Client, including without limitation, purchase orders, requisitions, or contracts unless a duly authorized officer of Barenco express ly agrees in writing to be bound by the terms of such documents or instruments, notwithstanding that documents or instruments may state otherwise.
- 21. PREPARATION OF AGREEMENT. Notwithstanding any rule or maxim of law or construction to the contrary, the parties agree that any ambiguity or uncertainty contained in this Agreement shall not be construed against Barenco merely because this Agreement was drafted or prepared by or on behalf of Barenco.

FORM TC1 -JANUARY 2007

APPENDIX B

Laboratory Certificates of Analysis

Attached are copies of the original Certificates of Analysis provided by the laboratory. The data contained in these analyses is to be read only in conjunction with the report to which it is attached. For interpretation of the chemical data, see the attached text.

All samples are submitted to and reported by the laboratory using purchase order numbers and sample location codes. These are only discernable to persons familiar with the purchase order system and the location codes. For descriptions of the locations of the samples, see the attached text.

Not all data contained in the original laboratory certificate of analysis may have been referenced in the report. Samples may have been submitted as travel or field blanks or as duplicates. Some samples may be for control purposes and represent soil that is no longer on the site and is not relevant to the report.

Since the laboratory data contains scientific terms and references, only trained persons familiar with sampling and laboratory methods should attempt to interpret the raw data.

BARENCO

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00544849

Attention: Carolyn Singer Barenco Inc 2561 Stouffville Rd PO Box 295 Gormley, ON

Report Date: 2007/12/07

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7D4583 Received: 2007/12/04, 15:23

L0H 1G0

Sample Matrix: Soil # Samples Received: 1

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference MOE HANDBOOK(1983)
MOISTURE	1		2001/12/00 0111 001 0111	EPA 8270
PAH Compounds in Soil by GC/MS (SIM)	1	2007/12/05	2007/12/05 SOP - 00318	EFA 0270

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Valentina Ulloa

Encryption Key

07 Dec 2007 15:10:40 -05:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com

Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Maxxam Job #: A7D4583 Report Date: 2007/12/07 Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	TP104C	RDL	QC Batch
COC Number	Ĭ	00544849		I
Sampling Date		2007/11/30		
Maxxam ID		W22522		

INORGANICS				
Moisture	%	20	0.2	1421057

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A7D4583 Report Date: 2007/12/07 Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

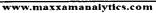
	Units	TP104C	RDL	QC Batch
COC Number		00544849		
Sampling Date		2007/11/30		
Maxxam ID		W22522	I	

PAHs				
Benzo(a)pyrene	ug/g	ND	0.005	1420476
Surrogate Recovery (%)				
D10-Anthracene	%	91		1420476
D14-Terphenyl (FS)	%	87		1420476
D7-Quinoline	%	71		1420476
D8-Acenaphthylene	%	73		1420476

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch


Maxxam Job #: A7D4583 Report Date: 2007/12/07

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043

Sampler Initials:

GENERAL	COMMENTS
---------	----------

Results relate only to the items tested.

Barenco Inc

Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA7D4583

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1420476 MWG		D10-Anthracene	2007/12/05	115	%	30 - 130
		D14-Terphenyl (FS)	2007/12/05	112	%	30 - 130
		D7-Quinoline	2007/12/05	92	%	30 - 130
		D8-Acenaphthylene	2007/12/05	84	%	30 - 130
		Benzo(a)pyrene	2007/12/05	101	%	30 - 130
	Spiked Blank	D10-Anthracene	2007/12/05	108	%	30 - 130
	•	D14-Terphenyl (FS)	2007/12/05	107	%	30 - 130
		D7-Quinoline	2007/12/05	102	%	30 - 130
		D8-Acenaphthylene	2007/12/05	92	%	30 - 130
		Benzo(a)pyrene	2007/12/05	95	%	30 - 130
	Method Blank	D10-Anthracene	2007/12/05	112	%	30 - 130
		D14-Terphenyl (FS)	2007/12/05	104	%	30 - 130
		D7-Quinoline	2007/12/05	98	%	30 - 130
		D8-Acenaphthylene	2007/12/05	88	%	30 - 130
		Benzo(a)pyrene	2007/12/05	ND, RDL=0.005	ug/g	
	RPD	D14-Terphenyl (FS)	2007/12/05	0.4	%	N/A
		Benzo(a)pyrene	2007/12/05	NC	%	50
1421057 MYG	RPD	Moisture	2007/12/06	0.6	%	50

ND = Not detected N/A = Not Applicable

NC = Non-calculable

RPD = Relative Percent Difference

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A7D4583
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).
Clistina Neur
CHRISTINA NERVO, Scientific Services
Must Ware
MICHAEL WANG,

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Site: OWEN SOUND Your C.O.C. #: 00507847

Attention: Vinod Kella Barenco Inc 2561 Stouffville Rd PO Box 295 Gormley, ON **L0H 1G0**

Report Date: 2007/09/21

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7A0203 Received: 2007/09/14, 15:04

Sample Matrix: Soil # Samples Received: 3

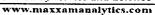
		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Total Metals Analysis by ICP	2	2007/09/17	2007/09/18	CAM SOP-00408	EPA 6010
MOISTURE	1	N/A	2007/09/18	Ont SOP-0114	MOE HANDBOOK(1983)
PAH Compounds in Soil by GC/MS (SIM)	1	2007/09/17	2007/09/17	EPA 8270	GC/MS ` ´

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Valentina Ulloa

21 Sep 2007 16:15:37 -04:00


Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		U66883		
Sampling Date COC Number	<u> </u>	2007/09/13 00507847	+	
	Units	SM4-A	RDL	QC Batch

INORGANICS				
Moisture	%	21	0.2	1362704

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		U66884	U66885		
Sampling Date		2007/09/13	2007/09/13		
COC Number		00507847	00507847	L	
	Units	HH8-A	SM1-A	RDL	QC Batch

METALS					
Acid Extractable Lead (Pb)	ug/g	ND	44	5	1361619
Acid Extractable Molybdenum (Mo)	ug/g		3	2	1361619

ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

	Units	SM4-A	RDL	QC Batch
COC Number		00507847		
Sampling Date		2007/09/13		
Maxxam ID		U66883		

PAHs				
Benzo(a)pyrene	ug/g	0.127	0.005	1363788
Benzo(b/j)fluoranthene	ug/g	0.200	0.005	1363788
Dibenz(a,h)anthracene	ug/g	0.04	0.02	1363788
Surrogate Recovery (%)				
D10-Anthracene	%	110		1363788
D14-Terphenyl (FS)	%	122		1363788
D7-Quinoline	%	83		1363788
D8-Acenaphthylene	%	96		1363788

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

www.maxxamanalytics.com

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS	GEI	NER	AL	CO	ММ	ENTS
------------------	-----	-----	----	----	----	------

Results relate only to the items tested.

Barenco Inc

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report Maxxam Job Number: MA7A0203

QA/QC			Date			
Batch	007		Analyzed			
Num Init 1361619 BGI	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
30 10 19 861	MATRIX SPIKE	Acid Extractable Lead (Pb)	2007/09/18	91	%	75 - 12
		Acid Extractable Molybdenum (Mo)	2007/09/18	92	% %	
	QC STANDARD	Acid Extractable Lead (Pb)	2007/09/18	96	% %	75 - 125
	Method Blank	Acid Extractable Lead (Pb)	2007/09/18	ND. RDL=5		75 - 12
	Acid Extractable Molybdenum (Mo)	2007/09/18	ND, RDL=2	ug/g		
	RPD	Acid Extractable Lead (Pb)	2007/09/18	NC	ug/g %	
362704 AYU	RPD	Moisture	2007/09/18	3.4	% %	35
363788 PMO	MATRIX SPIKE	D10-Anthracene	2007/09/19	94	% %	50
Spiked Blank	D14-Terphenyl (FS)	2007/09/19	97	% %	30 - 130	
	D7-Quinoline	2007/09/19	82	% %	30 - 130	
	D8-Acenaphthylene	2007/09/19	82 82		30 - 130	
	Benzo(a)pyrene	2007/09/19	112	%	30 - 130	
	Benzo(b/j)fluoranthene	2007/09/19	· · -	%	30 - 130	
	Dibenz(a,h)anthracene	2007/09/19	105	%	30 - 130	
	D10-Anthracene	2007/09/19	109	%	30 - 130	
	D14-Terphenyl (FS)	2007/09/19	109	%	30 - 130	
		D7-Quinoline	2007/09/19	112	%	30 - 130
	D8-Acenaphthylene	2007/09/19	96	%	30 - 130	
	Benzo(a)pyrene	2007/09/19	92	%	30 - 130	
	Benzo(b/j)fluoranthene	2007/09/19	118	%	30 - 130	
		Dibenz(a,h)anthracene	2007/09/19	113	%	30 - 130
Method Blank RPD	D10-Anthracene	2007/09/19	120	%	30 - 130	
	D14-Terphenyl (FS)	2007/09/19	96	%	30 - 130	
	D7-Quinoline		101	%	30 - 130	
	D8-Acenaphthylene	2007/09/19	83	%	30 - 130	
	Benzo(a)pyrene	2007/09/19	98	%	30 - 130	
	Benzo(b/j)fluoranthene	2007/09/19	ND, RDL=0.005	ug/g		
	Dibenz(a,h)anthracene	2007/09/19	ND, RDL=0.005	ug/g		
	D14-Terphenyl (FS)	2007/09/19	ND, RDL=0.02	ug/g		
	Benzo(a)pyrene	2007/09/19	4.8	%	N/A	
		Benzo(b/j)fluoranthene	2007/09/19	NC	%	50
			2007/09/19	NC	%	50
		Dibenz(a,h)anthracene	2007/09/19	NC	%	50

ND = Not detected

N/A = Not Applicable

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

TROY CARRIERE, B.Sc., C.Chem, Scientific Specialist

Validation Signature Page

Maxxam Job #: A7A0203
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).
Eva Prahjic S EVA PRANJIC, M.Sc., C.Chem, Scientific Specialist
Muz Way MICHAEL WANG,
State of the state

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00544847

Attention: Carolyn Singer
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON

Report Date: 2007/12/07

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7D4574 Received: 2007/12/04, 15:23

L0H 1G0

Sample Matrix: Soil # Samples Received: 6

Analyses Petroleum Hydro. CCME F1 & BTEX in Soil Petroleum Hydro. CCME F1 & BTEX in Soil Petroleum Hydro. CCME F1 & BTEX in Soil Petroleum Hydrocarbons F2-F4 in Soil Petroleum Hydrocarbons F2-F4 in Soil MOISTURE MOISTURE Volatile Organic Compounds in Soil	Quantity 3 1 2 3 3 1 5	2007/12/04 2007/12/04 2007/12/05 2007/12/04 2007/12/05 N/A N/A	2007/12/06 CAM SOP-00315 2007/12/05 CAM SOP-00315 2007/12/05 CAM SOP-00316 2007/12/05 CAM SOP-00316 2007/12/05 Ont SOP-0114 2007/12/06 Ont SOP-0114	Method Reference CCME CWS CCME CWS CCME CWS CCME CWS CCME CWS MOE HANDBOOK(1983) MOE HANDBOOK(1983)
Volatile Organic Compounds in Soil	6		2007/12/06 Ont SOP-0114 2007/12/06 CAM SOP-00226	MOE HANDBOOK(1983) EPA 8260 modified

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Valentina Ulloa

Encryption Key

07 Dec 2007 15:40:44 -05:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Valentimelle

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		W22472	W22473		W22474	T	
Sampling Date					******	 	
COC Number		00544847	00544847		00544847	1-	
	Units	NW	ww	QC Batch	EW	RDL	QC Batch
INORGANICS						T	
Moisture	%	17	19	1421057	20	0.2	1420620

Moisture	%	15	24	22	0.2	1421057
INORGANICS					T	
	Units	SW	B-1	B-2	RDL	QC Batcl
COC Number		00544847	00544847	00544847		
Sampling Date					+	<u> </u>
Maxxam ID Sampling Date	 	W22475	W22476	W22477	-	-

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		W22472	W22473	W22474	W22475	T	T
Sampling Date COC Number		00544847	00544047	00544045			
	Units	NW	00544847 WW	00544847 EW	00544847 SW	BDI	00.0
					344	KUL	QC Batc
VOLATILES						T	
Acetone (2-Propanone)	ug/g	ND	ND	ND	ND	0.1	1420553
Benzene	ug/g	0.009	0.010	0.009	0.014	0.002	
Bromodichloromethane	ug/g	ND	ND	ND	ND	0.002	1420553
Bromoform	ug/g	ND	ND	ND	ND	0.002	1420553
Bromomethane	ug/g	ND	ND	ND	ND	0.003	+
Carbon Tetrachloride	ug/g	ND	ND	ND	ND	0.002	1
Chlorobenzene	ug/g	ND	ND	ND	ND	0.002	
Chloroform	ug/g	ND	ND	ND	ND	0.002	+
Dibromochloromethane	ug/g	ND	ND	ND	ND	0.002	1420553
1,2-Dichlorobenzene	ug/g	ND	ND	ND	ND	0.002	1420553
1,3-Dichlorobenzene	ug/g	ND	ND	ND	ND	0.002	1420553
1,4-Dichlorobenzene	ug/g	ND	ND	ND	ND	0.002	1420553
,1-Dichloroethane	ug/g	ND	ND	ND	ND	0.002	1420553
1,2-Dichloroethane	ug/g	ND	ND	ND	ND	0.002	1420553
,1-Dichloroethylene	ug/g	ND	ND	ND	ND	0.002	1420553
sis-1,2-Dichloroethylene	ug/g	ND	ND	ND	ND	0.002	1420553
rans-1,2-Dichloroethylene	ug/g	ND	ND	ND	ND	0.002	1420553
,2-Dichloropropane	ug/g	ND	ND	ND	ND	0.002	1420553
is-1,3-Dichloropropene	ug/g	ND	ND	ND	ND	0.002	1420553
rans-1,3-Dichloropropene	ug/g	ND	ND	ND	ND	0.002	1420553
thylbenzene	ug/g	0.005	0.003	0.008	0.002	0.002	1420553
thylene Dibromide	ug/g	ND	ND	ND			1420553
fethylene Chloride(Dichloromethane)	ug/g	ND	ND	ND	-		1420553
lethyl Isobutyl Ketone	ug/g	ND	ND	ND			1420553
lethyl Ethyl Ketone (2-Butanone)	ug/g	ND	ND	ND			1420553
lethyl t-butyl ether (MTBE)	ug/g	ND	ND	ND			1420553
tyrene	ug/g	ND	ND	ND			1420553
1,1,2-Tetrachloroethane	ug/g	ND	ND	ND		 +	1420553
1,2,2-Tetrachloroethane	ug/g	ND	ND	ND			1420553
etrachloroethylene	ug/g	ND	ND	ND			1420553
bluene	ug/g	0.013	0.014	0.020		-	1420553

ND = Not detected

RDL = Reportable Detection Limit

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		W22472	W22473	W22474	W22475	T	Т —
Sampling Date					1122410	 	
COC Number		00544847	00544847	00544847	00544847	†	
	Units	NW	ww	EW	sw	RDL	QC Batch
1,1,1-Trichloroethane	ug/g	ND	ND	ND	ND	0.002	1420553
1,1,2-Trichloroethane	ug/g	ND	ND	ND	ND	0.002	1420553
Trichloroethylene	ug/g	ND	ND	ND	ND	0.002	1420553
Vinyl Chloride	ug/g	ND	ND	ND	ND	0.002	1420553
p+m-Xylene	ug/g	0.006	0.021	0.008	0.005	0.002	1420553
o-Xylene	ug/g	ND	ND	0.002	ND	0.002	1420553
Xylene (Total)	ug/g	0.006	0.021	0.010	0.005	0.002	1420553
Surrogate Recovery (%)							<u> </u>
4-Bromofluorobenzene	%	87	86	87	83		1420553
04-1,2-Dichloroethane	%	91	93	90	94	<u> </u>	1420553
08-Toluene	%	107	107	113	113		1420553

ND = Not detected RDL = Reportable Detection Limit

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID Sampling Date	4	W2247	76	W2247	7	
COC Number		0054484				
	Units	B-1	RDL	00544847 B-2		L QC Batch
NO. 474 77		,				L MC Balti
VOLATILES						
Acetone (2-Propanone)	ug/g	ND	0.1	ND	5	1420553
Benzene	ug/g	0.009	0.002	ND	0.1	1420553
Bromodichloromethane	ug/g	ND	0.002	ND	0.1	1420553
Bromoform	ug/g	ND	0.002	ND	0.1	1420553
Bromomethane	ug/g	ND	0.003	ND	0.15	1420553
Carbon Tetrachloride	ug/g	ND	0.002	ND	0.1	1420553
Chlorobenzene	ug/g	ND	0.002	ND	0.1	1420553
Chloroform	ug/g	ND	0.002	ND	0.1	1420553
Dibromochloromethane	ug/g	ND	0.002	ND	0.1	1420553
1,2-Dichlorobenzene	ug/g	ND	0.002	ND	0.1	1420553
,3-Dichlorobenzene	ug/g	ND	0.002	ND	0.1	1420553
,4-Dichlorobenzene	ug/g	ND	0.002	ND	0.1	1420553
,1-Dichloroethane	ug/g	ND	0.002	ND	0.1	1420553
,2-Dichloroethane	ug/g	ND	0.002	ND	0.1	1420553
,1-Dichloroethylene	ug/g	ND	0.002	ND	0.1	1420553
is-1,2-Dichloroethylene	ug/g	ND	0.002	ND	0.1	1420553
ans-1,2-Dichloroethylene	ug/g	ND	0.002	ND	0.1	1420553
,2-Dichloropropane	ug/g	ND	0.002	ND ND	0.1	1420553
s-1,3-Dichloropropene	ug/g	ND	0.002	ND	0.1	1420553
ans-1,3-Dichloropropene	ug/g	ND	0.002	ND ND	0.1	
thylbenzene	ug/g	0.009	0.002	0.3	0.1	1420553
thylene Dibromide	ug/g	ND	0.002	ND	0.1	1420553
ethylene Chloride(Dichloromethane)	ug/g	ND	0.003	ND	0.15	1420553
ethyl Isobutyl Ketone	ug/g	ND	0.025	ND	+ -	1420553
ethyl Ethyl Ketone (2-Butanone)	ug/g	ND	0.025	ND	1.3	1420553
ethyl t-butyl ether (MTBE)	ug/g	ND	0.002	ND	1.3	1420553
yrene	ug/g	ND	0.002	ND	0.1	1420553
1,1,2-Tetrachloroethane	ug/g	ND	0.002		0.1	1420553
,2,2-Tetrachloroethane	ug/g	ND	0.002	ND	-	1420553
trachloroethylene	ug/g	ND	+	ND		1420553
1	ug/g	0.022	0.002	ND ND		1420553

RDL = Reportable Detection Limit

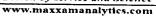
Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		W22476		W22477		
Sampling Date						i :
COC Number		00544847		00544847		
	Units	B-1	RDL	B-2	RDL	QC Batch
1,1,1-Trichloroethane	ug/g	ND	0.002	ND	0.1	1420553
1,1,2-Trichloroethane	ug/g	ND	0.002	ND	0.1	1420553
Trichloroethylene	ug/g	ND	0.002	ND	0.1	1420553
Vinyl Chloride	ug/g	ND	0.002	ND	0.1	1420553
p+m-Xylene	ug/g	0.011	0.002	4.2	0.1	1420553
o-Xylene	ug/g	0.003	0.002	ND	0.1	1420553
Xylene (Total)	ug/g	0.014	0.002	4.2	0.1	1420553
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	84		105		1420553
D4-1,2-Dichloroethane	%	88		99		1420553
D8-Toluene	%	109		101		1420553

ND = Not detected

RDL = Reportable Detection Limit



Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

PETROLEUM HYDROCARBONS (CCME)

	W22472	W22473	W22474		
		1,422473	VV 2 2 4 7 4	┼	
	00544847	00544847	00544847	+	
Units	NW	ww		RDI	QC Bato
				11100	MC Batc
un/n	ND.				
+		ND	ND	10	1419672
ug/g	ND	ND	ND	10	1419672
110/0					
ug/g	— UND	ND	ND	10	1419666
%	102				
			107		1419672
			103		1419672
		114	117		1419672
		98	98		1419672
%	84	85	85		1419666
	ug/g ug/g ug/g wg/g % % %	Units NW ug/g ND ug/g ND ug/g ND % 103 % 101 % 105 % 93	Units NW WW ug/g ND ND ug/g ND ND ug/g ND ND wg/g ND ND ug/g ND ND http://www.ww 103 104 104 105 114 9 93 98	O0544847 O054487 O054887 O	O0544847 O054487 O

Maxxam ID Sampling Date		W22475		W22476	14/00/77		
COC Number	+			1122470	W22477		
- vambo,	11min	00544847		00544847	00544847	+	
	Units	SW	QC Batch	B-1	B-2	BUI	QC Batc
F1 PHC and BTEX						INDL	. AC Batc
F1 (C6-C10)	ug/g	35	144000				
F1 (C6-C10) - BTEX	++		1419665	39	14	10	1419751
F2-F4 PHC	ug/g	35	1419665	39	14	10	1419751
2 (C10-C16 Hydrocarbons)	ug/g	890	+				1
Surrogate Recovery (%)	ug/g	890	1419773	790	ND	10	1419773
,4-Difluorobenzene	%	101	144000				
-Bromofluorobenzene	%		1419665	96	95		1419751
10-Ethylbenzene		100	1419665	104	99		1419751
4-1,2-Dichloroethane	%	102	1419665	107	108		1419751
	%	88	1419665	101	98	\neg	1419751
Terphenyl	%	100	1419773	110	90	-+	1419773
D = Not detected DL = Reportable Detection Li C Batch = Quality Control Bat	mit						1413//3

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

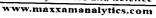
GENERAL COMMENTS

Note: F1BTEX - all soils were Methanol extracted on 2007/12/04

The BTEX results used for the F1-BTEX calculation were obtained from Headspace-GC analysis.

Sample W22477-01: VOC Analysis: Due to a level of target analytes and petroleum hydrocarbon compounds beyond the appropriate range, the sample could not be analysed by the low level direct purge method. The sample was preextracted in methanol and the extract analysed by high level purge & trap (US EPA Method 5035) gas chromatography/mass spectrometry using US EPA Method 8260C (modified). The DLs were adjusted accordingly.

Results relate only to the items tested.

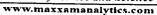


Barenco Inc Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA7D4574

QA/QC Batch			Date		
Num Init	QC Type	Parameter	Analyzed		
1419665 SPV	MATRIX SPIKE	1,4-Difluorobenzene	yyyy/mm/dd	Value Recovery Units	QC Limi
	WALLEY OF THE	4-Bromofluorobenzene	2007/12/06	103 %	60 - 14
		D10-Ethylbenzene	2007/12/06	98 %	60 - 14
		D4-1,2-Dichloroethane	2007/12/06	113 %	30 - 13
		F1 (C6-C10)	2007/12/06	91 %	60 - 14
	Spiked Blank	1,4-Difluorobenzene	2007/12/06	NC (1) %	60 - 1
	- pu	4-Bromofluorobenzene	2007/12/06	106 %	60 - 14
		D10-Ethylbenzene	2007/12/06	96 %	60 - 14
		D4-1,2-Dichloroethane	2007/12/06	98 %	30 - 1:
		F1 (C6-C10)	2007/12/06	93 %	60 - 14
	Method Blank	1,4-Difluorobenzene	2007/12/06	95 %	60 - 1
		4-Bromofluorobenzene	2007/12/06	106 %	60 - 14
		D10-Ethylbenzene	2007/12/06 2007/12/06	96 %	60 - 14
		D4-1,2-Dichloroethane	2007/12/06	101 %	30 - 13
		F1 (C6-C10)	2007/12/06	93 %	60 - 14
		F1 (C6-C10) - BTEX	2007/12/06	ND, RDL=10 ug/g	
	RPD	F1 (C6-C10)	2007/12/06	ND, RDL=10 ug/g	
		F1 (C6-C10) - BTEX	2007/12/06	53.3 (2) %	5
419666 LSY	MATRIX SPIKE	o-Terphenyl	2007/12/05	53.3 (2) %	
		F2 (C10-C16 Hydrocarbons)	2007/12/05	95 %	30 - 13
	Spiked Blank	o-Terphenyl	2007/12/05	95 %	60 - 13
	·	F2 (C10-C16 Hydrocarbons)	2007/12/05	87 %	30 - 13
	Method Blank	o-Terphenyl	2007/12/05	83 %	60 - 13
		F2 (C10-C16 Hydrocarbons)	2007/12/05	95 %	30 - 13
	RPD	F2 (C10-C16 Hydrocarbons)	2007/12/05	ND, RDL=10 ug/g	
419672 DTI	MATRIX SPIKE	1,4-Difluorobenzene		NC %	5
		4-Bromofluorobenzene	2007/12/04 2007/12/04	103 %	60 - 14
		D10-Ethylbenzene	2007/12/04	100 %	60 - 14
		D4-1,2-Dichloroethane	2007/12/04	120 %	30 - 13
		F1 (C6-C10)	2007/12/04	97 %	60 - 14
	Spiked Blank	1,4-Difluorobenzene	2007/12/04	NC (3) %	60 - 14
	•	4-Bromofluorobenzene	2007/12/04	103 %	60 - 14
		D10-Ethylbenzene	2007/12/04	100 %	60 - 14
		D4-1,2-Dichloroethane	2007/12/04	108 %	30 - 13
		F1 (C6-C10)		95 %	60 - 14
	Method Blank	1,4-Difluorobenzene	2007/12/04	103 %	60 - 14
		4-Bromofluorobenzene	2007/12/04	104 %	60 - 14
		D10-Ethylbenzene	2007/12/04 2007/12/04	106 %	60 - 140
		D4-1,2-Dichloroethane	2007/12/04	110 %	30 - 130
		F1 (C6-C10)		97 %	60 - 140
		F1 (C6-C10) - BTEX	2007/12/04	ND, RDL=10 ug/g	
	RPD	F1 (C6-C10)	2007/12/04	ND, RDL=10 ug/g	
		F1 (C6-C10) - BTEX	2007/12/04	38.3 %	50
19751 KJI	MATRIX SPIKE	1,4-Difluorobenzene	2007/12/04	38.4 %	50
		4-Bromofluorobenzene	2007/12/05	100 %	60 - 140
		D10-Ethylbenzene	2007/12/05	104 %	60 - 140
		D4-1,2-Dichloroethane	2007/12/05	115 %	30 - 130
		F1 (C6-C10)	2007/12/05	107 %	60 - 140
	Spiked Blank	1,4-Difluorobenzene	2007/12/05	105 %	60 - 140
	,	4-Bromofluorobenzene	2007/12/05	99 %	60 - 140
		D10-Ethylbenzene	2007/12/05	104 %	60 - 140
		D4-1,2-Dichloroethane	2007/12/05	110 %	30 - 130
		F1 (C6-C10)	2007/12/05	102 %	60 - 140
	Method Blank		2007/12/05	96 %	60 - 140
	METHOR DISTIK	1,4-Difluorobenzene	2007/12/05	99 %	60 - 140
		4-Bromofluorobenzene	2007/12/05	98 %	60 - 140



Barenco Inc Attention: Carolyn Singer Client Project #: 06043 P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA7D4574

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	l Inite	00.11
419751 KJI	Method Blank	D10-Ethylbenzene	2007/12/05	7 4146	113	Units	QC Limi
		D4-1,2-Dichloroethane	2007/12/05			%	30 - 13
		F1 (C6-C10)	2007/12/05	ND 0	109	%	60 - 14
		F1 (C6-C10) - BTEX	2007/12/05		DL=10	ug/g	
	RPD	F1 (C6-C10)		•	DL=10	ug/g	
		F1 (C6-C10) - BTEX	2007/12/05	NC		%	
119773 BWW	MATRIX SPIKE	o-Terphenyl	2007/12/05	NC		%	
		F2 (C10-C16 Hydrocarbons)	2007/12/05		102	%	30 - 13
	Spiked Blank	o-Terphenyl	2007/12/05		NC (4)	%	60 - 13
	•	F2 (C10-C16 Hydrocarbons)	2007/12/05		101	%	30 - 13
	Method Blank	o-Terphenyl	2007/12/05		101	%	60 - 13
	Blank	F2 (C10-C16 Hydrocarbons)	2007/12/05		96	%	30 - 13
	RPD	F2 (C10-C10 Hydrocarbons)	2007/12/05	ND, RI	DL=10	ug/g	
20553 RZH	MATRIX SPIKE	F2 (C10-C16 Hydrocarbons)	2007/12/05	NC		%	5
	[W22474-02]	4-Bromofluorobenzene	2007/12/06		86	%	60 - 14
		D4-1,2-Dichloroethane	2007/12/06		84	%	
		D8-Toluene	2007/12/06		107	%	60 - 14
		Acetone (2-Propanone)	2007/12/06		111	%	60 - 14
		Benzene	2007/12/06		85		24 - 17
		Bromodichloromethane	2007/12/06			%	39 - 13
		Bromoform	2007/12/06		79	%	45 - 13
		Bromomethane	2007/12/06		81	%	44 - 13
		Carbon Tetrachloride	2007/12/06		83	%	20 - 14
		Chlorobenzene	2007/12/06		91	%	40 - 13
		Chloroform	2007/12/06		93	%	45 - 14
		Dibromochloromethane			85	%	48 - 12
		1,2-Dichlorobenzene	2007/12/06		85	%	52 - 13
		1,3-Dichlorobenzene	2007/12/06		96	%	39 - 14
		1,4-Dichlorobenzene	2007/12/06		107	%	38 - 158
		1,1-Dichloroethane	2007/12/06		108	%	35 - 159
		1,2-Dichloroethane	2007/12/06		108	%	48 - 13°
			2007/12/06		78	%	43 - 12
		1,1-Dichloroethylene	2007/12/06		105	%	50 - 134
		cis-1,2-Dichloroethylene	2007/12/06		88	%	45 - 136
		trans-1,2-Dichloroethylene	2007/12/06		94	%	45 - 138
		1,2-Dichloropropane	2007/12/06		90	%	51 - 130
		cis-1,3-Dichloropropene	2007/12/06		88	%	39 - 143
		trans-1,3-Dichloropropene	2007/12/06		83	%	33 - 135
		Ethylbenzene	2007/12/06		97	%	46 - 150
		Ethylene Dibromide	2007/12/06		86	%	
		Methylene Chloride(Dichloromethane)	2007/12/06		85	%	48 - 136
		Methyl isobutyl Ketone	2007/12/06		92	% %	47 - 124
		Methyl Ethyl Ketone (2-Butanone)	2007/12/06		102		48 - 133
		Methyl t-butyl ether (MTBE)	2007/12/06			% «	39 - 160
		Styrene	2007/12/06		85	%	37 - 150
		1,1,1,2-Tetrachloroethane	2007/12/06		84	%	27 - 148
		1,1,2,2-Tetrachloroethane	2007/12/06		90	%	51 - 140
		Tetrachloroethylene	2007/12/06		81	%	46 - 128
		Toluene			102	%	45 - 154
		1,1,1-Trichloroethane	2007/12/06		83	%	30 - 158
		1,1,2-Trichloroethane	2007/12/06		90	%	44 - 136
		Trichloroethylene	2007/12/06		87	%	56 - 135
		•	2007/12/06		90	%	39 - 146
		Vinyl Chloride	2007/12/06		73	%	34 - 136
		p+m-Xylene	2007/12/06		99	%	29 - 161
	nilead Dia 1	o-Xylene	2007/12/06		94	%	45 - 150
SI	piked Blank	4-Bromofluorobenzene	2007/12/06		94	%	
					J=	/0	60 - 140

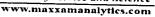
Barenco Inc Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA7D4574

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	D		
1420553 RZH	Spiked Blank	D4-1,2-Dichloroethane	2007/12/06	Value	Recovery	Units	QC Lim
	·	D8-Toluene	2007/12/06		92	%	60 - 1
		Acetone (2-Propanone)	2007/12/06		102	%	60 - 1
		Benzene			97	%	60 - 1
		Bromodichloromethane	2007/12/06		102	%	60 - 14
		Bromoform	2007/12/06		93	%	60 - 14
		Bromomethane	2007/12/06		99	%	60 - 1
		Carbon Tetrachloride	2007/12/06 2007/12/06		75	%	60 - 14
		Chlorobenzene			96	%	60 - 1
		Chloroform	2007/12/06		101	%	60 - 14
		Dibromochloromethane	2007/12/06		96	%	60 - 14
		1,2-Dichlorobenzene	2007/12/06		97	%	60 - 14
		1,3-Dichlorobenzene	2007/12/06		103	%	60 - 14
		1,4-Dichlorobenzene	2007/12/06		109	%	60 - 14
		1,1-Dichloroethane	2007/12/06		111	%	60 - 14
		1,2-Dichloroethane	2007/12/06		121	%	60 - 14
		1,1-Dichloroethylene	2007/12/06		93	%	60 - 14
		cis-1,2-Dichloroethylene	2007/12/06		105	%	60 - 14
		trans-1,2-Dichloroethylene	2007/12/06		100	%	60 - 14
		1,2-Dichloropropane	2007/12/06		102	%	60 - 14
		• •	2007/12/06		105	%	60 - 14
		cis-1,3-Dichloropropene	2007/12/06		105	%	60 - 14
		trans-1,3-Dichloropropene	2007/12/06		103	%	60 - 14
		Ethylbenzene Ethylene Dibromide	2007/12/06		107	%	60 - 14
			2007/12/06		98	%	60 - 14
		Methylene Chloride(Dichloromethane)	2007/12/06		97	%	60 - 14
		Methyl Isobutyl Ketone	2007/12/06		110	%	60 - 14
		Methyl Ethyl Ketone (2-Butanone)	2007/12/06		105	%	60 - 14
		Methyl t-butyl ether (MTBE)	2007/12/06		99	%	60 - 14
		Styrene	2007/12/06		98	%	60 - 14
		1,1,1,2-Tetrachloroethane	2007/12/06		98	%	60 - 14
		1,1,2,2-Tetrachloroethane	2007/12/06		98	%	60 - 14
		Tetrachloroethylene Toluene	2007/12/06		101	%	60 - 14
			2007/12/06		101	%	60 - 14
		1,1,1-Trichloroethane	2007/12/06		97	%	60 - 14
		1,1,2-Trichloroethane	2007/12/06		98	%	60 - 14
		Trichloroethylene	2007/12/06		100	%	60 - 14
		Vinyl Chloride	2007/12/06		70	%	60 - 14
		p+m-Xylene	2007/12/06		110	%	60 - 14
1	Method Blank	o-Xylene	2007/12/06		103	%	60 - 14
	WICKING DIBITA	4-Bromofluorobenzene	2007/12/06		95	%	60 - 140
		D4-1,2-Dichloroethane	2007/12/06		98	%	60 - 146
		D8-Toluene	2007/12/06		101	%	60 - 140
		Acetone (2-Propanone)	2007/12/06	ND, RDL=	:0.1	ug/g	
		Benzene	2007/12/06	ND, RDL=	0.002	ug/g	
		Bromodichloromethane	2007/12/06	ND, RDL=		ug/g	
		Bromoform	2007/12/06	ND, RDL=	0.002	ug/g	
		Bromomethane	2007/12/06	ND, RDL=		ug/g	
		Carbon Tetrachloride	2007/12/06	ND, RDL=		ug/g	
		Chlorobenzene	2007/12/06	ND, RDL=		ug/g	
		Chloroform	2007/12/06	ND, RDL=	0.002	ug/g	
		Dibromochloromethane	2007/12/06	ND, RDL=		ug/g	
		1,2-Dichlorobenzene	2007/12/06	ND, RDL=		ug/g	
		1,3-Dichlorobenzene	2007/12/06	ND, RDL=		ug/g	
		1,4-Dichlorobenzene	2007/12/06	ND, RDL=		ug/g	
		1,1-Dichloroethane	2007/12/06	ND, RDL=		ug/g	



Barenco inc Attention: Carolyn Singer Client Project #: 06043 P.O. #: 06043 Project name:

Quality Assurance Report (Continued) Maxxam Job Number: MA7D4574

QA/QC Batch			Date				
Num Init	QC Type	•	Analyzed				
1420553 RZH	Method Blank	Parameter	yyyy/mm/dd	Value	Passura.		_
. ,20000 ((2))	Method Blank	1,2-Dichloroethane	2007/12/06		Recovery DL=0.002	Units	QC Lim
		1,1-Dichloroethylene	2007/12/06			ug/g	
		cis-1,2-Dichloroethylene	2007/12/06		DL=0.002	ug/g	
		trans-1,2-Dichloroethylene	2007/12/06		DL=0.002	ug/g	
		1,2-Dichloropropane	2007/12/06		DL=0.002	ug/g	
		cis-1,3-Dichloropropene	2007/12/06	ND, R	DL=0.002	ug/g	
		trans-1,3-Dichloropropene	2007/12/06	ND, K	DL=0.002	ug/g	
		Ethylbenzene	2007/12/06	ND, KI	DL=0.002	ug/g	
		Ethylene Dibromide	2007/12/06	ND, RI	DL=0.002	ug/g	
		Methylene Chloride(Dichloromethane)	2007/12/06	ND, RI	DL=0.002	ug/g	
		Methyl Isobutyl Ketone	2007/12/06	ND, RI	DL=0.003	ug/g	
		Methyl Ethyl Ketone (2-Butanone)	2007/12/06	ND, RE	DL=0.025	ug/g	
		Methyl t-butyl ether (MTBE)	2007/12/06		DL=0.025	ug/g	
		Styrene		ND, RE	DL=0.002	ug/g	
		1,1,1,2-Tetrachloroethane	2007/12/06	ND, RE	DL=0.002	ug/g	
		1,1,2,2-Tetrachloroethane	2007/12/06	ND, RD	DL=0.002	ug/g	
		Tetrachloroethylene	2007/12/06	ND, RE	L=0.002	ug/g	
		Toluene	2007/12/06	ND, RD	L=0.002	ug/g	
		1,1,1-Trichloroethane	2007/12/06		L=0.002	ug/g	
		1,1,2-Trichloroethane	2007/12/06		L=0.002	ug/g	
		Trichloroethylene	2007/12/06	ND, RD	L=0.002	ug/g	
		Vinyl Chloride	2007/12/06		L=0.002	ug/g	
		p+m-Xylene	2007/12/06	ND, RD	L=0.002	ug/g	
		o-Xylene	2007/12/06	ND, RD	L=0.002	ug/g	
		Xviene (Total)	2007/12/06	ND, RD		ug/g	
RPD [W22474-02	RPD [W22474-021	Acetone (2-Propanone)	2007/12/06	ND, RD	L=0.002	ug/g	
		Benzene	2007/12/06	NC		%	50
		Bromodichloromethane	2007/12/06	NC		%	50
		Bromoform	2007/12/06	NC		%	50
		Bromomethane	2007/12/06	NC		%	50
		Carbon Tetrachloride	2007/12/06	NC		%	50
		Chlorobenzene	2007/12/06	NC		%	
		Chloroform	2007/12/06	NC		%	50
			2007/12/06	NC		%	50
		Dibromochloromethane	2007/12/06	NC		%	50
		1,2-Dichlorobenzene	2007/12/06	NC		%	50
		1,3-Dichlorobenzene	2007/12/06	NC		% %	50
		1,4-Dichlorobenzene	2007/12/06	NC		% %	50
		1,1-Dichloroethane	2007/12/06	NC		% %	50
		1,2-Dichloroethane	2007/12/06	NC		% %	50
		1,1-Dichloroethylene	2007/12/06	NC			50
		cis-1,2-Dichloroethylene	2007/12/06	NC		%	50
		trans-1,2-Dichloroethylene	2007/12/06	NC		% v	50
		1,2-Dichloropropane	2007/12/06	NC		%	50
		cis-1,3-Dichloropropene	2007/12/06	NC		%	50
		trans-1,3-Dichloropropene	2007/12/06	NC		%	50
		Ethylbenzene	2007/12/06	NC		%	50
		Ethylene Dibromide	2007/12/06	NC		%	50
	l	Methylene Chloride(Dichloromethane)	2007/12/06	NC NC		%	50
		Methyl Isobutyl Ketone	2007/12/06			%	50
	I	Methyl Ethyl Ketone (2-Butanone)	2007/12/06	NC NC		%	50
	1	Methyl t-butyl ether (MTBE)	2007/12/06	NC NC		%	50
	(Styrene		NC		%	50
	1	1,1,1,2-Tetrachloroethane	2007/12/06	NC		%	50
	1	.1,2,2-Tetrachloroethane	2007/12/06	NC		%	50
	7	etrachloroethylene	2007/12/06	NC		%	50
		·	2007/12/06	NC		%	50

Barenco Inc

Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

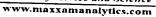
Maxxam Job Number: MA7D4574

QA/QC Batch Num Init	QC Type	Parameter	Date Analyzed				
1420553 RZH	RPD [W22474-02]		yyyy/mm/dd	Value	Recovery	Units	QC Limits
		1,1,1-Trichloroethane	2007/12/06	44.2		%	50
			2007/12/06	NC		%	50
		1,1,2-Trichloroethane	2007/12/06	NC		%	50
		Trichloroethylene	2007/12/06	NC		%	
		Vinyl Chloride	2007/12/06	NC		%	50
		p+m-Xylene	2007/12/06	NC		%	50
		o-Xylene	2007/12/06	NC		%	50
4400000		Xylene (Total)	2007/12/06	NC			50
1420620 VPA	RPD	Moisture	2007/12/05			%	50
1421057 MYG	RPD	Moisture		3.3		%	50
			2007/12/06	0.6		%	50

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference


SPIKE = Fortified sample

(1) The recovery in the matrix spike was not calculated (NC), spike level <2 X native concentration.

Please refer to General Comments page for specific clarification. (2)

The recovery for F1 (C6-C10) and Gasoline in the matrix spike was not calculated, spike level <2 X native concentration (3) (4)

Matrix Spiked recoveries were not calculated (NC) because of high concentration of target compounds in the parent sample.

Validation Signature Page

Maxxam Job #: A7D4574	
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).	
Cliptina Neur	
CHRISTINA NERVO, Scientific Services	
M. Risheld	
MEDHAT RISKALLAH, Manager, Hydrocarbon Department	
Suzana Popumi	
SUZANA POPOVIC, Supervisor, Hydrocarbons	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00544845

Attention: Carolyn Singer Barenco inc 2561 Stouffville Rd PO Box 295 Gormley, ON L0H 1G0

Report Date: 2007/12/07

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7D4555 Received: 2007/12/04, 15:23

Sample Matrix: Soil # Samples Received: 4

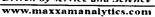
Analyses Acid Extractable Metals in Soil by GF	Quantity	Date Extracted	Date Analyzed	Laboratory Method	Method Reference
	4	2007/12/06	2007/12/07	CAM SOP-00404	
MOISTURE	4				EPA 7010
PAH Compounds in Soil by GC/MS (SIM)	7			Ont SOP-0114	MOE HANDBOOK(1983)
Tampando in doir by Coning (GIM)	4	2007/12/05	2007/12/05	SOP - 00318	EPA 8270

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Valentina Ulloa

07 Dec 2007 15:11:24 -05:00

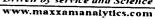

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1


Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	TP1A	TP2A	TP3A	TP4A	RDL	QC Batch
COC Number		00544845	00544845	00544845	00544845	T	
Sampling Date		2007/11/30	2007/11/30	2007/11/30	2007/11/30		
Maxxam ID		W22393	W22394	W22395	W22396		1

INORGANICS							
Moisture	%	16	19	16	17	0.2	1421057

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

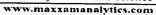
COC Number		2007/11/30	2007/11/30	2007/11/30			
		00544845	00544845	00544845	2007/11/30 00544845	┿	
	Units	TP1A	TP2A	TP3A	TP4A	RDL	QC Batch
METALS			T		<u></u>		
Acid Extractable Arsenic (As)	ug/g	3	3	2	2	1	1421400

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

	Uille	IFIA	IFZA	IPJA	TP4A	RDL	QC Batch
	Units	TP1A	TP2A	TP3A	TDAA	DD:	5000
COC Number		00544845	00544845	00544845	00544845		
Sampling Date		2007/11/30	2007/11/30	2007/11/30	2007/11/30		
Maxxam ID		W22393	W22394	W22395	W22396		

PAHs							
Benzo(a)pyrene	ug/g	ND	ND	ND	ND	0.005	1420476
Dibenz(a,h)anthracene	ug/g			ND		0.02	1420476
Surrogate Recovery (%)							
D10-Anthracene	%	120	101	112	110		1420476
D14-Terphenyl (FS)	%	117	95	109	105		1420476
D7-Quinoline	%	93	78	82	78		1420476
D8-Acenaphthylene	%	88	78	84	85		1420476


ND = Not detected RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GENERAL	COMMENTS

Results relate only to the items tested.

Barenco Inc

Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA7D4555

QA/QC Batch			Date			·
Num Init	QC Type	Parameter	Analyzed			_
1420476 MWG		D10-Anthracene	yyyy/mm/dd	Value Recovery	Units	QC Limits
1-20-770 111110	WATRIA SPIRE		2007/12/05	115	%	30 - 130
		D14-Terphenyl (FS)	2007/12/05	112	%	30 - 130
		D7-Quinoline	2007/12/05	92	%	30 - 130
		D8-Acenaphthylene	2007/12/05	84	%	30 - 130
		Benzo(a)pyrene	2007/12/05	101	%	30 - 130
		Dibenz(a,h)anthracene	2007/12/05	88	%	30 - 130
	Spiked Blank	D10-Anthracene	2007/12/05	108	%	30 - 130
		D14-Terphenyl (FS)	2007/12/05	107	%	30 - 130
		D7-Quinoline	2007/12/05	102	%	30 - 130
		D8-Acenaphthylene	2007/12/05	92	%	30 - 130
	Benzo(a)pyrene	2007/12/05	95	%	30 - 130	
	Dibenz(a,h)anthracene	2007/12/05	84	%	30 - 130	
	Method Blank	D10-Anthracene	2007/12/05	112	%	30 - 130
		D14-Terphenyl (FS)	2007/12/05	104	%	30 - 130
		D7-Quinoline	2007/12/05	98	%	30 - 130
		D8-Acenaphthylene	2007/12/05	88	%	30 - 130
		Benzo(a)pyrene	2007/12/05	ND, RDL=0.005	ug/g	30 - 130
		Dibenz(a,h)anthracene	2007/12/05	ND, RDL=0.02	ug/g ug/g	
	RPD	D14-Terphenyl (FS)	2007/12/05	0.4	49/9 %	N/A
		Benzo(a)pyrene	2007/12/05	NC	% %	
		Dibenz(a,h)anthracene	2007/12/05	NC	%	50
1421057 MYG	RPD [W22393-02]	Moisture	2007/12/06	0.6	% %	50
1421400 CDH	MATRIX SPIKE	•	2007712700	0.0	70	50
	[W22396-01]	Acid Extractable Arsenic (As)	2007/12/07	104	%	75 405
	QC STANDARD	Acid Extractable Arsenic (As)	2007/12/07	95	% %	75 - 125
	Method Blank	Acid Extractable Arsenic (As)	2007/12/07	ND, RDL=1		30 - 170
	RPD [W22396-01]	Acid Extractable Arsenic (As)	2007/12/07	ND, RDL=1	ug/g	
	1	, ioid Entradado / abonito (Ab)	2001112/01	INC.	%	35

ND = Not detected

N/A = Not Applicable

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A	7D4555			
The analytical data and	d all QC contained in this	report were revie	wed and validated by the	following individual(s).
Custina L				
CHRISTINA NERVO	, Scientific Services			
Muzwa MICHAEL WANG,	7			

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

		· ·	
			

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00555463

Attention: Carolyn Singer Barenco Inc 2561 Stouffville Rd PO Box 295 Gormley, ON L0H 1G0

Report Date: 2008/04/11

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A833981 Received: 2008/04/08, 14:22

Sample Matrix: Soil # Samples Received: 1

A L		Date	Date		Method	
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference	
Total Metals Analysis by ICP	1	2008/04/10	2008/04/10	CAM SOP-00408	EPA 6010	

* RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Kristen Burmeister

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

SARA SAROOP, Campobello Customer service Email: Sara.Saroop@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

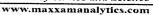
1490914

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	Units	TP2	RDL	QC Batch
COC Number		00555463		
		12:30		
Maxxam ID Sampling Date		X97902 2008/04/07		-

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Acid Extractable Lead (Pb) ug/g



Barenco Inc

Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

	COMMENT	

Results relate only to the items tested.

Barenco Inc Attention: Carolyn Singer Client Project #: 06043 P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA833981

QA/QC Batch		_	Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1490914 KCO	MATRIX SPIKE	Acid Extractable Lead (Pb)	2008/04/10		88	%	75 - 125
	QC STANDARD	Acid Extractable Lead (Pb)	2008/04/10		92	%	75 - 125
	Method Blank	Acid Extractable Lead (Pb)	2008/04/10	ND, R	DL=5	ug/g	70 120
	RPD	Acid Extractable Lead (Pb)	2008/04/10	NC_		%	35

ND = Not detected

ND = Not detected
NC = Non-calculable
RPD = Relative Percent Difference
QC Standard = Quality Control Standard

Validation Signature Page

Maxxam Job #: A833981
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).
Cliptina Neur
CHRISTINA NERVO, Scientific Services
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00571802

Attention: Carolyn Singer Barenco Inc 2561 Stouffville Rd PO Box 295 Gormley, ON L0H 1G0

Report Date: 2008/04/10

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A833987 Received: 2008/04/08, 14:22

Sample Matrix: Soil # Samples Received: 1

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
MOISTURE	1	N/A	2008/04/09 Ont SOP-0114	MOE HANDBOOK(1983)
Volatile Organic Compounds in Soil	1	N/A	2008/04/09 CAM SOP-00226	EPA 8260 modified

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Kristen Burmeister

Encryption Key 10 Apr 2008 12:57:53 -04:00

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

SARA SAROOP, Campobello Customer service Email: Sara.Saroop@maxxamanalytics.com

Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	B2-A	RDL QC Batch
COC Number		00571802	
		14:30	
Sampling Date	1 1	2008/04/07	
Maxxam ID		X97912	

Inorganics				
Moisture	%	18	0.2	1490531

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

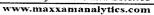
VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		X97912	-	
Sampling Date		2008/04/07 14:30		
COC Number		00571802		
	Units	B2-A	RDL	QC Batch
Volatile Organics				1100115
Acetone (2-Propanone)	ug/g	ND	0.1	1490445
Benzene	ug/g	0.009	0.002	1490445
Bromodichloromethane	ug/g	ND	0.002	1490445
Bromoform	ug/g	ND	0.002	1490445
Bromomethane	ug/g	ND	0.003	1490445
Carbon Tetrachloride	ug/g	ND	0.002	1490445
Chlorobenzene	ug/g	ND	0.002	1490445
Chloroform	ug/g	ND	0.002	1490445
Dibromochloromethane	ug/g	ND	0.002	1490445
1,2-Dichlorobenzene	ug/g	ND	0.002	1490445
1,3-Dichlorobenzene	ug/g	ND	0.002	1490445
1,4-Dichlorobenzene	ug/g	ND	0.002	1490445
1,1-Dichloroethane	ug/g	ND	0.002	1490445
1,2-Dichloroethane	ug/g	ND	0.002	1490445
1,1-Dichloroethylene	ug/g	ND	0.002	1490445
cis-1,2-Dichloroethylene	ug/g	ND	0.002	1490445
trans-1,2-Dichloroethylene	ug/g	ND	0.002	1490445
1,2-Dichloropropane	ug/g	ND	0.002	1490445
cis-1,3-Dichloropropene	ug/g	ND	0.002	1490445
trans-1,3-Dichloropropene	ug/g	ND	0.002	1490445
Ethylbenzene	ug/g	0.009	0.002	1490445
Ethylene Dibromide	ug/g	ND	0.002	1490445
Methylene Chloride(Dichloromethane)	ug/g	ND	0.003	1490445
Methyl Isobutyl Ketone	ug/g	ND	0.025	1490445
Methyl Ethyl Ketone (2-Butanone)	ug/g	ND	0.025	1490445
Methyl t-butyl ether (MTBE)	ug/g	ND	0.002	1490445
Styrene	ug/g	ND	0.002	1490445
1,1,1,2-Tetrachloroethane	ug/g	ND	0.002	1490445
1,1,2,2-Tetrachloroethane	ug/g	ND ND	0.002	1490445
Tetrachloroethylene	ug/g	ND	0.002	1490445
Tetracilloroeutylene	Lug/g	עאי	0.002	1730440

RDL = Reportable Detection Limit

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

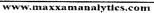
VOLATILE ORGANICS BY GC/MS (SOIL)


Maxxam ID		X97912		
Sampling Date		2008/04/07	"	
		14:30		<u>L</u> .
COC Number		00571802		
	Units	B2-A	RDL	QC Batch
Toluene	ug/g	0.020	0.002	1490445
1,1,1-Trichloroethane	ug/g	ND	0.002	1490445
1,1,2-Trichloroethane	ug/g	ND	0.002	1490445
Trichloroethylene	ug/g	ND	0.002	1490445
Vinyl Chloride	ug/g	ND	0.002	1490445
p+m-Xylene	ug/g	0.011	0.002	1490445
o-Xylene	ug/g	0.003	0.002	1490445
Xylene (Total)	ug/g	0.014	0.002	1490445
Surrogate Recovery (%)				· · · · · · · · · · · · · · · · · · ·
4-Bromofluorobenzene	%	84		1490445
D4-1,2-Dichloroethane	%	82		1490445
	%	107		1490445

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GEN	IFRΛ	1 0	OM N	IENTS
CEN	ERA	L. L.	. JIVI N	IFN 15

Results relate only to the items tested.

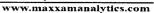

Barenco Inc

Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA833987

QA/QC	· · · · · · · · · · · · · · · · · · ·		Date		·	
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recove	ry Units	QC Limits
1490445 RZH	MATRIX SPIKE	4-Bromofluorobenzene	2008/04/09		96 %	60 - 140
		D4-1,2-Dichloroethane	2008/04/09		34 %	60 - 140
		D8-Toluene	2008/04/09		03 %	60 - 140
	Acetone (2-Propanone)	2008/04/09		39 %	24 - 17	
		Benzene	2008/04/09		30 %	39 - 137
		Bromodichloromethane	2008/04/09		35 %	45 - 13
		Bromoform	2008/04/09)8 %	44 - 13
		Bromomethane	2008/04/09		69 %	20 - 146
		Carbon Tetrachloride	2008/04/09		79 %	40 - 139
		Chlorobenzene	2008/04/09)5 %	40 - 13: 45 - 14(
		Chloroform	2008/04/09		33 %	
		Dibromochloromethane	2008/04/09		92 %	48 - 128
		1,2-Dichlorobenzene	2008/04/09	1		52 - 13
		1,3-Dichlorobenzene	2008/04/09			39 - 145
		1,4-Dichlorobenzene	2008/04/09			38 - 158
		1,1-Dichloroethane	2008/04/09	1;		35 - 159
		1,2-Dichloroethane	2008/04/09		35 %	48 - 131
		1,1-Dichloroethylene	2008/04/09		75 %	43 - 123
		cis-1,2-Dichloroethylene	•		4 %	50 - 134
		trans-1,2-Dichloroethylene	2008/04/09		11 %	45 - 136
		1,2-Dichloropropane	2008/04/09		5 %	45 - 138
			2008/04/09		7 %	51 - 130
		cis-1,3-Dichloropropene	2008/04/09		5 %	39 - 143
		trans-1,3-Dichloropropene	2008/04/09		5 %	33 - 135
		Ethylbenzene	2008/04/09	11		46 - 150
		Ethylene Dibromide	2008/04/09		6 %	48 - 136
		Methylene Chloride(Dichloromethane)	2008/04/09		3 %	47 - 124
		Methyl Isobutyl Ketone	2008/04/09	3	4 %	48 - 133
		Methyl Ethyl Ketone (2-Butanone)	2008/04/09	11		39 - 160
		Methyl t-butyl ether (MTBE)	2008/04/09	9	1 %	37 - 150
		Styrene	2008/04/09	9	7 %	27 - 148
		1,1,1,2-Tetrachloroethane	2008/04/09	Ş	4 %	51 - 140
		1,1,2,2-Tetrachloroethane	2008/04/09	8	5 %	46 - 128
		Tetrachloroethylene	2008/04/09	12	9 %	45 - 154
		Toluene	2008/04/09	g	1 %	30 - 158
		1,1,1-Trichloroethane	2008/04/09	8	7 %	44 - 136
		1,1,2-Trichloroethane	2008/04/09	ç	3 %	56 - 135
		Trichloroethylene	2008/04/09	10		39 - 146
		Vinyl Chloride	2008/04/09	7		34 - 136
	p+m-Xylene	2008/04/09	11		29 - 161	
		o-Xylene	2008/04/09	10		45 - 150
	Spiked Blank	4-Bromofluorobenzene	2008/04/09	9		60 - 140
•		D4-1,2-Dichloroethane	2008/04/09	Š		60 - 140
		D8-Toluene	2008/04/09	10		60 - 140
		Acetone (2-Propanone)	2008/04/09	8		60 - 140
		Benzene	2008/04/09	9		
	Bromodichloromethane	2008/04/09	8	- ,,	60 - 140	
		Bromoform	2008/04/09	11		60 - 140
		Bromomethane	2008/04/09			60 - 140
		Carbon Tetrachloride	2008/04/09	8		60 - 140
		Chlorobenzene	2008/04/09	8		60 - 140
		Chloroform		10		60 - 140
		Dibromochloromethane	2008/04/09	8		60 - 140
		1,2-Dichlorobenzene	2008/04/09	9		60 - 140
		1,3-Dichlorobenzene	2008/04/09	10		60 - 140
		1,4-Dichlorobenzene	2008/04/09	12		60 - 140
		1,7°DICHIOTODENZENE	2008/04/09	10	2 %	60 - 140



Barenco Inc Attention: Carolyn Singer Client Project #: 06043 P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA833987

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1490445 RZH	Spiked Blank	1,1-Dichloroethane	2008/04/09	91	%	60 - 140
		1,2-Dichloroethane	2008/04/09	81	%	60 - 140
		1,1-Dichloroethylene	2008/04/09	99	%	60 - 140
		cis-1,2-Dichloroethylene	2008/04/09	96	%	60 - 140
		trans-1,2-Dichloroethylene	2008/04/09	97	%	60 - 140
		1,2-Dichloropropane	2008/04/09	93	%	60 - 140
	cis-1,3-Dichloropropene	2008/04/09	90	%	60 - 140	
		trans-1,3-Dichloropropene	2008/04/09	90	%	60 - 140
		Ethylbenzene	2008/04/09	113	%	60 - 140
		Ethylene Dibromide	2008/04/09	103	%	60 - 140
		Methylene Chloride(Dichloromethane)	2008/04/09	100	%	60 - 140
		Methyl Isobutyl Ketone	2008/04/09	103	%	60 - 140
		Methyl Ethyl Ketone (2-Butanone)	2008/04/09	98	%	60 - 140
		Methyl t-butyl ether (MTBE)	2008/04/09	100	%	60 - 140
		Styrene	2008/04/09	95	%	60 - 140
		1,1,1,2-Tetrachloroethane	2008/04/09	95	%	60 - 140
		1,1,2,2-Tetrachloroethane	2008/04/09	93	%	60 - 140
		Tetrachloroethylene	2008/04/09	108	%	60 - 140
		Toluene	2008/04/09	105	%	60 - 140
		1,1,1-Trichloroethane	2008/04/09	87	%	60 - 140
		1,1,2-Trichloroethane	2008/04/09	97	%	60 - 140
		Trichloroethylene	2008/04/09	100	%	60 - 140
		Vinyl Chloride	2008/04/09	76	%	60 - 140
		p+m-Xylene	2008/04/09	120	%	60 - 140
		o-Xylene	2008/04/09	106	%	60 - 140
	Method Blank	4-Bromofluorobenzene	2008/04/09	94	%	60 - 140
		D4-1,2-Dichloroethane	2008/04/09	89	%	60 - 140
		D8-Toluene	2008/04/09	107	%	60 - 140
		Acetone (2-Propanone)	2008/04/09	ND, RDL=0.1	ug/g	00 140
		Benzene	2008/04/09	ND, RDL=0.002	ug/g	
		Bromodichloromethane	2008/04/09	ND, RDL=0.002	ug/g	
		Bromoform	2008/04/09	ND, RDL=0.002	ug/g	
		Bromomethane	2008/04/09	ND, RDL=0.003	ug/g	
		Carbon Tetrachloride	2008/04/09	ND, RDL=0.002	ug/g	
		Chlorobenzene	2008/04/09	ND, RDL=0.002	ug/g	
		Chloroform	2008/04/09	ND, RDL=0.002	ug/g	
		Dibromochloromethane	2008/04/09	ND, RDL=0.002	ug/g	
		1,2-Dichlorobenzene	2008/04/09	ND, RDL=0.002	ug/g	
		1,3-Dichlorobenzene	2008/04/09	ND, RDL=0.002	ug/g ug/g	
		1,4-Dichlorobenzene	2008/04/09	ND, RDL=0.002	ug/g	
		1,1-Dichloroethane	2008/04/09	ND, RDL=0.002	ug/g	
		1,2-Dichloroethane	2008/04/09	ND, RDL=0.002	ug/g	
		1,1-Dichloroethylene	2008/04/09	ND, RDL=0.002	ug/g	
		cis-1,2-Dichloroethylene	2008/04/09	ND, RDL=0.002	ug/g	
		trans-1,2-Dichloroethylene	2008/04/09	ND, RDL=0.002	ug/g ug/g	
		1,2-Dichloropropane	2008/04/09	ND, RDL=0.002	ug/g ug/g	
		cis-1,3-Dichloropropene	2008/04/09	ND, RDL=0.002	ug/g ug/g	
		trans-1,3-Dichloropropene	2008/04/09	ND, RDL=0.002	ug/g ug/g	
		Ethylbenzene	2008/04/09	ND, RDL=0.002		
		Ethylene Dibromide	2008/04/09	ND, RDL=0.002 ND, RDL=0.002	ug/g	
		Methylene Chloride(Dichloromethane)	2008/04/09	ND, RDL=0.002	ug/g	
		Methyl Isobutyl Ketone	2008/04/09	ND, RDL=0.003	ug/g	
		Methyl Ethyl Ketone (2-Butanone)	2008/04/09	ND, RDL=0.025 ND, RDL=0.025	ug/g	
		Methyl t-butyl ether (MTBE)	2008/04/09	ND, RDL=0.025 ND, RDL=0.002	ug/g	
		Styrene	2008/04/09	,	ug/g	
		•	2000,04103	ND, RDL=0.002	ug/g	

Barenco Inc Attention: Carolyn Singer Client Project #: 06043 P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA833987

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Lim
490445 RZH	Method Blank	1,1,1,2-Tetrachloroethane	2008/04/09	ND, RDL=0.002	ug/g	
		1,1,2,2-Tetrachloroethane	2008/04/09	ND, RDL=0.002	ug/g	
		Tetrachloroethylene	2008/04/09	ND, RDL=0.002	ug/g	
		Toluene	2008/04/09	ND, RDL=0.002	ug/g	
		1,1,1-Trichloroethane	2008/04/09	ND, RDL=0.002	ug/g	
		1,1,2-Trichloroethane	2008/04/09	ND, RDL=0.002	ug/g	
		Trichloroethylene	2008/04/09	ND, RDL=0.002	ug/g	
		Vinyl Chloride	2008/04/09	ND, RDL=0.002	ug/g	
		p+m-Xylene	2008/04/09	ND, RDL=0.002	ug/g	
		o-Xylene	2008/04/09	ND, RDL=0.002	ug/g	
		Xylene (Total)	2008/04/09	ND, RDL=0.002	ug/g	
	RPD	Acetone (2-Propanone)	2008/04/09	NC	ug/g %	
		Benzene	2008/04/09	NC	%	
		Bromodichloromethane	2008/04/09	NC NC	%	
		Bromoform	2008/04/09	NC NC		
		Bromomethane	2008/04/09	NC NC	%	
		Carbon Tetrachloride	2008/04/09		%	
		Chlorobenzene		NC	%	
			2008/04/09	NC	%	
		Chloroform	2008/04/09	NC	%	
		Dibromochloromethane	2008/04/09	NC	%	
		1,2-Dichlorobenzene	2008/04/09	NC	%	
		1,3-Dichlorobenzene	2008/04/09	NC	%	
		1,4-Dichlorobenzene	2008/04/09	NC	%	
		1,1-Dichloroethane	2008/04/09	NC	%	
		1,2-Dichloroethane	2008/04/09	NC	%	
		1,1-Dichloroethylene	2008/04/09	NC	%	
		cis-1,2-Dichloroethylene	2008/04/09	NC	%	
		trans-1,2-Dichloroethylene	2008/04/09	NC	%	
		1,2-Dichloropropane	2008/04/09	NC	%	
		cis-1,3-Dichloropropene	2008/04/09	NC	%	
		trans-1,3-Dichloropropene	2008/04/09	NC	%	
		Ethylbenzene	2008/04/09	NC	%	
		Ethylene Dibromide	2008/04/09	NC	%	
		Methylene Chloride(Dichloromethane)	2008/04/09	NC	%	
		Methyl Isobutyl Ketone	2008/04/09	NC	%	
		Methyl Ethyl Ketone (2-Butanone)	2008/04/09	NC	%	
		Methyl t-butyl ether (MTBE)	2008/04/09	NC NC	%	
		Styrene	2008/04/09	NC NC	%	
		1,1,1,2-Tetrachloroethane	2008/04/09	NC NC		
		1,1,2,2-Tetrachloroethane			%	
			2008/04/09	NC	%	
		Tetrachloroethylene	2008/04/09	NC	%	
		Toluene	2008/04/09	18.9	%	
		1,1,1-Trichloroethane	2008/04/09	NC	%	
		1,1,2-Trichloroethane	2008/04/09	NC	%	
		Trichloroethylene	2008/04/09	NC	%	
		Vinyl Chloride	2008/04/09	NC	%	
		p+m-Xylene	2008/04/09	19.7	%	
		o-Xylene	2008/04/09	NC	%	
		Xylene (Total)	2008/04/09	19.4	%	
190531 FOT	RPD	Moisture	2008/04/09	3.9	%	

ND = Not detected NC = Non-calculable RPD = Relative Percent Difference

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A833987
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).
Cliptina Neur
CHRISTINA NERVO, Scientific Services
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.