TRANSPORTATION IMPACT STUDY

1235 3RD AVENUE EAST CITY OF OWEN SOUND

PREPARED FOR: F.C. ENTERTAINMENT & HOSPITALITY INC.

PREPARED BY:

C.F. CROZIER & ASSOCIATES INC. 1 FIRST STREET, SUITE 200 COLLINGWOOD, ONTARIO L9Y 1A1

1ST SUBMISSION: MAY 2023

CFCA FILE NO. 1733-6596

The material in this report reflects best judgment in light of the information available at the time of preparation. Any use which a third party makes of this report, or any reliance on or decisions made based on it, are the responsibilities of such third parties. C.F. Crozier & Associates Inc. accepts no responsibility for damages, if any, suffered by any third party as a result of decisions made or actions based on this report.

REVISION NUMBER	DATE	COMMENTS			
Rev. 0	May 2023	OPA and ZBA first submission to the City of Owen Sound and Grey County			

1.0 Executive Summary

C.F. Crozier & Associates Inc. (Crozier) was retained by F.C. Entertainment & Hospitality Inc. to complete a Traffic Impact Study (TIS) for the proposed re-use of 1235 3rd Avenue East in the City of Owen Sound, Grey County.

The site consists of the historic courthouse, governor's residence, jail, and jail yard, which are envisioned to be re-purposed into event venues, dining & entertainment complex, with a shared workplace. The Site Plan prepared by Boldera Architects (April 20, 2023) proposes two full move accesses on 3rd Avenue East and another two accesses on 4th Avenue East. For the purposes of a conservative analysis, the modelling assumed one connection on 3rd Avenue East and one connection on 4th Avenue East, which shall be referred as Site Access 'A' and Site Access 'B', respectively.

The following intersections were assessed in the TIS:

- 3rd Avenue East/Grey County Road 15 and 12th Street East
- 3rd Avenue East/Grey County Road 15 and Highway 6
- 4th Avenue East and 12th Street East
- 4th Avenue East and Highway 6
- 2nd Avenue East and Highway 6
- 3rd Avenue East/Grey County Road 15 and 13th Street East

Intersection analysis of the 2023 existing traffic volumes indicates the following:

- The intersections of Highway 6 and 2nd Avenue East and 4th Avenue East are expected to operate with a LOS 'D' during the Friday p.m. peak period with a forecasted maximum control delay of 40.8 s (4th Avenue East and Highway 6) and maximum volume-to-capacity ratio of 0.95 (2nd Avenue East and Highway 6). The operations indicate these intersections have movements approaching capacity under existing conditions.
- The remaining intersections on the boundary road network operate with a LOS "B" or better in the Friday p.m. and Saturday peak hours.
 - The 95th percentile queues of all movements on the boundary road network can be accommodated within the existing storage lanes, with the exception of the southbound left-turn movement on 4th Avenue East at Highway 6 which can be accommodated within a portion of the taper..

Review of the City documents indicates that the capital works budget does not identify any improvements as part of the 5-year funding plan. Therefore, the suggested auxiliary turn-lanes in the Transportation Master Plan (TMP) were not accounted in the analysis of this report.

In the absence of the future timing settings prepared by the City of Owen Sound TMP, an optimization of splits and cycle length was applied to the signalized intersections. Intersection analysis of the 2028 future background traffic volumes indicates the following:

- The intersections Highway 6 and 2nd Avenue East and 4th Avenue East are expected to improve from LOS "D" to a LOS "C" during Friday p.m. and Saturday peak hours due to the signal timing optimization compared to 2023 existing conditions.
- The maximum control delay of 22.1 s and volume to capacity ratio of 0.92 (EBT) were forecasted for 2nd Avenue East and Highway 6 during the Friday p.m. peak hour. The operations indicate that the boundary road network is anticipated to operate acceptably.
- The 95th percentile queue of the southbound right-turn movement at 2nd Avenue East and

C.F. Crozier & Associates Inc. Project No. 1733-6596 Highway 6 is forecasted to increase by 10.3 m compared to existing conditions and exceeds the available storage length by less than one vehicle during the Friday p.m. peak hour.

To estimate the trips generated by the event venues, a first principles approach was used based on the venue capacity. The remaining land uses were forecasted using the Institute of Transportation Engineers (ITE) Trip Generation Manual, 11th Edition. The proposed re-use is expected to generate 345 and 356 external two-way trips in the Friday p.m. and Saturday peak hours, respectively.

As noted in future background conditions, in the absence of the future signal timing settings prepared as part of the City of Owen Sound TMP, an optimization of splits and cycle length was applied to the signalized corridor of Highway 6. Intersection analysis of the 2028 future total traffic volumes indicates the following:

- Re-optimization of signal timings improves the operations at the intersection of 2nd Avenue East and Highway 6 compared to the 2028 Future Background scenario.
- The southbound right movement at the intersection of 2nd Avenue East and Highway 6 is expected to continue to exceed the available storage, with the 95th percentile queue forecasted to increase by less than one vehicle.
- All other queueing is not expected to impede through movements.
- The proposed Site Accesses are expected to operate at a LOS "C" with a maximum control delay of 15.6 s and volume-to-capacity ratio of 0.16.
- The above metrics indicate that the study intersections are anticipated to continue operating acceptably under 2028 future total traffic volume conditions. Accordingly, the boundary road network can accommodate the site generated traffic.

There are no anticipated sight distance issues at the site accesses and vehicles can safely ingress and egress the site. The site accesses can be supported from a sight distance perspective.

Active transportation facilities including sidewalks, multi-use trails and transit stops are located in close proximity to the site. The sidewalks proposed throughout the site should be designed to meet the minimum requirements detailed in the Accessibility for Ontarians with Disabilities Act (AODA). This includes a minimum sidewalk width of 1.5 metres, and maximum running slope of 5%. Geometrics, pavement markings and signage will be confirmed through detailed design.

The analysis contained within this report was completed based on the Site Plan dated April 20, 2023. Any minor changes to the Site Plan will not affect the conclusions contained within this report.

It is concluded that the traffic generated by the proposed re-use can be supported by the boundary road network, and the Site Plan can be supported from a traffic operations perspective.

C.F. Crozier & Associates Inc. Project No. 1733-6596

TABLE OF CONTENTS

1.0	Exec	utive Summary	ii
2.0	Intro	duction	1
	2.1	Background	1
	2.2	Proposal	1
	2.3	Purpose and Scope	1
3.0	Existi	ing Conditions	1
	3.1	Existing Lands	1
	3.2	Key Intersections	2
	3.3	Boundary Road Network	2
	3.4	Traffic Data	2
	3.5	Intersection Operations	3
4.0	Futur	e Background Conditions	4
	4.1	Horizon Years & Growth Rate	
	4.2	Future Roadway Improvements	5
	4.3	Intersection Operations	5
5.0	Site (Generated Traffic	7
	5.1	Trip Generation	7
	5.2	Trip Distribution and Assignment	8
6.0	Total	Future Conditions	9
	6.0	Basis of Assessment	9
	6.1	Intersection Operations	9
7.0	Sight	Distance Assessment	11
8.0	Trans	sportation Study	11
	8.1	Pedestrian Facilities	11
	8.2	Municipal Transit Services	11
	8.3	Regional Transit Services	12
	8.4	Cycling Facilities, Routes, and Trails	
	8.5	City, and County Multimodal Planning	12
	8.6	AODA Compliance	
9.0	Cond	clusions	13

List of Tables

able 1: Boundary Road Network	2
able 2: Peak Hour Factors	3
able 3: 2023 Existing Levels of Service	
able 4: City of Owen Sound TMP 2026 Roadway Improvements	
able 5: 2028 Future Background Levels of Service	
able 6: Proxy Sites vs First Principles Approach	
able 7: Site Trip Generation	
able 8: 2028 Future Total Levels of Service	
able 9: Location and Types of Pedestrian Facilities	

List of Appendices

Appendix A: Terms of Reference Correspondence **Appendix B:** Owen Sound's Official Plan - Transportation

Appendix C: Traffic Data

Appendix D:Level of Service DefinitionsAppendix E:Detailed Capacity Analysis

Appendix F: City of Owen Sound TMP Excerpts

Appendix G: Proxy Sites Traffic Data and Peak Hour Calculation

Appendix H: Seating Plans

Appendix I: ITE 11th Edition Trip Generation Excerpts

Appendix J: TAC GDGCR Sight Distance

Appendix K: Grey Transit Route Maps and Schedules

Appendix L: Owen Sound Trails Brochure and Grey County Cycling Map

List of Figures

Figure 1: Site Plan

Figure 2: Site Location Plan

Figure 3: Existing Traffic Controls and Lane Configuration

Figure 4: 2023 Traffic Volumes

Figure 5: Future Background 2028 Traffic Volumes

Figure 6: Trip Distribution

Figure 7: Event Venue Trip Assignment Figure 8: Restaurant Trip Assignment Speakeasy Trip Assignment Figure 10: Office Trip Assignment

Figure 11: Future Total 2028 Traffic Volumes

2.0 Introduction

2.1 Background

C.F. Crozier & Associates Inc. (Crozier) was retained by F.C. Entertainment & Hospitality Inc. to complete a Transportation Impact Study (TIS) for the proposed re-use of 1235 3rd Avenue East (the Site) in the City of Owen Sound, Grey County.

2.2 Proposal

The historic courthouse, governor's residence, jail, and jail yard are envisioned to be re-purposed into event venues, dining & entertainment complex, with a shared workplace. A Site Plan prepared by Boldera Architects (April 20, 2023) proposes two full move accesses on 3rd Avenue East and another two access on 4th Avenue East. For the purposes of a conservative analysis, the modelling assumed one connection on 3rd Avenue East and 4th Avenue East, which shall be referred as Site Access 'A' and Site Access 'B', respectively.

Figure 1 illustrates the Site Plan.

2.3 Purpose and Scope

The purpose of a Transportation Impact Study is to assess the impacts of the proposed re-use on the boundary road network and to recommend warranted mitigation measures.

The study reviewed the following aspects of the re-use from a transportation engineering perspective:

- Existing, future background, and future total traffic operations at the study intersections.
- Forecasted trip generation.
- Sight distance at the proposed site accesses
- Transportation demand management opportunities

The Transportation Impact Study was conducted in accordance with the Terms of Reference confirmed with City of Owen Sound (the City) and Grey County (the County). **Appendix A** contains correspondence with City and County staff.

3.0 Existing Conditions

3.1 Existing Lands

The proposed Site covers an area of approximately 0.65 ha (6,434.26 m²) and is currently zoned as institutional lands per the City's Zoning Map. It currently consists of the historic courthouse, governor's residence, jail, and jail yard.

Due to the skewed nature of the roadway, the directional orientation of the boundary road network is ambiguous. Accordingly, to provide clarity throughout the report 2nd Avenue East, 3rd Avenue East (Grey County Road 15) and 4th Avenue East are assumed to have a north-south orientation. Highway 6, 12th Street East, and 13th Street East are assumed to have an east-west orientation.

The site is bounded by residential properties to the north, 4th Avenue East to the east, 3rd Avenue East to the west, and a fire station to the south. The location of the site is reflected on the Site Location Plan included as **Figure 2**.

3.2 Key Intersections

The following key intersections within the study area have been analysed under existing, future background and future total traffic volume conditions. **Figure 3** illustrates the existing traffic controls and lane configurations at each intersection.

- 3rd Avenue East/Grey County Road 15 and 12th Street East
- 3rd Avenue East/Grey County Road 15 and Highway 6
- 4th Avenue East and 12th Street East
- 4th Avenue East and Highway 6
- 2nd Avenue East and Highway 6
- 3rd Avenue East/Grey County Road 15 and 13th Street East

3.3 Boundary Road Network

The boundary road network is described in **Table 1.** The information included below was obtained from the City of Owen Sound's Official Plan "Schedule C – Transportation", included in **Appendix B**.

Roadway	2 nd Avenue East	3 rd Avenue East/ Grey County Road 15	4 th Avenue East	10 th Street East/Highway 6	12 th Street East	13 th Street East
Direction	North-South	North-South	North-South	East-West	East-West	East-West
Classification	Local Road	Minor Arterial Road	Local	Provincial Highway & Connecting Link	Local	Local
Jurisdiction	City of Owen Sound	Grey County	City of Owen Sound	City of Owen Sound	City of Owen Sound	City of Owen Sound
Posted Speed Limit	40 km/h	50 km/h (Assumed)	50 km/h (Assumed)	50 km/h	50 km/h (Assumed)	50 km/h (Assumed)
Number of Lanes Per Direction	1	1	1	2	1	1

Table 1: Boundary Road Network

3.4 Traffic Data

The Friday p.m. and Saturday mid-day peak hours were assessed to coincide with the anticipated operational hours of the uses on the site. Turning movement counts were conducted by Spectrum Traffic Data Inc. (Spectrum) at the study intersections on Friday, December 9, 2022, from 3:00 p.m. – 7:00 p.m. and on Saturday, December 10, 2022, from 12:00 p.m. – 8:00 p.m. The turning movement count data is included in **Appendix C**.

Volumes on the boundary road network were found to have varying peak hours. As such, the volumes were balanced along the through movements of the boundary road network. **Figure 4** illustrates the 2022 existing traffic volumes. Peak hour factors (PHF) associated with the weekday p.m. and Saturday peak hours were calculated for each intersection within the study area based on the 2022 existing traffic volumes. **Table 2** outlines the PHFs as calculated and applied to the model for their respective intersections.

Table 2: Peak Hour Factors

Intersection	Peak Ho	Factor	
Grey County Road 15 and 12 th	Friday PM	3:00– 4:00 p.m.	0.97
Street East	Saturday	2:30 – 3:30 p.m.	0.95
Grey County Road 15 and Highway	Friday PM	4:15 – 5:15 p.m.	0.96
6	Saturday	12:45 – 1:45 p.m.	0.99
4th Avenue Foot and 10th Street Foot	Friday PM	3:00 – 4:00 p.m.	0.82
4 th Avenue East and 12 th Street East	Saturday	1:45 – 2:45 p.m.	0.89
4th Avenue Fast and Highway (Friday PM	3:30 – 4:30 p.m.	0.97
4 th Avenue East and Highway 6	Saturday	12:45 – 1:45 p.m.	0.98
2nd Avenue Fast and Highway /	Friday PM	4:15– 5:15 p.m.	0.96
2 nd Avenue East and Highway 6	Saturday	12:00 – 1:00 p.m.	0.93
3 rd Avenue East/ Grey County Road	Friday PM	3:00 – 4:00 p.m.	0.95
15 and 13 th Street East	Saturday	2:30 – 3:30 p.m.	0.94

For the intersections of the future site accesses, the Synchro Modelling Software default PHF of 0.92 was used.

3.5 Intersection Operations

The existing operations of the study intersections were analyzed based on the traffic volumes illustrated in **Figure 4**. **Table 3** outlines the 2022 traffic levels of service under existing conditions and geometric configurations. Level of Service (LOS) definitions are included in **Appendix D**. Detailed Capacity Analyses Worksheets are included in **Appendix E**.

Table 3: 2023 Existing Levels of Service

Intersection	Control	Peak Hour	Level of Service	Control Delay ¹	Maximum v/c Ratio	95 th %ile Queue> Storage
2 nd Avenue East	Signal	P.M.	D	35.6 s	0.93 (EBT)	None
and Highway 6	Signal	SAT	С	26.7 s	0.95 (EBT)	None
3 rd Avenue East		P.M.	В	13.5 s	0.86 (EBT)	None
and Highway 6	Signal	SAT	А	9.7 s	0.52 (EBT)	None
4 th Avenue East	Signal	P.M.	D	40.8 s	0.93 (WBT)	None
and Highway 6		SAT	В	15.0 s	0.40 (EBT)	7.4 m > 5.0 m (SBL)
3 rd Avenue East		P.M.	В	12.7 s (EB)	0.08 (EB)	N/A
and 12 th Street East	Stop	SAT	В	12.0 s (EB)	0.08 (EB)	N/A
4 th Avenue East and 12 th Street	Stop	P.M.	В	10.0 s (WB)	0.02 (WB)	N/A
East	3100	SAT	А	9.5 s (WB)	0.02 (WB)	N/A
3 rd Avenue East	0.1	P.M.	В	14.1 s (EB)	O.11 (EB)	N/A
and 13 th Street East	Stop	SAT	В	12.3 s (EB)	0.08 (EB)	N/A

Note¹: The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach. The Level of Service of a signalized intersection is based on the average control delay per vehicle.

As presented in **Table 3**, under existing traffic volume conditions, the Highway 6 intersections of 2nd Avenue East and 4th Avenue East operate with a LOS "D" during the Friday p.m. peak hour. The intersection of 4th Avenue East and Highway 6 operates with a maximum control delay of 40.8 s during p.m. peak hour. The intersection of 2nd Avenue East and Highway 6 operates with a LOS "C" and maximum volume-to-capacity ratio of 0.95 for the eastbound-through movement during Saturday peak hour. These operations indicate the two intersections have movements approaching capacity under existing conditions.

The remaining intersections on the boundary road network operate with a LOS "B" or better in the Friday p.m. and Saturday peak hours which indicate that there is capacity for an increase in traffic volumes.

The 95th percentile queues of all movements on the boundary road network can be accommodated within the existing storage lanes, with the exception of the southbound left-turn movement on 4th Avenue East at Highway 6 which can be accommodated within a portion of the taper.

4.0 Future Background Conditions

4.1 Horizon Years & Growth Rate

The horizon year 2028 was analyzed representing five years from the study date. This assumption was confirmed through the Terms of Reference. Grey County staff provided documentation relating to the County's Official Plan Amendment. The County undertook a Growth Management Study to forecast municipal growth to the year 2046. The findings of the study were integrated into OPA-11.

The forecasted annual population growth in the City of Owen Sound from 2021 to 2031 was reviewed to determine growth to the 2028 horizon. A growth rate of approximately 0.5% per year was determined. To be conservative, a growth rate of 1% per year has been applied to the boundary road network.

4.2 Future Roadway Improvements

The City of Owen Sound Transportation Master Plan (TMP) identified several roadway improvements based on traffic growth to the year 2026. It is noted that the TMP suggests two different improvements based on whether the existing increasing traffic pattern remains along 10th Street/Highway 6 or whether traffic has been diverted to better utilize reserve capacity on parallel streets such as 8th Street and 9th Street.

For the purposes of a conservative analysis, this report assumes that the existing traffic patterns remain along 10th Street/Highway 6. **Table 4** details the City of Owen Sound roadway improvements suggested to be completed by 2026 as per the City's TMP.

Location	Road Improvement	Constrained by Available Space (Yes/No)		
2 nd Avenue East and Highway 6	Add a 90 m eastbound left turn lane and 15 m westbound left turn lane	Yes		
3 rd Avenue East and Highway 6	Add a 20 m eastbound left turn lane and 20 m westbound left turn lane	Yes		

Table 4: City of Owen Sound TMP 2026 Roadway Improvements

Further review indicates that the capital works budget does not identify these improvements as part of the 5-year funding plan. Therefore, the suggested auxiliary turn-lanes were not accounted for in the analysis of this report.

Section 4.7.1 of the City of Owen Sound TMP indicates that updated signal timings with a cycle length of 80 s were created for all peak periods to improve the operations of the 10th Street/Highway 6 corridor for future conditions. The updated signal timing plans were attached as Appendix F4 of the TMP but was not disclosed in the public document. In the absence of this signal timings in the TMP, an optimization of the splits and the cycle length was applied to the Highway 6 corridor.

The Grey County TMP also recommends the transfer of Grey County Road 15 to the City of Owen Sound as it was identified that it does not contribute to the overall connectivity of the County. **Appendix F** contains excerpts from the City of Owen Sound TMP.

4.3 Intersection Operations

The operations of the study intersections were analyzed based on the 2028 future background traffic volumes illustrated in **Figures 5** with the noted roadway improvements. The signal timings for 3rd Avenue East and Highway 6, 4th Avenue East and Highway 6 and 2nd Avenue East and Highway 6 were provided by City of Owen Sound staff for the existing conditions. As noted in Section 4.2, the signal timing splits, and cycle lengths were optimized to assess future background and future total conditions.

C.F. Crozier & Associates Inc. Project No. 1733-6596 **Table 5** outlines the 2028 future background traffic level of service. Level of Service definitions have been included in **Appendix D**. Detailed Capacity Analyses Worksheets are included in **Appendix E**.

Table 5: 2028 Future Background Levels of Service

Intersection	Control	Peak Hour	Level of Service	Control Delay ¹	Maximum v/c Ratio	95 th %ile Queue> Storage
2 nd Avenue East	Signal	P.M.	С	22.1 s	0.92 (EBT)	30.9 m > 25.0 m (SBR)
and Highway 6	Signal	SAT	В	18.5 s	0.89 (EBT)	None
3 rd Avenue East		P.M.	В	11.2 s	0.84 (EBT)	None
and Highway 6	Signal	SAT	В	13.2 s	0.77 (EBT)	None
4 th Avenue East	Signal	P.M.	В	18.4 s	0.67 (WBT)	None
and Highway 6		SAT	С	21.8 s	0.72 (EBT/WBT)	None
3 rd Avenue East	Stop	P.M.	В	13.4 s (EB)	0.10 (EB)	N/A
and 12 th Street East		SAT	В	12.6 s (EB)	0.09 (EB)	N/A
4 th Avenue East	0.1	P.M.	В	10.2 s (WB)	0.02 (WB)	N/A
and 12 th Street East	Stop	SAT	Α	9.6 s (WB)	0.02 (WB)	N/A
3 rd Avenue East	Stop	P.M.	С	15.1 s (EB)	0.13 (EB)	N/A
and 13 th Street East	Stop	SAT	В	12.9 s (EB)	0.09 (EB)	N/A

Note: The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach. The Level of Service of a signalized intersection is based on the average control delay per vehicle.

As presented in **Table 5**, under 2028 future background volume conditions, the study intersections are expected to improve to a LOS "C" or better in the Friday p.m. and Saturday peak hours due to the signal timing optimization compared to 2023 existing conditions. The maximum control delay of 22.1 s and volume-to-capacity ratio of 0.92 (EBT) are both forecasted for 2nd Avenue East and Highway 6 during the Friday p.m. peak hour. These operations are common during peak times in busy urban areas. These operations indicate that the boundary road network is operating acceptably.

The 95th percentile queue of the southbound right-turn movement at 2^{nd} Avenue East and Highway 6 is forecasted to increase by 10.3 m compared to existing conditions and is anticipated to exceed the available storage length by approximately one vehicle during the Friday p.m. peak hour. It is noted that the effective storage of the southbound right-turn movement depends on whether vehicles are parked along the west side of 2^{nd} Avenue. In instances where there is a vehicle parked in the first space, it is expected that vehicles queued beyond the storage would join the through lane, which is not expected to impact the delay of the southbound through movement, which currently operates at a LOS C with 20 seconds of delay and a volume-to-capacity ratio of 0.21.

5.0 Site Generated Traffic

5.1 Trip Generation

The re-use of the site will result in additional vehicles on the boundary road network that previously did not exist. The trip generation was forecasted using the fitted curve equations provided in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 11th Edition, where applicable. Per the Site Plan, the re-use is proposed to consist of event venues, a speakeasy, a restaurant, and office space. As previously stated, the Friday p.m. and Saturday peak hours were assessed given the nature of the proposed land uses.

The event venue land use does not conform to a specific Land Use Category (LUC) described in the Institute of Transportation Engineers (ITE) Trip Generation Manual, 11th Edition. Traffic data collected at event venues in the GTA with larger gross floor areas (GFA) then the proposed event venues were reviewed to assess anticipated weekday p.m. and Saturday peak hour trips. A first principles approach was also employed based on the planned venue capacity. An average vehicle occupancy rate of two-persons per vehicle was applied to the maximum venue occupancies of 242 in the exterior pavilion and 116 in the courtroom.

The first principles approach resulted in a higher trip generation. It is expected that event guests will arrive to and depart from the site outside of the typical roadway peak hours. Nevertheless, the first principles resulting peak trip generation of the event venue component was applied to the peak hours of the roadway to provide a conservative assessment. It was assumed that 25% of the inbound trips would also be outbound to account for drop-offs at the site. During the event it is assumed that departures would occur sporadically throughout the evening. **Table 6** summarizes the two different trip generation methodologies. **Appendix G** contains the proxy sites traffic data and peak hour calculation, and **Appendix H** contains the maximum capacity seating plans for the event venues.

Weekday P.M. **Proxy Sites** Saturday Peak Peak First Principals Approach based Chateau Le Jardin 17 trips (March 13 trips (May on capacity 179 Convention Centre 2018) 2016) (Max. Mississauga 12 trips (August occupancy/2) Convention Centre 2014)

Table 6: Proxy Sites vs First Principles Approach

In addition, LUC 975 "Drinking Place", LUC 931 "Fine Dining Restaurant", and LUC 712 "Small Office Building" were used to forecast trips generated by the associated uses. It was assumed that the office space would not generate any trips in the Saturday peak hour and that the speakeasy would have the same trips in the Saturday peak as the weekday p.m. peak hour.

The forecasted trip generation of the site is summarized in **Table 7** and ITE excerpts have been included as **Appendix I**.

Table 7: Site Trip Generation

Land Use	Peak Hour		Number of Trips			
Lana use	reak nour	Inbound	Outbound	Total		
Event Venues	Friday P.M.	179	45	224		
(358 maximum capacity)	Saturday	179	45	224		
LUC 975 "Drinking Place"	Friday P.M.	44	22	66		
(5,823 ft ²)	Saturday	44	22	66		
LUC 931	Friday P.M.	32	16	48		
"Fine Dining Restaurant" (6,178 ft²)	Saturday	39	27	66		
LUC 712	Friday P.M.	3	4	7		
"Small Office Building" (3,423 ft²)	Saturday	0	0	0		
Total	Friday P.M.	258	87	345		
Iotal	Saturday	262	94	356		

5.2 Trip Distribution and Assignment

The trips generated by the site were distributed to the boundary road network based on the anticipated origin of visitors. The office space is expected to generate trips from local residential areas. Trips to the commercial destination uses would also originate from residential areas, but it is anticipated that more visitors external from Owen Sound would be expected, compared to the office use. However, similar distributions are expected on the boundary road network within the Study Area.

Limited parking is available at the rear of the building via 4th Avenue East while drop-off and pick-up at the front doors of the building are accessible via 3rd Avenue East. If was forecasted that 30% of visitors will access the parking on 4th Avenue, though it is acknowledged that some may exist and need to park elsewhere during the peak hour. The remaining 70% of visitors were assigned to 3rd Avenue East and are expected to disburse to other parking locations during the peak hour.

The following distribution was applied for both the Friday p.m. and the Saturday peak hours:

- 10% to/from the north
 - o 7% via 3rd Avenue East
 - o 3% via 4th Avenue East
- 20% to/from the south
 - o 14% via 3rd Avenue East
 - o 6% via 4th Avenue East
- 35% to/from the west on Highway 6
 - o 25% via 3rd Avenue East
 - 10% via 4th Avenue East
- 35% to/from the east on Highway 6
 - o 24% via 3rd Avenue East
 - 11% via 4th Avenue East

The combined trip distribution is illustrated in **Figure 6**. The event venue trip assignment is illustrated **Figure 7**. The restaurant and speakeasy trip assignments are illustrated in **Figure 8** and **Figure 9**, respectively. The office trip assign is illustrated in **Figure 10**.

6.0 Total Future Conditions

6.0 Basis of Assessment

The traffic impacts arising from the proposed re-use were assessed based on the site generated traffic being superimposed on the future background traffic volumes. The resulting 2028 total traffic volumes for the Friday p.m. and Saturday peak hours are illustrated in **Figure 11**.

6.1 Intersection Operations

The operations of the study intersections were analyzed based on the 2028 total traffic volumes illustrated in **Figure 11**.

As discussed in section 4.2, the City of Owen Sound is anticipated to update the signal timing setting for several intersections on the 10th Street/Highway 6 corridor which will improve operations. The updated signal timing settings were attached as part of Appendix F4 but were not disclosed in the public document. In the absence of the TMP signal timings, an optimization of the entire corridor was applied based on optimized splits and cycle lengths, based on the future total traffic volumes.

Table 8 outlines the respective horizon year future total traffic levels of service. Level of Service definitions have been included in **Appendix D** and detailed capacity analyses worksheets are included in **Appendix E**.

Table 8: 2028 Future Total Levels of Service

Intersection	Control	Peak Hour	Level of Service	Control Delay ¹	Maximum v/c Ratio	95 th %ile Queue> Storage
2 nd Avenue East	Signal	P.M.	С	21.0 s	0.86 (EBT)	36.4 m > 25.0 m (SBR)
and Highway 6	Signal	SAT	В	17.2 s	0.86 (EBT)	None
3 rd Avenue East		P.M.	С	21.9 s	0.85 (EBT)	17.9m > 15.0 (NBL)
and Highway 6	Signal	SAT	В	11.0 s	0.82 (WBT)	None
4 th Avenue East	Signal	P.M.	С	25.9 s	0.80 (WBT)	8.6 m > 5.0 m (SBL)
and Highway 6		SAT	С	22.4 s	0.78 (EBT)	8.9 m > 5.0 m (SBL)
3 rd Avenue East	Stop	P.M.	С	16.8 s (EB)	0.13 (EB)	N/A
and 12 th Street East		SAT	С	16.1 s (EB)	0.12 (EB)	N/A
4 th Avenue East	Stop	P.M.	В	11.0 s (WB)	0.03 (EB)	N/A
and 12 th Street East		SAT	В	10.3 s (WB)	0.03 (EB)	N/A
3 rd Avenue East	2+02	P.M.	С	15.6 s (EB)	0.13 (EB)	N/A
and 13 th Street East	Stop	SAT	В	13.2 s (EB)	0.09 (EB)	N/A
3 rd Avenue East	Stop	P.M.	С	15.6 s (WB)	0.16 (WB)	N/A
and Site Access 'A'		SAT	В	14.0 s (WB)	0.15 (WB)	N/A
4 th Avenue East	2+00	P.M.	В	11.0 s (EB)	0.04 (EB)	N/A
and Site Access 'B'	Stop	SAT	Α	8.9 s (EB)	0.03 (EB)	N/A

Note: The Level of Service of a stop-controlled intersection is based on the delay associated with the critical minor road approach. The Level of Service of a signalized intersection is based on the average control delay per vehicle.

The study intersections are anticipated to continue operating with a LOS "C" or better. Reoptimization of signal timings improves the operations at the intersection of 2nd Avenue East and Highway 6 compared to the 2028 Future Background scenario. The intersection is expected to remain operating with a v/c ratio greater than 0.85, however, as stated under future background conditions, these operations are common in busy urban areas. Additionally, the trip assignment for the re-use is considered a conservative approach assuming maximum capacity for event spaces arriving all within the peak hour.

As noted in the future background conditions, some movements are anticipated to operate with 95th percentile queues exceeding the available storage. The southbound right movement at the intersection of 2nd Avenue East and Highway 6 is expected to continue to exceed the available storage, with the 95th percentile queue forecasted to increase by less than one vehicle. All other 95th percentile queues noted are forecasted to exceed the available storage by less than one vehicle length and are therefore not expected to impede through movements.

The proposed site accesses are expected to operate at a LOS "C" or better with a maximum control delay of 15.6 s and volume-to-capacity ratio of 0.16.

The study intersections are anticipated to continue operating acceptably under 2028 future total traffic volume conditions. Accordingly, the boundary road network can accommodate the site generated traffic.

7.0 Sight Distance Assessment

A sight distance assessment was completed to demonstrate that the proposed accesses provide sufficient stopping and intersection sight distances on 4th Avenue East since the site access on 3rd Avenue East is already existing. The minimum stopping sight distance (SSD) and intersection sight distance (ISD) requirements were obtained from the Transportation Association of Canada (TAC) Geometric Design Guide for Canadian Roads (GDGCR). As noted previously 4th Avenue East has a speed limit of 50 km/h thus a design speed of 60 km/h was used.

Section 2.5 of the TAC GDGCR provides stopping sight distances for various design speeds on level roadways. For a design speed of 60 km/h, a stopping sight distance of 85 metres is required. Section 9.9 of the TAC GDGCR provides intersection sight distance for different intersection control types. For these accesses, the applicable cases include "Case B1 – Left turns from the minor road", and "Case B2 – Right turns from the minor road". Case B1 has a minimum sight distance requirement of 130 metres for 60 km/h design speed road. Case B2 has a minimum sight distance requirement of 110 metres. **Appendix J** contains relevant excerpts from TAC GDGCR.

Based on a desktop review, it was determined that the available sight distance exceeds the minimum sight distance requirements of 85 m for SSD, and 130 m and 110 m for ISD to the right and left, respectively. To the north, there 250 m available sight distance past the intersection at 13^{th} Street East. To the south, there is 300 m+ sight distance is available all the way to Highway $6/10^{TH}$ Street.

Accordingly, the proposed re-use can be supported from a sight distance perspective.

8.0 Transportation Study

8.1 Pedestrian Facilities

Current pedestrian facilities have been summarized in Table 9.

Facility Width Side of Roadway Roadway Surface Type Type 2nd Avenue East Sidewalk $3.7 - 1.5 \, \text{m}$ Both Concrete Sidewalk 3rd Avenue East/ Grey County Road 15 $3.7 - 1.5 \, \text{m}$ Both Concrete 4th Avenue East Sidewalk Concrete 1.5 m Both 10th Street East/Highway 6 Sidewalk 3.7 m Both Concrete 12th Street East Sidewalk 1.5 m Both Concrete 1.5 m Both 13th Avenue East Sidewalk Concrete

Table 9: Location and Types of Pedestrian Facilities

8.2 Municipal Transit Services

Owen Sound Transit operates four bus routes at 30 min headways between 6:30 a.m. to 6:00 p.m. Monday to Friday, and 9 a.m. to 4 p.m. on Saturdays. The Site is located approximately 500 m from the Owen Sound Transit Terminal where all local bus routes convene, these routes cover the entire City.

The bus stop for the East Bayshore and Core bus routes are located near the site. The East Bayshore has bus stops at 3rd Avenue East at 12th Street East and 13th Street East. The Core route has bus stops

C.F. Crozier & Associates Inc. Project No. 1733-6596 at 10th Avenue East/Highway 6 and 3rd Avenue East and 4th Avenue East. Owen Sound Transit route maps have been attached as **Appendix B**.

8.3 Regional Transit Services

All Regional Transit services depart from the Owen Sound Transit terminal, located 6 minutes walking from the Site. Grey Transit Route 1 runs from Owen Sound south to Dundalk with Route 2 continuing from Dundalk to Orangeville. Grey Transit Routes 1 and 2 run twice in the morning and twice in the afternoon with slight adjustments to timings on the weekends. Grey Transit Routes 3 and 4 connect Owen Sound to the Town of the Blue Mountains and runs Wednesday to Sunday departing three times in the morning and three times in the afternoon. Route 5 connects Owen Sound to Wiarton and Sauble Beach; it runs Friday to Monday departing three times throughout the day.

It is noted that we would not expect patrons of the restaurants and event venues to rely on the regional transit services, however employees may choose to use the regional transit network to commute.

Grey Transit Route maps and schedules have been included as Appendix K.

8.4 Cycling Facilities, Routes, and Trails

Per Schedule D of the City's Official Plan, 1st Avenue East and 4th Avenue East are identified as bicycle routes with shared on-road facilities. In addition to the bicycle routes, there is a recreational trail to the west of 1st Avenue East that runs north-south along the water.

Active Transportation will be supported through the improvement of the 2nd Avenue East corridor from 12th Street East to 18th Street East to a multiple use urban cross-section in accordance with the "Living Street" section of the City of Owen Sound Official Plan. In addition, cycling lanes are to be implemented on 2nd Avenue East and 3rd Avenue East to increase the cycling connectivity for the North-South directions as per the City of Owen Sound Official Plan. These details will be confirmed through detailed design and discussions with City staff. **Appendix B** contains the applicable excerpts of the City of Owen Sound Official Plan. **Appendix B** contains the applicable excerpts of the City of Owen Sound Official Plan. **Appendix L** includes the Owen Sound Trails Brochure and excerpts from the Grey County Cycling and Trails Master Plan.

8.5 City, and County Multimodal Planning

The City of Owen Sound identified the importance of Transportation Demand Management and highlighted specific objectives in its Transportation Master Plan (2010) and the Official Plan (2017). Key objectives include transit improvements, paid parking, pedestrian facilities improvements, cycling support, and the promotion of working from home. Key future roadway improvements include the addition of on road cycling facilities to 4th Avenue East, and 3rd Avenue West.

Grey County supports Transportation Demand Management through their 2015 Transportation Master Plan which recommended the launch of their regional transit service and updating of the Paved Shoulder Policy.

8.6 AODA Compliance

Per the City's Accessibility Improvement Guidelines and AODA requirements it is recommended that the developer ensure the site meet standard while the city monitors and upgrades the existing roadway infrastructure such as sidewalks, streetlights, and traffic signals.

As indicated in the general requirements for exterior paths of travel the ground surface must be level and there must be adequate exterior lighting. Sidewalks should be a minimum of 1.5 m wide with a maximum running slope of 5% (1:20). It is noted that sidewalks can have slopes greater than 1:20, but it cannot be steeper than the slope of the adjacent roadway. These details will be confirmed through detailed design.

9.0 Conclusions

The analysis contained within this report has resulted in the following key findings:

- Under existing traffic volume conditions, all study intersections are operating at a Level of Service (LOS) "D" or better during the Friday p.m. and Saturday mid-day peak hours.
 - o The intersection of 4th Avenue East and Highway 6 is operating with a maximum control delay of 40.8 s.
 - The intersection of 2nd Avenue East and Highway 6 is operating with a maximum volume-to-capacity ratio of 0.95.
 - The 95th percentile queues of all movements on the boundary road network can be accommodated within the existing storage lanes, with the exception of the southbound left-turn movements on 4th Avenue East at Highway 6 which can be accommodated within a portion of the taper.
- A growth rate of 1% per year has been applied to the boundary road network.
- The City's capital works budget does not identify any capacity improvements as part of the 5-year funding plan. Therefore, the suggested auxiliary turn-lanes in the TMP were not accounted in the analysis of this report.
- The study intersections are expected to operate with a LOS "C" or better in the Friday p.m. and Saturday peak hours under 2028 future background traffic volume conditions.
 - The maximum control delay of 22.1 s and volume to capacity ratio of 0.92 (EBT), both forecasted for 2nd Avenue East and Highway 6 during the Friday p.m. peak hour, indicate that the boundary road network is anticipated to operate acceptably.
 - o The 95th percentile queue of the southbound right-turn movement at 2nd Avenue East and Highway 6 is forecasted to increase by 10.3 m compared to existing conditions.
- The proposed re-use is expected to generate 345 and 356 two-way trips in the weekday Friday p.m. and Saturday peak hours, respectively.
- The study intersections are anticipated to continue operating with an LOS "C" or better in the Friday p.m. and Saturday peak hours under 2028 future total traffic volume conditions.
 - o Re-optimization of signal timings improves the operations at the intersection of 2nd Avenue East and Highway 6 compared to the 2028 Future Background scenario.
 - The southbound right movement at the intersection of 2nd Avenue East and Highway 6 is expected to continue to exceed the available storage, with the 95th percentile queue forecasted to increase by less than one vehicle.
 - o All other queueing is not expected to impede through movements.
 - The proposed Site Accesses are expected to operate at a LOS "C" with a maximum control delay of 15.6 s and volume-to-capacity ratio of 0.16.
 - The above metrics indicate that the study intersections are anticipated to continue operating acceptably under 2028 future total traffic volume conditions. Accordingly, the boundary road network can accommodate the site generated traffic.

C.F. Crozier & Associates Inc. Project No. 1733-6596

- There are no sight distance issues anticipated at the site accesses and vehicles can safely
 ingress and egress the site. The site accesses can be supported from a sight distance
 perspective.
- Active transportation facilities including sidewalks, multi-use trails and transit stops are located in close proximity to the site.
- The sidewalks proposed throughout the site should be designed to meet the minimum requirements detailed in the Accessibility for Ontarians with Disabilities Act (AODA).
 Geometrics, pavement markings and signage will be confirmed through detailed design.

The analysis contained within this report was completed based on the Site Plan dated April 20, 2023. Any minor changes to the Site Plan will not affect the conclusions contained within this report.

It is concluded that the traffic generated by the proposed reuse can be supported by the boundary road network, and the Site Plan can be supported from a traffic operations perspective.

Prepared by,

C.F. CROZIER & ASSOCIATES INC.

Madeleine Ferguson, P.Eng. Manager of Transportation C.F. CROZIER & ASSOCIATES INC.

Kerianne Hagan, E.I.T

Engineering Intern, Transportation

MF/db,kh

J:\1700\1733-Fusioncorp Dev Inc\6596 - Royal Rose Court\Reports\Transportation\TIS\6596_TIS (May 2023).docx

APPENDIX A

Terms of Reference

Diego Bustamante

From: Chris Webb <cwebb@owensound.ca>

Sent: December 1, 2022 4:06 PM

To: Kerianne Hagan

Cc: Jocelyn Wainwright; Dana Goetz; Sabine Robart

Subject: RE: 3rd Avenue East, Owen Sound - Terms of Reference

Categories: Filed to Sharepoint

Hi Kerianne,

The intersections identified, including the terms of reference and the additions requested by the County are acceptable.

We will be providing a consolidated response through Planning staff regarding on and off site parking.

Chris

From: Kerianne Hagan <khagan@cfcrozier.ca>
Sent: Thursday, December 1, 2022 3:35 PM
To: Chris Webb <cwebb@owensound.ca>

Cc: Jocelyn Wainwright < jwainwright@owensound.ca>

Subject: RE: 3rd Avenue East, Owen Sound - Terms of Reference

Good Afternoon Chris,

I am following up on the TOR below. If you require more time for a response, not a problem, I was just looking to confirm the study intersections, with the addition of Grey Road 15 and 13th Street East that the County requested.

We are hoping to get our traffic counters out ASAP before there is more snow and holiday impacts. If you could confirm the intersections, it would be greatly appreciated.

Thank you, Kerianne

Kerianne Hagan, EIT | Engineering Intern 1 First Street, Suite 200 | Collingwood, ON L9Y 1A1 T: 705.446.3510

Crozier Connections: f 💆 in 🗐

Read our latest news and announcements here.

From: Kerianne Hagan

Sent: November 28, 2022 8:21 AM

To: Chris Webb < cwebb@owensound.ca; jim.stevenson@grey.ca

Cc: Diego Bustamante < dbustamante@cfcrozier.ca>

Subject: 3rd Avenue East, Owen Sound - Terms of Reference

Good Morning Chris and Jim

I hope you are doing well. C.F. Crozier & Associates has been retained to prepare a Transportation Impact Study (TIS) and Parking Justification Study in support of an OPA/ZBA application for the proposed development located on 1235, 1239 3rd Avenue East, Owen Sound (the former courthouse and jail). A Site Plan Application will proceed in the future. The elements envisioned for this subdivision include the renovation of existing buildings for an event venue, including a restaurant, speakeasy and coworking spaces. We have attached the current site plan for your reference

Please advise if the Terms of Reference (TOR) outlined below are acceptable. If you are not the correct person for this correspondence, we would appreciate it if you could direct us to the appropriate contact.

The **Traffic Impact Study** will review the following items:

Study intersections

- 3rd Avenue East/Grey Road 15 at 12th Street East
- 3rd Avenue East/Grey Road 15 at Highway 6
- 4th Avenue East at 12th Street East
- 4th Avenue East at Highway 6
- 2nd Avenue East at Highway 6
- Proposed Site Access(es)

Analysis Periods and Scenarios

Analysis of the Friday p.m., and Saturday peak hours will be used to capture the peak hours associated with the proposed use. Analysis 5 years (2028) from the study date will be assumed.

A 2.0% annual growth rate will be utilized as to be consistent with previous studies completed in the City of Owen Sound.

Background Developments

Please advise if there are any background developments within the study area that should be considered.

Trip Generation

ITE Trip Generation 11th Edition will be used to calculate the expected trip generation for the development where available. A first principles approach will be used for any uses which data is not available, with explanation and justification provided for the approach.

Assignment of site generated traffic on the boundary road network will be based on existing travel patterns, expected catchment areas, and other study findings.

Road Characteristics

A number of elements will be reviewed including geometric road improvements to support the development, as well as sight distance and access spacing requirements at the proposed site accesses.

Transportation Study

A review of City's Official Plan, Transportation Master Plan, Accessibility for Ontarians with Disabilities Act, and the Trails Master Plan will be undertaken to address multi-modal opportunities for the development. The Transportation Study will be incorporated as part of the TIS.

The Parking Justification Study will be prepared under a separate cover and will review the following items:

By-Law Requirements

A review of the City of Own Sound's zoning By-law #2010-078 Section 5 to determine the required number of spaces in relation to the number provided on site.

ITE Parking Generation

ITE Parking Generation 5th Edition will be used to calculate the expected parking demand for the development where available. A first principles approach will be used for any uses which data is not available with explanation and justification provided for the approach.

A review of peak hours for the variety of uses will be undertaken to determine the combined peak hour of parking forecasted and the available supply

Off-Site Parking

A review of available on-street and off-street parking in the area will be undertaken. A municipal parking lot is available in the study area.

Additionally, it is our understanding that through communications with the City the provision for off-site parking may be acceptable. If there is an additional contact we should communicate with regarding parking, please let us know.

Transportation Demand Management

A review of TDM opportunities for the development will be undertaken.

We trust the above is acceptable. We ask that you provide us with any background developments that should be considered. We will reach out to the City and County for signal timing plans at our study intersections.

Should you have any questions or concerns, please feel free to contact me.

Best Regards, Kerianne

Diego Bustamante

From: Jim Stevenson <Jim.Stevenson@grey.ca>

Sent:November 29, 2022 7:53 AMTo:Kerianne Hagan; Webb, ChrisCc:Diego Bustamante; Matt Marck

Subject: RE: 3rd Avenue East, Owen Sound - Terms of Reference

Follow Up Flag: Follow up Flag Status: Completed

Categories: Filed to Sharepoint

Kerianne

Please include the intersection of 3rd Avenue East/Grey Road 15 at 13th Street East. No further comments.

Jim Stevenson

Corridor Control Technologist Phone: +1 519-372-0219 ext. 1285

From: Kerianne Hagan < khagan@cfcrozier.ca>

Sent: November 28, 2022 8:21 AM

To: Webb, Chris <cwebb@owensound.ca>; Jim Stevenson <jim.stevenson@grey.ca>

Cc: Diego Bustamante < dbustamante@cfcrozier.ca>

Subject: 3rd Avenue East, Owen Sound - Terms of Reference

[EXTERNAL EMAIL]

Good Morning Chris and Jim

I hope you are doing well. C.F. Crozier & Associates has been retained to prepare a Transportation Impact Study (TIS) and Parking Justification Study in support of an OPA/ZBA application for the proposed development located on 1235, 1239 3rd Avenue East, Owen Sound (the former courthouse and jail). A Site Plan Application will proceed in the future. The elements envisioned for this subdivision include the renovation of existing buildings for an event venue, including a restaurant, speakeasy and coworking spaces. We have attached the current site plan for your reference

Please advise if the Terms of Reference (TOR) outlined below are acceptable. If you are not the correct person for this correspondence, we would appreciate it if you could direct us to the appropriate contact.

The Traffic Impact Study will review the following items:

Study intersections

- 3rd Avenue East/Grey Road 15 at 12th Street East
- 3rd Avenue East/Grey Road 15 at Highway 6
- 4th Avenue East at 12th Street East
- 4th Avenue East at Highway 6
- 2nd Avenue East at Highway 6
- Proposed Site Access(es)

Analysis Periods and Scenarios

Analysis of the Friday p.m., and Saturday peak hours will be used to capture the peak hours associated with the proposed use. Analysis 5 years (2028) from the study date will be assumed.

A 2.0% annual growth rate will be utilized as to be consistent with previous studies completed in the City of Owen Sound.

<u>Background Developments</u>

Please advise if there are any background developments within the study area that should be considered.

Trip Generation

ITE Trip Generation 11th Edition will be used to calculate the expected trip generation for the development where available. A first principles approach will be used for any uses which data is not available, with explanation and justification provided for the approach.

Assignment of site generated traffic on the boundary road network will be based on existing travel patterns, expected catchment areas, and other study findings.

Road Characteristics

A number of elements will be reviewed including geometric road improvements to support the development, as well as sight distance and access spacing requirements at the proposed site accesses.

Transportation Study

A review of City's Official Plan, Transportation Master Plan, Accessibility for Ontarians with Disabilities Act, and the Trails Master Plan will be undertaken to address multi-modal opportunities for the development. The Transportation Study will be incorporated as part of the TIS.

The Parking Justification Study will be prepared under a separate cover and will review the following items:

By-Law Requirements

A review of the City of Own Sound's zoning By-law #2010-078 Section 5 to determine the required number of spaces in relation to the number provided on site.

ITE Parking Generation

ITE Parking Generation 5th Edition will be used to calculate the expected parking demand for the development where available. A first principles approach will be used for any uses which data is not available with explanation and justification provided for the approach.

A review of peak hours for the variety of uses will be undertaken to determine the combined peak hour of parking forecasted and the available supply

Off-Site Parking

A review of available on-street and off-street parking in the area will be undertaken. A municipal parking lot is available in the study area.

Additionally, it is our understanding that through communications with the City the provision for off-site parking may be acceptable. If there is an additional contact we should communicate with regarding parking, please let us know.

Transportation Demand Management

A review of TDM opportunities for the development will be undertaken.

We trust the above is acceptable. We ask that you provide us with any background developments that should be considered. We will reach out to the City and County for signal timing plans at our study intersections.

Should you have any questions or concerns, please feel free to contact me.

Best Regards, Kerianne

Kerianne Hagan, EIT | Engineering Intern 1 First Street, Suite 200 | Collingwood, ON L9Y 1A1 T: 705.446.3510

Crozier Connections: f 💆 in 🗐

Read our latest news and announcements <u>here</u>.

This email was sent on behalf of C.F. Crozier & Associates Inc. and may contain confidential and/or privileged information for the sole use of the intended recipient. If you have received this email in error, please contact the sender and delete all copies. Any review or distribution by anyone other than the intended recipient is strictly prohibited.

APPENDIX B

Owen Sound's Official Plan - Transportation

Adopted by the City of Owen Sound
June 28, 2021
Approved by the County of Grey
February 15, 2022

- distinct street edges through appropriate landscaping or structures.
- 5.1.4.13 Parking areas are to be designed in accordance with the City's Multi-year Accessibility Plan and AODA requirements.
- 5.1.4.14 Parking and charging stations for electric vehicles is required in new development and redevelopment. The provision for future parking and charging stations is also encouraged and may be considered at the time of site plan review.
- 5.1.4.15 The City may consider reducing the required number of parking spaces needed for development or redevelopment where the following criteria have been justified:
 - a. Demonstration that the proposed use does not require the stated level of parking (e.g., affordable housing whereby car ownership would be low), or
 - b. An agreement has been registered on title to provide offstreet parking.

5.1.5 Active Transportation

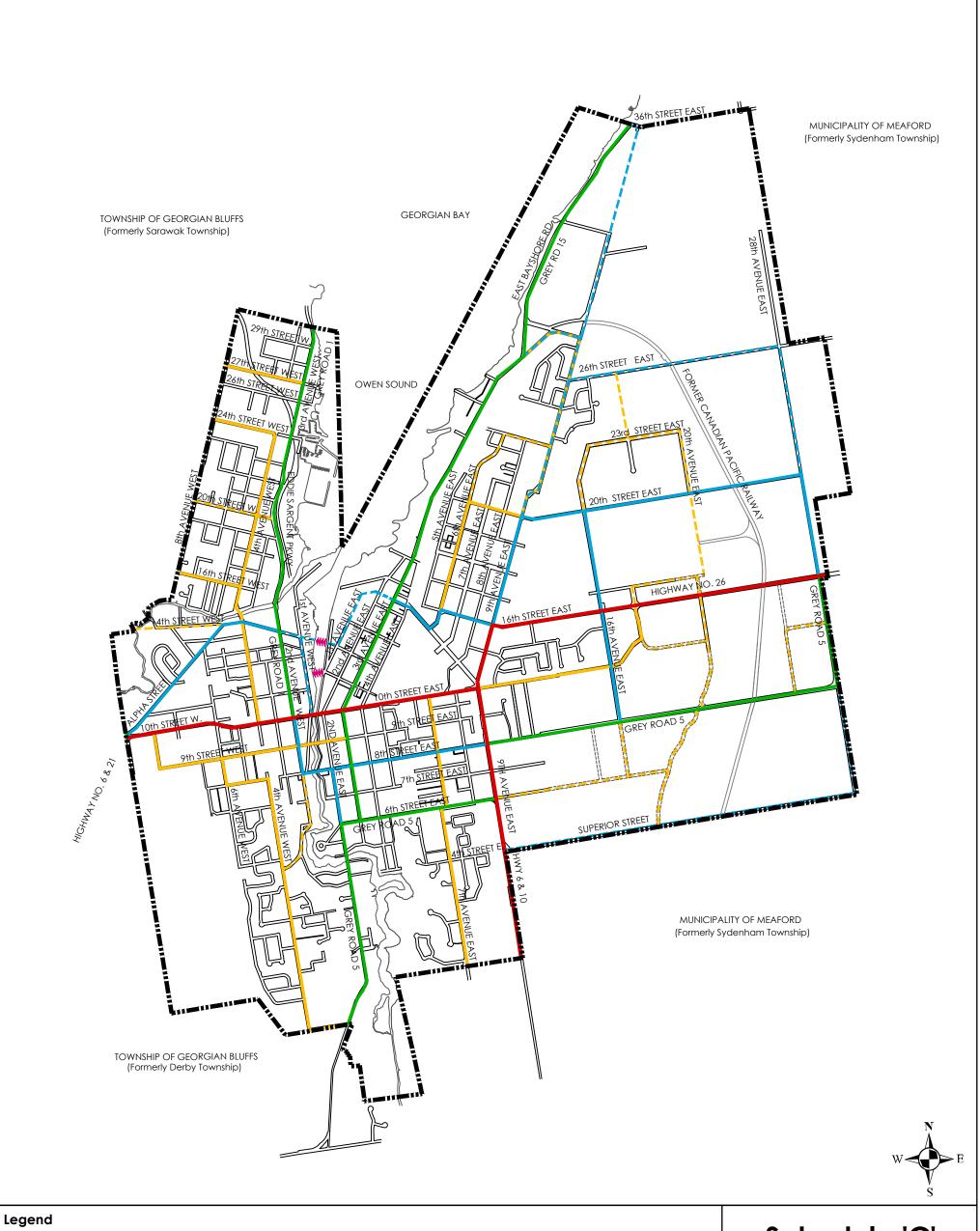
- 5.1.5.1 New developments will be designed to be walkable and bike friendly by including multi-use trails, sidewalks, and/or paved shoulders where appropriate to integrate with the overall complete transportation system.
- 5.1.5.2 The City shall promote sustainable, healthy, active living through well-connected and maintained streets, paths and trails that are able to safely accommodate different modes of transportation.
 - Pedestrian links and bicycle trails may be located on public road allowances, parks, City or government owned lands and rights-of-way acquired over or through privately held lands as indicated on Schedule 'D' Active Transportation and Recreation Trails Master Plan. Consideration should be given to providing connections between pedestrian links/bicycle trails and residential streets and areas of open space, schools and public transit facilities.
- 5.1.5.3 The City shall maintain and regularly update Schedule 'D' Active Transportation and Recreation Trails Plan to provide for paths and trails.
- 5.1.5.4 Accessibility for all people shall be considered in the design of pedestrian links and trails in accordance with the City's Multi-year

Accessibility Plan, Transit Accessibility Plan and AODA requirements.

- 5.1.5.5 The City shall work towards providing sidewalks and bicycle trails separated from the roadway on existing and proposed arterial roads and on abandoned rail corridors and within parks and open spaces as appropriate.
- 5.1.5.6 The City will encourage and facilitate where possible the use of cycling on local and collector roads.
- 5.1.5.7 The City shall provide for the development of continuous trail systems along the waterfront and along the Sydenham River to the inner and outer Harbour to ensure public access.
- 5.1.5.8 The City through a by-law may control direct snowmobile/ATV/equestrian access to specified city access points. Access points shall be identified, encouraged and regularly reviewed.
- 5.1.5.9 The City will support the integration of pedestrian and cycling facilities into existing and new development areas.
- 5.1.5.10 The City will support tourism and recreational developments that support active transportation.
- 5.1.5.11 The City will encourage new development to include accessible, age-friendly and transit supportive design elements such as:
 - a. A system of walkways (sidewalks, paved shoulders, and trails) and bicycle paths (paved shoulders and trails) linking the subdivision internally as well as externally to other walkways and bicycle paths, and to other public areas;
 - b. Design that includes living streets, active transportation, and safety.

5.1.6 Public Transit

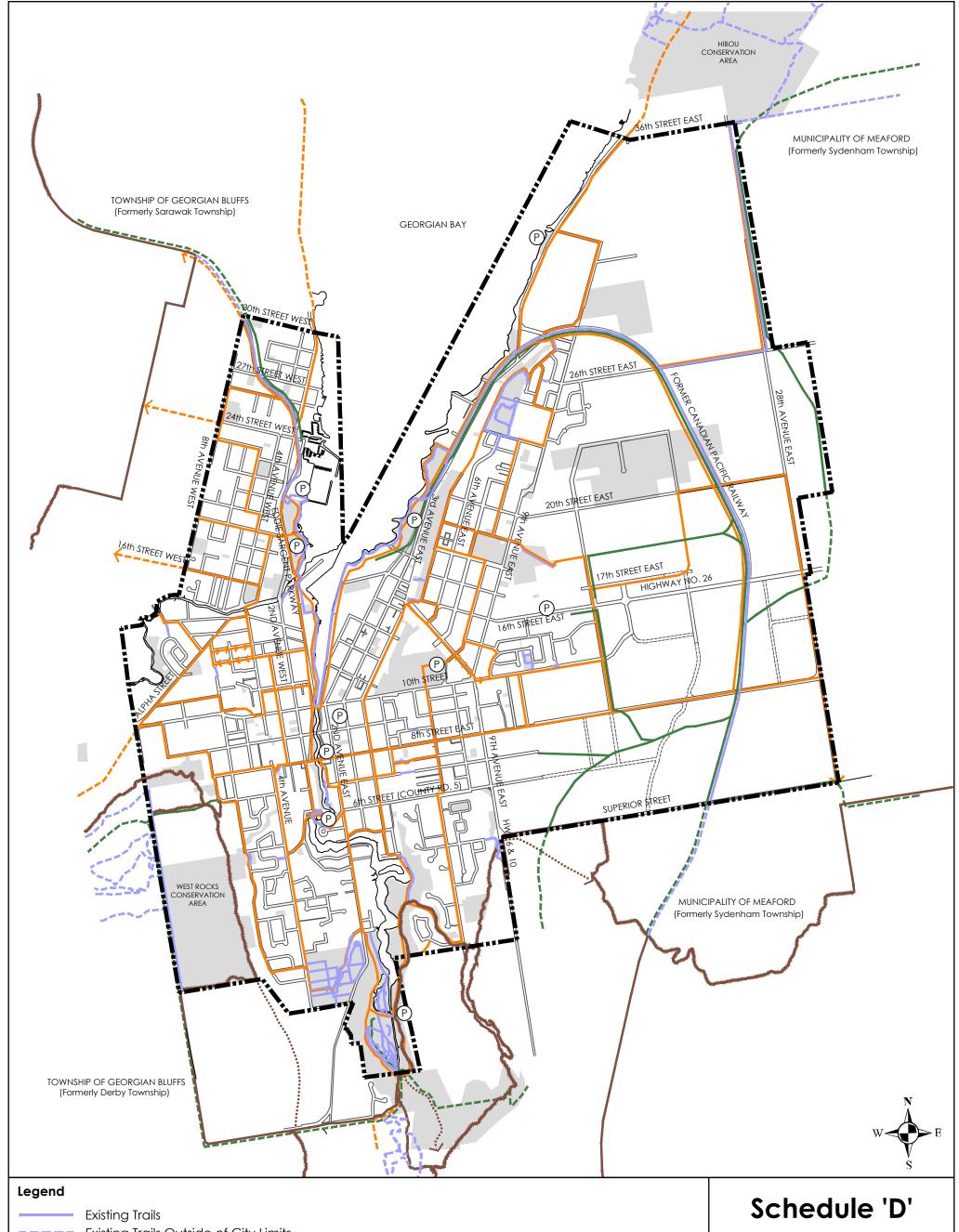
5.1.6.1 Planning for new developments and built-up areas should include consideration for public transit which may include requirements for bus bays, elimination of street parking for bus stops, streets planned and designed to accommodate transit vehicles, installation of bus shelters subject to requirements in Transit Accessibility Plan. The City shall encourage greater population densities along and in the vicinity of transit routes.



- 5.1.6.2 All major development proposals and changes and additions to the road network will be evaluated with respect to their impact on existing or proposed transit services.
- 5.1.6.3 The City shall encourage the retention of the public transit system to provide a viable alternative to the use of the private vehicle.
- 5.1.6.4 The public transit system is to be inclusive of the needs of all people by:
 - a. Ensuring that transit facilities, routes and vehicles are accessible.
 - b. Modifying existing transit stops and shelters to become more accessible over time.
 - c. Ensuring transit stops and shelters have an accessible sidewalk that connects directly to the transit stop.
 - d. Ensuring that all transit stops and shelters consider the safe unloading and loading of passengers.
 - e. Supplementing the conventional transit system with specialized services.
 - f. Implementing recommendations from the City's Multi-year Accessibility Plan and Transit Accessibility Plan.
- 5.1.6.5 The City may undertake a transit study to determine transit routes and transit facility locations. The recommendations of this study provide a framework for consideration of planning applications and transportation planning.
- 5.1.6.6 Through the review and approval of development applications the City may require the dedication of land or request financial resources for installation of transit infrastructure.
- 5.1.6.7 The City will cooperate with the County and adjacent municipalities in developing an integrated transit system.

5.1.7 Water Transportation

- 5.1.7.1 Owen Sound Harbour provides an important opportunity for goods movement, ferrying opportunities and recreational transportation.
- 5.1.7.2 The docking of ships, such as bulk freighters, related repair and service uses, loading, unloading and storage facilities and apparatus, navigational safety and training apparatus, sales and


Schedule 'C'

Official Plan
City of Owen Sound

Transportation Plan

May 2021 1:28,000

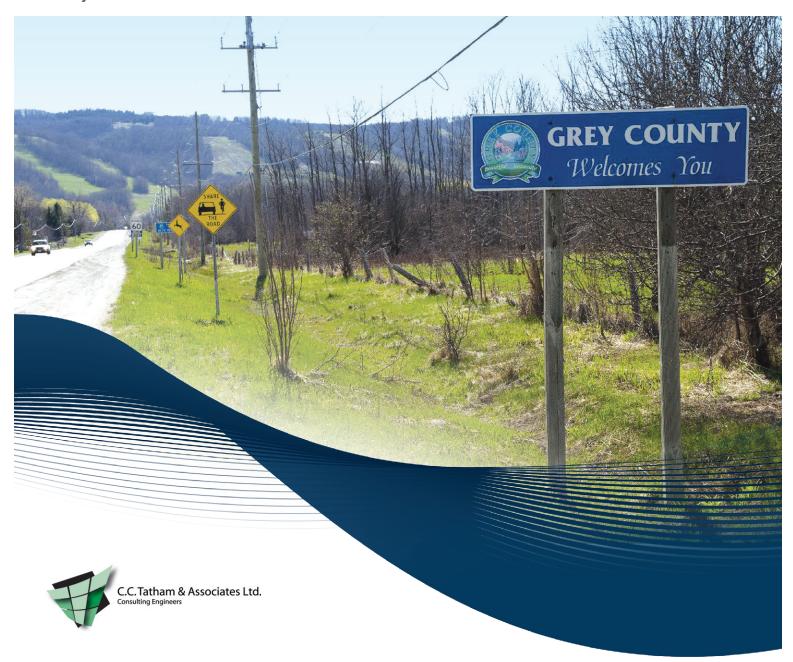
Existing Trails Existing Trails Outside of City Limits Bruce Trail Bruce Trail Preferred Future Route Bicycle Route Bicycle Route Outside of City Limits Snowmobile Trail Public Parking Lot City Limits

Publicly-Owned Property (City of Owen Sound and Grey Sauble Conservation Authority)

Official Plan

City of Owen Sound

Active Transportation Plan & Trails Master Plan



May 2021 1:28,000

GREY COUNTY TRANSPORTATION MASTER PLAN

Final Draft Report Project No. TR12-0311

COLE ENGINEERING GROUP LTD.

HEAD OFFICE

70 Valleywood Drive Markham, ON CANADA L3R 4T5

T. 905.940.6161 | 416.987.6161

F. 905.940.2064 | www.ColeEngineering.ca

GTA WEST OFFICE

150 Courtneypark Drive West, Unit C100, Mississauga, ON CANADA L5W 1Y6

T. 905.364.6161

F. 905.364.6162

4. Active Transportation

Active transportation refers to any form ofself-propelled, non-motorized mode of transportation that uses human energysuch as walking, cycling, in-line skating, jogging, skiing, etc. These modes contribute to sustainable transportation, help to promote a healthy lifestyle, reduce impact to the environment, and is recommended as a component of the overall transportation system for the Grey County TMP.

All-terrain vehicles (ATVs) and snowmobile are motorized, and thus not technically active transportation modes. However, in some cases, these modes share a network with cyclists, pedestrian and other active modes in Grey County. For this reason, the network of on-road and off-road trails for ATVs and snowmobiles and are included in this section of the report.

4.1. Benefits of Active Transportation

The benefits of walking, cycling and other non-motorized modes of transportation, provide the rationale for integrating active transportation into transportation systems. The development of active transportation strategies will help the County of Grey realize benefits that include:

- integrating healthy, physical activity into everyday travel fosters active lifestyles;
- reducing transportation costs;
- reducing traffic congestion and carbon dioxide (CO₂) emissions and conserving energy resources; and
- contributing to a more connected community.

The physical exercise gained from walking and cycling contributes to improved health and well-being. According to the World Health Organization (WHO), physical inactivity is the second highest health risk in developed countries and is associated with many tens of billions of dollars of healthcare costs. Active transportation can minimize the risk of coronary heart disease, strokes, diabetes and cancer. Research has indicated that active transportation can contribute to lower health care costs in the order of \$100 to \$400 per person⁷.

The benefits of cycling and walking trails extend beyond the transportation system and healthy living impacts. Cycling and walking as tourism activities can represent part of the economic strategy for the County. The development of cycling routes and promotion of use of the trail system within GreyCounty are opportunities to draw tourism activity to the County.

4.2. Active Transportation Studies in Grey County

4.2.1. Youth Moving Safely With Active Transportation

Due to the large, rural nature of Grey Bruce, transportation is regularly identified as a major barrier for individuals of all ages⁸. The *Youth Moving Safely with Active Transportation Report* (2011) stated that

_

⁷Source: National Cooperative Highway Research Program Report 552

⁸Hanover/Walkerton Active Transportation Committee – Youth Moving Safely with Active Transportation (2011)

The trail system also provides pedestrian connections. The Active Transportation Plan recommended that the City of Owen Sound focus their efforts and funding towards the construction of missing pedestrian and cyclist links and providing a more connected network. The Plan also advised that the City proactively address pedestrian safety needs and establish a program of reviews of pedestrian crossings either through on-going traffic operations studies or annual corridor reviews.

The Plan recognized that in order to support cycling as a viable and competitive mode of travel, there is a need to develop continuous and direct routes to cycling destinations (primary corridors) within the City and to neighbouring municipalities. Primary cycling routesprovide opportunities for commuting along continuous corridors and provide connections to key municipal destinations including, but not limited to²⁰:

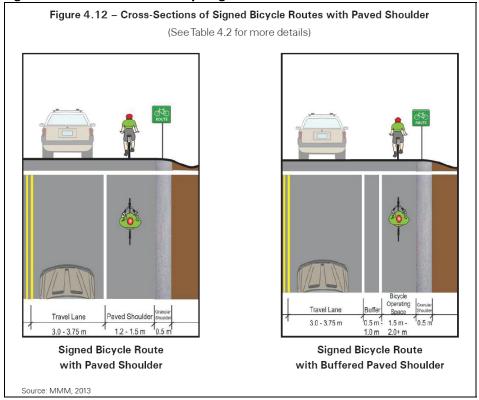
- Downtown (e.g. City Hall, Farmers' Market, Public Library, Tom Thomson Art Gallery);
- shopping centres (e.g. Heritage Place Shopping Centre);
- major offices (e.g. County of Grey Administration Office in the south of Owen Sound);
- institutional uses (e.g. Georgian College, Grey Bruce Regional Health Centre); and
- community uses (e.g. Harry Lumley Bayshore Community Centre, Victoria Park).

According to the City of Owen Sound Transportation Master Plan (September 2010), the bicycle and pedestrian networks as identified in the Official Plan have not been fully developed and implemented²⁰. Therefore, opportunities exist through the continuous development of the active transportation network to serve all communities within the City.

4.5. Relevant Guidelines for Active Transportation

4.5.1. Accessibility for Ontarians with Disabilities Act

Technical requirements for recreational trails and travel paths for pedestrians are identified under the Accessibility for Ontarians with Disabilities Act (AODA) Design of Public Spaces Standards (Accessibility Standards for the Built Environment). These technical requirements include design considerations for trails and amenities and pedestrian travel paths (sidewalks, ramps, stairs, curb ramp). Requirements for minimum widths, minimum heights, maximum slopes, edge protection, protective barriers, signage, ramps, curb ramps, rest areas, and accessible pedestrian signals must be met for all new construction and major changes to existing of public spaces by 2016.


4.5.2. Ontario Traffic Manual Book 18: Cycling Facilities

The Ontario Traffic Manual Book 18-CyclingFacilities (March 2014) is a primary reference document cycling facilities in Ontario. OTM Book 18 sets out the legal requirements, standards, best practices, procedures, and guidelines for the justification, planning, design, timing and operation of bicycle facilities and control measures. It applies to all facilities within the road right-of-way including on-road and off-road facilities. OTM Book 18 promotes a uniform approach to cycling facilities across the province.

Relevant to Grey County are guidelines design considerations for bike routes on rural roads with paved shoulders such as the typical cross-sections shown in **Figure 4-9**.

Figure 4-9: Cross-sections for Cycling Routes with Paved Shoulder

Source: OTM Book 18, Figure 4.12

4.5.3. Paved Shoulder Policy

In a predominantly rural area, paved shoulders are the preferred facility type accommodating cycling connections between rural communities. OTM Book 18 provides guidance on design considerations for paved shoulder cycling facilities.

As noted in **Section4.3.1**, Grey County adopted a Paved Shoulder Policy in 2009 that identified the primary function of a paved shoulder to be in support of non-motorized travel including bicycles and pedestrians, while reducing maintenance costs. The following procedures constitute part of the County's Paved Shoulder Policy²¹:

- When constructing new highway surfaces during County construction and spot improvement projects, the shoulder next to the driving lanes shall be paved on roads functionally classified as rural arterials regardless of traffic volume.
- The paved shoulder width shall be 1.2 metres to 2.0 metres on newly constructed roads.
- The paved shoulder can be reduced to a minimum of 0.5 metres as a reasonable compromise where it is not possible to achieve 1.2 metre widths due to constraints.
- The thickness of shoulder paving shall be based on the usual design considerations appropriate to each situation.

_

²¹ Grey County (2013): http://www.greycounty.ca/files/pagecontent/policy-roads-01-09-paved-shoul.pdf

- Shoulders may also be paved full width along County roads in suburban areas where closely spaced driveways and/or frequent turning movements cause excessive maintenance to gravelled shoulders.
- Shoulders should not be considered for paving where underground utilities and drainage structures require ongoing maintenance.
- When resurfacing existing County roads the same conditions shall apply providing the sub-base is structurally adequate and able to support the pavement.
- This policy does not apply to County roads within the limits of villages and towns or designated urban areas.
- Paved shoulders on shared boundary roads will require mutual agreement from each abutting County.
- All factors, financial and otherwise, will be considered on a per project basis for exceptions only;
 subject to a review and final approval by the Standing Committee.

In 2010, MTO constructed 66 kilometres of 1 metre wide paved shoulder on Highway 6 (from the Town of Tobermory to Mar) as part of the Provinces' Southern Highways Programs²².

4.5.4. Signage and Wayfinding

Signs should communicate various kinds of information to the cyclist, and can include:

- destination signs (nearest, intermediate or end destinations);
- direction (directional arrows);
- distance (to destination);
- regulatory signs;
- warning signs; and
- information signs.

Information and guidance relating to signs for roads and trails in Ontario is provided in the Ontario Traffic Manual (OTM). OTM Book 18 provides standards, best practices and practical guidance on the planning, design and operation of cycling facilities in Ontario. Generally, wayfinding signs should be located at locations such as entrances/exits, intersections, and at regular intervals along the routes, in order to provide cyclists with relevant information at decision points.

4.6. Active Transportation Strategy Summary

To complement the County of Grey Recreational Trails Strategy, which provides policy direction for trail uses in the County Forests, it is recommended that the County adopt formal County-wide active transportation strategies that serve to encourage walking, cycling, and other sustainable modes of transportation. Planning for active transportation is important to connect communities and offer alternative, healthier modes of transportation.

The County will benefit from a formal Active Transportation Master Plan. Provision of active transportation infrastructure and facilities is the first step to achieving a more sustainable transportation network. Initiatives and strategies to encourage walking and cycling should be

_

²² Complete Streets for Canada: http://www.completestreetsforcanada.ca/case_study/grey-and-bruce-counties

developed, and educational programs can be organized to inform residents and promote safety. The following initiatives are recommended for Grey County.

Develop policies through an **Active Transportation Master Plan**that:

- promote accessibility for all ages and abilities (e.g. ramps, pedestrian grade separations) through planning and design guidelines for new and retrofit infrastructure;
- promote enhanced pedestrian design features (e.g. street furniture, benches, streetscape features separating pedestrians from traffic) along pedestrian priority corridors;
- promote walk and cycle to school programs through outreach initiatives with school boards, teachers and parents;
- develop guidelines and policies for implementing supporting infrastructure such as parking lots at trailheads, rest stops, wayfinding signage, etc.;
- develop walkability guidelines for Grey and incorporates walkability audits into transportation and traffic studies;
- support changes to the Highway Traffic Act that permit cycling on the shoulder of a roadway; and
- include consultation and engagement with local municipalities, neighbouring municipalities/counties, Regional Tourism Organization 7 (RTO7) and active transportation stakeholders (i.e. cycling groups and recreational clubs/associations).

Develop a connected networkin Grey County by:

- establishing a network of inter-connected routes including connections between municipal centres, links to adjacent counties and cycling "loop routes" to accommodate recreational cycling including cycling organizations and tourist cycling activities (desire lines identifying potential connections are shown in Figure 4-10);
- continuing to utilize paved shoulders on County roads together with 'Share-the-road' signage;
- accommodatingsidewalks and bicycle lanes within urban areas on County roads between key origins and destinations;
- permitting ATV and/or snowmobile use along or across strategic sections of County roads to provide a more connected network of trails
- continuing to provide paths and trails based on current policies and programs that comply with AODA requirements; and
- establishing secure bicycle parking and shower/change room facilities at County facilities.

Other initiativesGrey County could consider include:

- holding annual/monthly events to promote walking and cycling, and to raise awareness in partnership with others including municipalities and County Police; and
- assigning a staff member for the proactive implementation of selected initiatives.

b) promote the use of active transportation and <u>transit</u> in and between residential, employment (including commercial and industrial) and institutional uses and other areas: c) focus major employment, commercial and other travel-intensive land uses on sites which are well served by <u>transit</u> where this exists or is to be developed, or designing these to facilitate the establishment of transit in the future;²³

The Provincial Policy Statement promotes transit-supportive land use policies and development. As the PPS forms an overarching policy framework for the province, regional and local land-use policies should be informed by and reflect the initiatives contained therein. As such, Grey County should support transit-supportive development within County and its municipalities through Official Plan land-use policies that encourage intensification and guided growth in settlement areas. Consideration should also be given to including transit evaluation and transit initiatives as part of the development approval process.

5.2. Public Transit

5.2.1. Public Transit Service Options

A brief summary of typical public transit services is provided below. It is noted that the discussion on rural transit focuses on road transit (i.e. buses).

5.2.1.1 Conventional Transit Service (Fixed Route/Fixed Schedule)

The conventional, or traditional, transit service consists of a fixed route and a fixed schedule. The transit vehicle travels along a pre-determined route making scheduled stops at pre-determined locations. The conventional service is most commonly offered in urban locations where population densities are relatively high and the service route is easily accessible by the users.

5.2.1.2 eDemand Responsive Service

Demand responsive transit is a flexible service in that there is no fixed route or schedule. Rather, the route and schedule are dictated by the user demands for any given day. The user calls the provider in advance to request a pick-up at the user's location for transport to the desired destination. The provider, in turn, will organize a vehicle to respond to the request. Depending on the notice required by the provider to arrange the requested service (i.e. 24-hours vs 48-hours vs real-time), the provider may co-ordinate a number of pick-ups by a single vehicle (this, of course, is also dependent on the requested destinations). In terms of route, the demand responsive service is extremely flexible and is largely dictated by the pick-up and destination requests by the user. In terms of schedule, the degree of flexibility is determined by the notice period required by the provider. As the required notice period is decreased (i.e. approaches real time), flexibility increases for the user and the service becomes more reflective of a typical taxi service.

²³2014 Provincial Policy Statement, Ministry of Municipal Affairs & Housing. Online: http://www.mah.gov.on.ca/AssetFactory.aspx?did=10463 [Accessed May 2014]

5.2.1.3 Conventional/Demand Responsive Hybrid Service

This type of service combines certain attributes of the conventional transit service with those of the demand-responsive transit service. The following are typical examples of a hybrid service.

Route Deviation Service

The route deviation service follows a specific route at scheduled times and includes scheduled stops or unscheduled stops. Upon pre-arranged user request, the transit vehicle is permitted to deviate from the route to pick-up or drop-off a passenger (unscheduled stop); however, the vehicle must re-enter the fixed route at the same point at which the initial deviation occurred (thus ensuring that the fixed route is followed in its entirety). In considering that the service must maintain its scheduled stops on-time, the extent to which route deviation occurs is controlled through the definition of a deviation area (deviation beyond this area will result in a disruption to the overall schedule). The route deviation service allows users to access the service at the scheduled stops (as per conventional transit) or via a request in advance for a route deviation (as per demand responsive transit).

Point Deviation Service

This service establishes scheduled stops at scheduled times along a route (the stops are generally locations where user demand would be high such as a town centre, shopping mall or employment district) but does not specify the route to be followed between the scheduled stops. The actual route between the stops is dictated by user requests made in advance for pick-up and drop off at prescheduled stops (pre-scheduled in that they are requested and arranged in advance by the user but are not regular stops and do not appear on the published schedule). Although the route is flexible and allows for pre-scheduled stops, service to the scheduled stops must remain on-time, or remain within a determined window of time, as per the established schedule.

The route and point deviation services are best utilized in areas where trips of the typical user are not time sensitive. Thus, in the event of a deviation from the route, the user does not associate the deviation with poor service.

5.2.1.4 Other Services

Many-to-Few Service

The many-to-few (or many-to-one) service provides scheduled service to and from a handful of clustered destinations or a single destination (these destinations are usually high demand destinations). The user requests service in advance to and from one of the scheduled destinations. The routes are thus wholly determined by the provider given the user requests for any given day. The destinations are not flexible, which is typical of a conventional transit service, whereas the ability for a user to call to arrange pick-up is typical of a demand responsive service.

Jitney Service (Fixed Route/Flexible Schedule)

A jitney service runs on a fixed route with no schedule. This type of service runs on a high frequency and requires high demand. A park-and-ride facility offering transportation between a remote parking lot and a high demand destination/origin (i.e. airport) is a typical example of a jitney service. These services are not usually associated with public transit as they are often privately owned and operated.

increasing each year (ridership has increased from 5,228 in 2010/11 to 5,983 in 2011/12 and is projected to reach 7,011 in 2012/13).

5.4. GreyCounty Transit Strategy

5.4.1. Rural Population

The population of GreyCounty, as per the 2011 census data, is 92,568 (this includes the population of Owen Sound - reported at 21,688). The census data further reports that 49,563 residents, or 54% of the total population, are considered to live in a rural setting. If the population of Owen Sound is removed from consideration (and assuming that 100% of the Owen Sound population is considered as urban), the percentage of those residents in Grey County living in a rural setting increases to 70%. This is an important reality when considering the feasibility of a county wide public transportation offering, as conventional approaches are not necessarily appropriate in rural settings.

5.4.2. Transportation Disadvantaged

Ready access to transportation is not a benefit that is available to all members of the general population. The level of access available to any one person may be determined by a variety of factors such as geographical location (i.e. rural vs urban), income level or age. Residents of rural areas, such as GreyCounty, typically have far fewer transportation options available to them than do residents of urban areas. This can generally be attributed to the economies of scale that are associated with the greater population densities and development levels of urban areas (high density population/development are desirable characteristics with respect to public transit and other transportation offerings). As such, residents of rural areas tend to be far more dependent on the private automobile. Where alternatives modes to the car are not available or are not considered feasible (i.e. long distances will preclude non-motorized modes such as walking or cycling), those who do not have ready access to a private automobile are disadvantaged with respect to transportation. Segments of the population that may be vulnerable to experiencing transportation disadvantage include:

- low income households/individuals;
- single parent families;
- disabled individuals;
- seniors; and
- youth.

The intent of identifying the vulnerable segments of the population is to identify the potential user groups in GreyCounty that would realize the greatest benefit from a transit offering. A review of the 2011 census data for GreyCounty reveals the following:

- 21.1% of the population was 65 years of age or older;
- 18.8% of the population was 17 years of age or younger; and
- 12.5% of census families are single parent families.

With respect to the age demographic in GreyCounty, the Ontario Ministry of Finance projects that the percentage of the population 70 years of age or older will rise from 14.6% in 2012 to 27.4% in 203628. This dramatic increase is consistent with ongoing conversations about the aging population in Canada. It is inevitable that as the population ages, the number of individuals requiring transportation assistance will also increase for this demographic.

The 2011 census data related to household income had not been released at the time of publication; however, the 2006 data indicated that 7.8% of the economic families in GreyCounty were considered to be low income households²⁹.

5.4.3. Public Transit Demand

Before implementing a rural transit service, the demand for such must be identified in order to determine whether a transit service can be supported, and, if so, where the service should be located. Based on the origin-destination data gathered for this study, the greatest volumes of daily trips occur between Owen Sound and the Township of Georgian Bluffs (2,460 trips) and between Owen Sound and the Municipality of Meaford (1,095 trips). By no means do these volumes indicate that a transit service can be supported, rather they provide a starting point for further research into where the demand may exist. As the only City within the County (and a hub of essential services and employment), it is considered logical to focus on connecting Owen Sound with the surrounding municipalities. However, further study is required to determine where demand for public transit exists, and whether such is significant enough to warrant service. It is recommended that the County co-ordinate with the municipalities and with those organizations currently providing transit service within the County to determine demand levels and the location of such. Trip surveys should also be circulated to the public to gather further demand data.

It is further noted that any study into demand should also attempt to identify the predominant market or user type. Seniors, youths, stay at home parents and commuters all have very different transportation needs. The type of transit service provided must suit the needs of its primary target market.

5.4.4. Public Transit Opportunities

Acknowledging the need for the County to identify the demand and market for public transit, the following opportunities are recommended as possible options in establishing new, or enhancing existing, transit services within the County.

5.4.4.1 Local Transit Service

Introducing new local conventional transit services within GreyCounty is not recommended at this time. The population levels and densities in the existing population centres are not such that would support a

-

²⁸Population by 5-yr age group, 2012-2036 – Reference scenario – Census divisions in Southwestern Ontario, Ontario Ministry of Finance, 2013.

²⁹Your Community in Profile: Grey, Bruce, Huron, Perth. Ontario Trillium Foundation, 2008.

stand-alone service. A recent study completed for the Town of Bradford-West Gwillimbury identified a desired population threshold of 30,000 people for establishing a public transit service³⁰. While public transit services have been introduced in municipalities with lower populations (Owen Sound, Collingwood, Midland), their respective populations far exceed the population levels of the individual urban centres/built-up areas within Grey County. Despite this reality, the County should begin laying the groundwork to ensure that future growth in the County occurs in a manner that would support local public transit initiatives in these population centres. In this respect the County should collaborate with the municipalities to develop transit supportive development strategies (i.e. intensification based landuse policies, identification of specific growth areas, transit-supportive design policies for future development, etc.).

In terms of existing local services within GreyCounty, Owen Sound provides the only scheduled public transit service. While there are examples of local public transit being expanded to include adjacent service areas (such expansion has occurred in Simcoe County between Collingwood and Wasaga Beach, with Collingwood expanding the Colltrans service into Wasaga Beach to provide a successful link between these communities, and expansion of the Barrie Transit service between Barrie and CFB Borden), expansion of the Owen Sound transit service is not considered realistic at this time. However, consideration should be given to minor scale route expansion that has the potential to increase ridership (i.e. providing service to the movie theatres on the Sunset Strip). The Barrie Transit extension connects the City of Barrie (a major urban centre) with CFB Borden (a major employer), thus providing a link between two high density nodes. The Colltrans expansion links Collingwood with Wasaga Beach, two service areas with respective populations in excess of 16,000 (for a total serviceable population of over 30,000). In addition, the population density along Collingwood-Wasaga Beach link is much higher than the municipalities surrounding Owen Sound. However, as Owen Sound is a major hub of essential services and employment, the County should initiate discussions with the City and the adjacent municipalities regarding the future potential role of Owen Sound Transit in connecting these municipalities with Owen Sound. Furthermore, the location of future development and designation of settlement areas within these municipalities (Georgian Bluffs, Meaford and Chatsworth) should consider the ability to connect to Owen Sound via public transit.

5.4.4.2 Inter-Municipal Transit

Inter-municipal connections within the County are recognized as an important element of the overall transit strategy for GreyCounty. Many of the primary settlement areas within GreyCounty do not have the essential services required by the general population. It is becoming more common for such services to be located in large urban settlements, such as Owen Sound. As such, access to these services can be expensive, as taxi services are often the only transportation option for those without access to a private automobile. Limited inter-municipal service is currently provided by Greyhound, a private bus operator. The existing service, however, is not an exclusive inter-municipal service but rather a segment of Greyhound's larger inter-city network. It is recommended that the County investigate the potential for private-public partnerships with private bus operators currently providing inter-city services in Ontario. While Greyhound is an obvious candidate to enter into such a partnership (given that Greyhound currently provides service in GreyCounty), it is recommended that the County define the scope of service to be offered and solicit proposals from several inter-city bus operators as part of the

_

³⁰County of Simcoe Transportation Master Plan, Earth Tech Canada Inc, Markham, ON. July 2008

competitive tendering process. The service offering should focus on connecting the primary settlement areas in GreyCounty with Owen Sound. To determine the type of service to be provided, discussions are recommended with the municipalities, current transit service providers (including the operators of specialized services within the County) and the public in order to identify demand and need.

5.4.4.3 Inter-Regional Transit

The opportunity to introduce inter-regional public transit is limited for GreyCounty. While there is interest from the public in a connection to GO Transit services in Barrie (specifically the rail service which ultimately serves the GTA), such would be difficult to implement given the location of Grey County and the resulting travel distance and travel time. It is therefore recommended that the County concentrate on establishing inter-regional routes on a smaller scale, such as the Collingwood-Blue Mountain link that was launched as a 6-month pilot project in November 2013. The Town of Collingwood, in partnership with the Town of the Blue Mountains and Blue Mountain Resort, expanded the Colltrans service into the Town of the Blue Mountains and Craigleith (thus providing a link between Grey County and Simcoe County). This route provides benefits for both counties as synergies already exist between Collingwood and Blue Mountain. It is understood that the 6-month pilot project has been extended through to August 2014.

The County should also initiate discussions with Metrolinx regarding the extension of Go Transit bus services from Orangeville into Grey County. While it is acknowledged that the introduction of a Go Transit service is not likely, the County should attempt to establish Metrolinx's threshold requirements for providing such service so as to inform the County's development policies (i.e. development policy should support transit initiatives).

5.4.4.4 Alternative Service

It is recommended that the County explore the possibility of coordinating and supporting alternative transit services within the County. The TROUT model discussed in this study provides the framework for a rural service which should be further investigated by the County. Grey County should enter into discussions with the surrounding municipalities and the operators of specialized services within the County (such as the Grey County Social Services van, SMART, HCSS, the Georgian HandiVan, etc.) to establish whether the existing transit services can be expanded or enhanced. Rather than begin a public transit offering from scratch, it is considered prudent to coordinate the existing services in order to realize potential operating efficiencies. Given that GreyCounty is not a transit operator, it is necessary to include those organizations that do offer transportation services and leverage their expertise and existing services to increase mobility and accessibility within the County.

5.4.4.5 Rail Transit

Regardless of public desire for passenger rail service within the County, the lack of rail infrastructure and low population density makes the realization of such highly unlikely. Passenger rail services, as convenient and desirable as they are, are costly to provide. The provision of GO service north of Toronto to the City of Barrie was not re-introduced until 2007, despite a large serviceable population along the line (Barrie, Newmarket, Aurora, Bradford, etc.) and existing infrastructure. The costs to install new railway tracks in addition to the annual costs to operate a passenger service into GreyCounty are

All of the above questions are dependent upon funding which will also dictate the timing of implementing the recommendations. Some of the recommendations are dependent upon another, that is, implementing some of the recommendations may have a bearing on how other recommendations are implemented from a funding and timing perspective.

A draft Implementation Action Plan has been included in **Appendix G** which identifies a potential action plan for implementing the current recommendations contained in the Transportation Master Plan. This is subject to change based on what Council decides to implement and based on which recommendations Council wishes to implement first. The below draft Action Plan can be used by Council and staff as a guide for implementing the recommendations in the Transportation Master Plan.

A summary of the recommendations and draft Action Plan is provided in the following sections.

11.1. Active Transportation Strategy

11.1.1. Recommendations

The recommendations of the transportation master plan are intended to meet the Goal #1 of the plan, to "Create a vision for all modes of transportation in Grey County, with a particular focus on encouraging active transportation options (cycling, walking/running)." To this end, the County will benefit from a formal Active Transportation Master Plan. Provision of active transportation infrastructure and facilities is the first step to achieving a more sustainable transportation network. Initiatives and strategies to encourage walking and cycling should be developed, and educational programs can be organized to inform residents and promote safety. The following initiatives are recommended for Grey County.

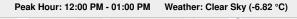
Develop policies through an **Active Transportation Master Plan** that:

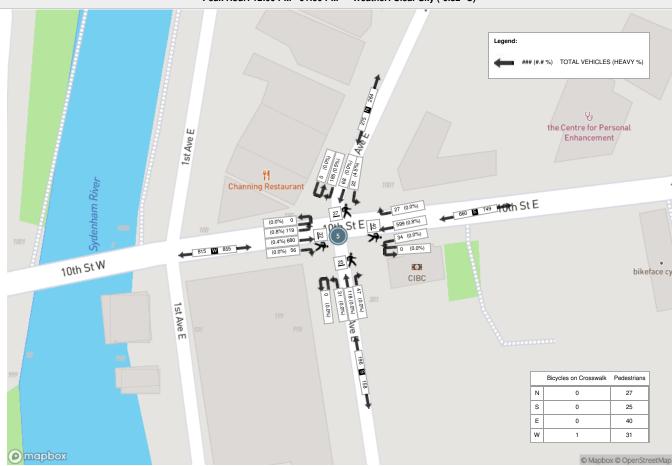
- promote accessibility for all ages and abilities (e.g. ramps, pedestrian grade separations) through planning and design guidelines for new and retrofit infrastructure;
- promote enhanced pedestrian design features (e.g. street furniture, benches, streetscape features separating pedestrians from traffic) along pedestrian priority corridors;
- promote walk and cycle to school programs through outreach initiatives with school boards, teachers and parents;
- develop guidelines and policies for implementing supporting infrastructure such as parking lots at trailheads, rest stops, wayfinding signage, etc.;
- develop walkability guidelines for Grey and incorporates walkability audits into transportation and traffic studies;
- support changes to the Highway Traffic Act that permit cycling on the shoulder of a roadway; and
- include consultation and engagement with local municipalities, neighbouring municipalities/counties, Regional Tourism Organization 7 (RTO7) and active transportation stakeholders (i.e. cycling groups and recreational clubs/associations).

Develop a **connected network**in Grey County by:

- establishing a network of inter-connected routes including connections between municipal centres, links to adjacent counties and cycling "loop routes" to accommodate recreational cycling including cycling organizations and tourist cycling activities;
- continuing to utilize paved shoulders on County roads together with 'Share-the-road' signage;

APPENDIX C


Traffic Data


Turning Movement Count Location Name: 2ND AVE E & HWY 6 Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias

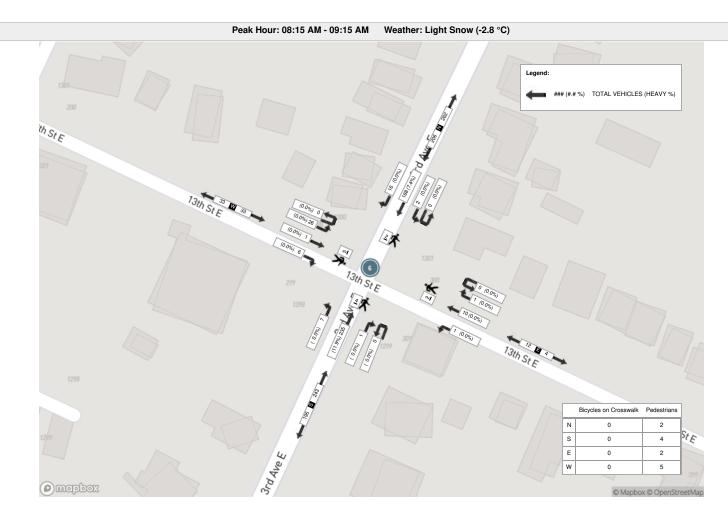
											Turr	ning Movement	Count (5 . 2ND	AVE E 8	& HWY 6	6)									
				N Approac						E Approa	ch E					S Approach 2ND AVE B						W Approac	ch E		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		. ,
12:00:00	44	18	8	0	6	70	8	150	13	0	12	171	13	28	5	0	4	46	11	173	25	0	7	209	496	
12:15:00	52	19	4	0	3	75	6	164	10	0	6	180	13	34	12	0	5	59	17	172	29	0	7	218	532	
12:30:00	44	15	5	0	8	64	5	148	7	0	14	160	10	25	6	0	10	41	16	165	27	0	7	208	473	
12:45:00	45	16	5	0	10	66	8	137	4	0	8	149	11	31	8	0	6	50	12	170	38	0	11	220	485	1986
13:00:00	33	18	2	0	3	53	5	161	5	0	9	171	8	17	8	0	6	33	9	193	33	0	8	235	492	1982
13:15:00	44	10	6	0	0	60	5	157	6	0	3	168	7	23	8	0	7	38	15	171	34	0	8	220	486	1936
13:30:00	37	20	3	0	5	60	8	155	7	0	13	170	12	33	6	0	3	51	11	180	28	0	6	219	500	1963
13:45:00	46	19	6	0	5	71	3	152	5	0	7	160	12	19	3	0	7	34	9	154	25	0	9	188	453	1931
14:00:00	44	20	6	0	9	70	8	137	5	0	16	150	10	22	5	0	6	37	11	165	32	0	10	208	465	1904
14:15:00	48	16	9	0	4	73	5	168	9	0	13	182	13	20	6	0	3	39	9	157	29	0	12	195	489	1907
14:30:00	53	21	3	0	7	77	10	150	8	0	7	168	17	19	9	0	5	45	11	138	26	0	8	175	465	1872
14:45:00	48	23	10	0	0	81	4	175	12	0	2	191	6	23	12	0	3	41	17	137	31	0	15	185	498	1917
15:00:00	47	10	4	0	5	61	6	152	7	0	4	165	8	20	8	0	6	36	12	167	36	0	10	215	477	1929
15:15:00	22	21	5	0	10	48	10	176	7	0	9	193	7	18	6	0	4	31	5	150	25	0	9	180	452	1892
15:30:00	51	22	2	0	4	75	7	161	15	0	15	183	12	24	16	0	7	52	6	157	19	0	2	182	492	1919
15:45:00	36	11	6	0	8	53	5	174	2	0	6	181	10	11	7	0	1	28	9	163	35	0	0	207	469	1890
16:00:00	50	17	3	0	6	70	4	131	9	0	11	144	8	20	19	0	4	47	5	162	30	0	3	197	458	1871
16:15:00	44	8	5	0	14	57	9	155	5	0	14	169	10	20	8	0	3	38	11	152	29	0	4	192	456	1875
16:30:00	47	17	9	0	6	73	6	135	5	0	6	146	7	12	7	0	1	26	9	125	32	0	6	166	411	1794
16:45:00	54	13	12	0	3	79	5	137	10	0	2	152	6	17	9	0	2	32	11	134	39	0	6	184	447	1772
17:00:00	35	18	6	0	3	59	3	113	8	0	6	124	6	25	11	0	5	42	9	132	32	0	11	173	398	1712
17:15:00	25	10	5	0	3	40	7	150	5	0	4	162	6	14	5	0	2	25	13	128	25	0	5	166	393	1649
17:30:00	27	13	3	0	5	43	5	148	6	0	3	159	4	13	5	0	1	22	9	103	29	0	5	141	365	1603
17:45:00	26	8	4	0	5	38	8	133	6	0	7	147	3	11	3	0	0	17	7	123	42	0	3	172	374	1530
18:00:00	32	9	5	0	1	46	4	112	5	0	2	121	7	23	3	0	6	33	6	125	40	0	3	171	371	1503
18:15:00	23	5	8	0	6	36	5	113	7	0	6	125	7	14	6	0	1	27	4	111	47	0	4	162	350	1460
18:30:00	25	5	0	0	2	30	4	90	8	0	0	102	4	22	2	0	0	28	9	100	65	0	3	174	334	1429
18:45:00	17	9	3	0	5	29	6	98	9	0	1	113	7	19	4	0	0	30	12	117	74	0	1	203	375	1430
Grand Total	1099	411	147	0	146	1657	169	4032	205	0	206	4406	244	577	207	0	108	1028	285	4124	956	0	183	5365	12456	-
Approach%	66.3%	24.8%	8.9%	0%		-	3.8%	91.5%	4.7%	0%		-	23.7%	56.1%	20.1%	0%		-	5.3%	76.9%	17.8%	0%		-	-	-
Totals %	8.8%	3.3%	1.2%	0%		13.3%	1.4%	32.4%	1.6%	0%		35.4%	2%	4.6%	1.7%	0%		8.3%	2.3%	33.1%	7.7%	0%		43.1%	-	-
Heavy	3	3	1	0		-	2	36	0	0		-	0	1	0	0		-	0	30	4	0		-	-	-
Heavy %	0.3%	0.7%	0.7%	0%		-	1.2%	0.9%	0%	0%		-	0%	0.2%	0%	0%		-	0%	0.7%	0.4%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		÷	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

Turning Movement Count Location Name: 2ND AVE E & HWY 6 Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias

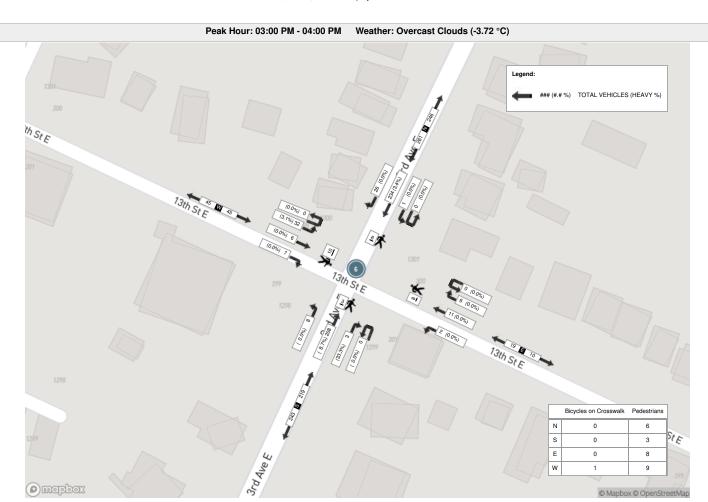
								Pe	ak Hou	ır: 12:0	0 PM - 0	1:00 PM We	ather: C	Clear Sk	y (-6.82	2 °C)									
Start Time				N Approac	eh E					E Approa	ich E					S Approac	eh E					W Approac	ch E		Int. To (15 mi
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
12:00:00	44	18	8	0	6	70	8	150	13	0	12	171	13	28	5	0	4	46	11	173	25	0	7	209	496
12:15:00	52	19	4	0	3	75	6	164	10	0	6	180	13	34	12	0	5	59	17	172	29	0	7	218	532
12:30:00	44	15	5	0	8	64	5	148	7	0	14	160	10	25	6	0	10	41	16	165	27	0	7	208	473
12:45:00	45	16	5	0	10	66	8	137	4	0	8	149	11	31	8	0	6	50	12	170	38	0	11	220	485
Grand Total	185	68	22	0	27	275	27	599	34	0	40	660	47	118	31	0	25	196	56	680	119	0	32	855	1986
Approach%	67.3%	24.7%	8%	0%		-	4.1%	90.8%	5.2%	0%		-	24%	60.2%	15.8%	0%		-	6.5%	79.5%	13.9%	0%		-	
Totals %	9.3%	3.4%	1.1%	0%		13.8%	1.4%	30.2%	1.7%	0%		33.2%	2.4%	5.9%	1.6%	0%		9.9%	2.8%	34.2%	6%	0%		43.1%	-
PHF	0.89	0.89	0.69	0		0.92	0.84	0.91	0.65	0		0.92	0.9	0.87	0.65	0		0.83	0.82	0.98	0.78	0		0.97	-
Heavy	1	0	1	0		2	0	5	0	0		5	0	0	0	0		0	0	3	1	0		4	
Heavy %	0.5%	0%	4.5%	0%		0.7%	0%	0.8%	0%	0%		0.8%	0%	0%	0%	0%		0%	0%	0.4%	0.8%	0%		0.5%	-
Lights	184	67	21	0		272	27	594	34	0		655	47	118	31	0		196	56	677	118	0		851	
Lights %	99.5%	98.5%	95.5%	0%		98.9%	100%	99.2%	100%	0%		99.2%	100%	100%	100%	0%		100%	100%	99.6%	99.2%	0%		99.5%	-
Single-Unit Trucks	1	0	1	0		2	0	3	0	0		3	0	0	0	0		0	0	1	1	0		2	-
Single-Unit Trucks %	0.5%	0%	4.5%	0%		0.7%	0%	0.5%	0%	0%		0.5%	0%	0%	0%	0%		0%	0%	0.1%	0.8%	0%		0.2%	-
Buses	0	0	0	0		0	0	2	0	0		2	0	0	0	0		0	0	2	0	0		2	-
Buses %	0%	0%	0%	0%		0%	0%	0.3%	0%	0%		0.3%	0%	0%	0%	0%		0%	0%	0.3%	0%	0%		0.2%	-
Bicycles on Road	0	1	0	0		1	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	1.5%	0%	0%		0.4%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	27	-	-	-	-	-	40	-	-	-	-	-	25	-	-	-	-	-	31	-	-
Pedestrians%	-	-	-	-	21.8%		-	-	-	-	32.3%		-	-	-	-	20.2%		-	-	-	-	25%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-
cycles on Crosswalk%	-	-	-		0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0.8%		-

Turning Movement Count Location Name: 3RD AVE E / GREY RD 15 & 13TH ST E Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

									T	urning	Movem	ent Count (6 . 3	BRD AV	E E / GI	REY R	D 15 & 1	13TH S	T E)								
				N Approac	ch E					E Approact	h					S Approa	ach 0 15					W Approac	ch E		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
06:00:00	0	4	0	0	0	4	0	0	0	0	0	0	0	11	0	0	0	11	0	0	2	0	0	2	17	
06:15:00	0	5	0	0	0	5	1	0	1	0	0	2	0	16	0	0	0	16	0	0	3	0	0	3	26	
06:30:00	1	10	0	0	0	11	0	0	0	0	2	0	0	21	1	0	0	22	0	0	6	0	0	6	39	
06:45:00	1	15	0	0	0	16	0	0	0	0	0	0	0	29	3	0	0	32	1	0	3	0	0	4	52	134
07:00:00	2	31	1	0	0	34	0	0	1	0	3	1	0	35	0	0	2	35	1	0	0	0	0	1	71	188
07:15:00	1	15	0	0	0	16	1	0	0	0	1	1	1	22	0	0	0	23	0	0	6	0	0	6	46	208
07:30:00	2	24	0	0	1	26	0	1	0	0	4	1	1	19	2	0	0	22	0	2	2	0	0	4	53	222
07:45:00	6	29	1	0	0	36	2	1	0	0	0	3	0	21	2	0	0	23	0	0	9	0	0	9	71	241
08:00:00	1	18	0	0	0	19	1	0	0	0	0	1	0	32	4	0	0	36	0	0	5	0	2	5	61	231
08:15:00	4	45	0	0	1	49	0	1	0	0	0	1	0	46	1	0	3	47	1	0	4	0	4	5	102	287
08:30:00	4	39	0	0	0	43	0	5	1	0	1	6	1	70	4	0	1	75	0	0	5	0	0	5	129	363
08:45:00	5	62	2	0	1	69	1	3	0	0	0	4	0	75	1	0	0	76	3	1	10	0	0	14	163	455
09:00:00	3	42	0	0	0	45	0	1	0	0	1	1	0	44	1	0	0	45	2	0	7	0	1	9	100	494
09:15:00	4	37	0	0	1	41	0	2	0	0	1	2	0	38	0	0	0	38	1	0	5	0	1	6	87	479
09:30:00	2	36	0	0	0	38	1	2	1	0	1	4	0	33	0	0	0	33	0	0	6	0	1	6	81	431
09:45:00	4	35	0	0	0	39	1	1	0	0	0	2	0	38	0	0	0	38	1	2	5	0	2	8	87	355
***BREAK	***						-						-						-						-	
15:00:00	6	45	0	0	0	51	1	1	0	0	0	2	1	58	4	0	0	63	1	0	11	0	1	12	128	
15:15:00	9	65	0	0	4	74	2	5	0	0	7	7	1	49	2	0	2	52	3	3	4	0	2	10	143	
15:30:00	8	60	1	0	2	69	2	3	1	0	1	6	0	53	1	0	1	54	3	1	6	0	6	10	139	
15:45:00	3	64	0	0	0	67	1	2	1	0	0	4	1	48	1	0	0	50	0	2	11	0	1	13	134	544
16:00:00	4	63	1	0	0	68	0	2	2	0	2	4	2	35	1	0	0	38	2	0	11	0	0	13	123	539
16:15:00	8	49	0	0	4	57	4	1	0	0	5	5	0	50	1	0	6	51	1	2	11	0	4	14	127	523
16:30:00	8	48	1	0	0	57	0	1	0	0	2	1	2	61	0	0	1	63	1	0	9	0	3	10	131	515
16:45:00	8	46	0	0	1	54	3	2	0	0	1	5	1	44	0	0	1	45	2	0	7	0	1	9	113	494
17:00:00	9	53	0	0	1	62	2	3	1	0	3	6	2	69	2	0	0	73	1	1	8	0	2	10	151	522
17:15:00	10	46	0	0	1	56	0	1	0	0	1	1	0	43	0	0	1	43	2	0	5	0	1	7	107	502
17:30:00	6	46	1	0	0	53	0	1	0	0	0	1	0	37	0	0	0	37	2	2	3	0	0	7	98	469
17:45:00	4	45	0	0	1	49	0	1	0	0	3	1	0	41	0	0	2	41	2	0	4	0	2	6	97	453
18:00:00	5	37	1	0	3	43	1	0	1	0	0	2	0	36	3	0	0	39	1	0	3	0	10	4	88	390
18:15:00	10	35	0	0	2	45	0	0	0	0	3	0	1	38	0	0	0	39	1	0	2	0	3	3	87	370
18:30:00	7	40	0	0	0	47	0	1	0	0	0	1	0	28	3	0	0	31	0	1	2	0	0	3	82	354
18:45:00	5	25	0	0	0	30	0	0	1	0	0	1	2	24	1	0	1	27	0	0	2	0	1	2	60	317
rand Total	150	1214	9	0	23	1373	24	41	11	0	42	76	16	1264	38	0	21	1318	32	17	177	0	48	226	2993	-
pproach%	10.9%	88.4%	0.7%	0%		-	31.6%	53.9%	14.5%	0%		-	1.2%	95.9%	2.9%	0%		-	14.2%	7.5%	78.3%	0%		-	-	-
Totals %	5%	40.6%	0.3%	0%		45.9%	0.8%	1.4%	0.4%	0%		2.5%	0.5%	42.2%	1.3%	0%		44%	1.1%	0.6%	5.9%	0%		7.6%	-	-
Heavy	2	39	0	0		-	0	0	0	0		-	1	77	1	0		-	0	0	2	0		-	-	-
Heavy %	1.3%	3.2%	0%	0%		-	0%	0%	0%	0%		-	6.3%	6.1%	2.6%	0%		-	0%	0%	1.1%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

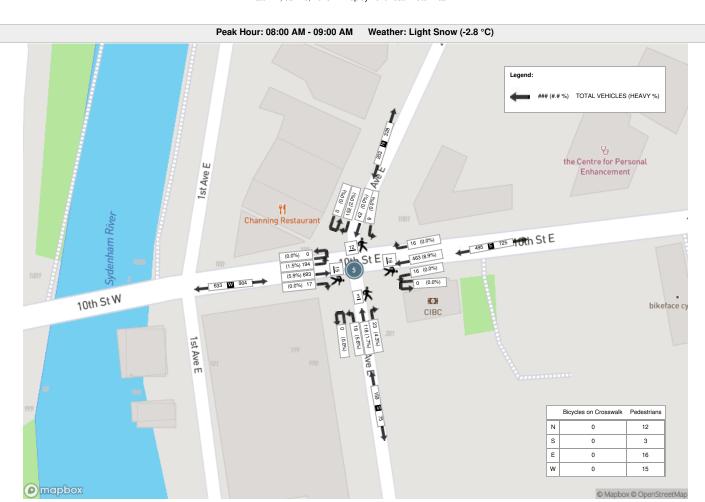

Turning Movement Count Location Name: 3RD AVE E / GREY RD 15 & 13TH ST E Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

								P	eak Ho	ur: 08:1	5 AM -	09:15 AM W	eather:	Light S	now (-	2.8 °C)									
Start Time				N Approa	ach E E					E Approa	ch E					S Approa	nch) 15					W Approa	ch E		Int. Tota (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:15:00	4	45	0	0	1	49	0	1	0	0	0	1	0	46	1	0	3	47	1	0	4	0	4	5	102
08:30:00	4	39	0	0	0	43	0	5	1	0	1	6	1	70	4	0	1	75	0	0	5	0	0	5	129
08:45:00	5	62	2	0	1	69	1	3	0	0	0	4	0	75	1	0	0	76	3	1	10	0	0	14	163
09:00:00	3	42	0	0	0	45	0	1	0	0	1	1	0	44	1	0	0	45	2	0	7	0	1	9	100
Grand Total	16	188	2	0	2	206	1	10	1	0	2	12	1	235	7	0	4	243	6	1	26	0	5	33	494
Approach%	7.8%	91.3%	1%	0%		-	8.3%	83.3%	8.3%	0%		-	0.4%	96.7%	2.9%	0%		-	18.2%	3%	78.8%	0%		-	-
Totals %	3.2%	38.1%	0.4%	0%		41.7%	0.2%	2%	0.2%	0%		2.4%	0.2%	47.6%	1.4%	0%		49.2%	1.2%	0.2%	5.3%	0%		6.7%	-
PHF	0.8	0.76	0.25	0		0.75	0.25	0.5	0.25	0		0.5	0.25	0.78	0.44	0		0.8	0.5	0.25	0.65	0		0.59	-
Heavy	0	14	0			14	0	0	0	0		0	0	28	0	0		28	0	0	0	0		0	
Heavy %	0%	7.4%	0%	0%		6.8%	0%	0%	0%	0%		0%	0%	11.9%	0%	0%		11.5%	0%	0%	0%	0%		0%	-
Lights	16	174	2			192	1	10	1	0		12	1	206	7	0		214	6	1	26	0		33	
Lights %	100%	92.6%	100%	0%		93.2%	100%	100%	100%	0%		100%	100%	87.7%	100%	0%		88.1%	100%	100%	100%	0%		100%	-
Single-Unit Trucks	0	3	0	0		3	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Single-Unit Trucks %	0%	1.6%	0%	0%		1.5%	0%	0%	0%	0%		0%	0%	0.4%	0%	0%		0.4%	0%	0%	0%	0%		0%	-
Buses	0	11	0	0		11	0	0	0	0		0	0	27	0	0		27	0	0	0	0		0	-
Buses %	0%	5.9%	0%	0%		5.3%	0%	0%	0%	0%		0%	0%	11.5%	0%	0%		11.1%	0%	0%	0%	0%		0%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0.4%	0%	0%		0.4%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	2	-	-	-	-	-	2	-	-	-	-	-	4	-	-	-	-	-	5	-	-
Pedestrians%	-	-	-	-	15.4%		-	-	-	-	15.4%		-	-	-	-	30.8%		-	-	-	-	38.5%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-		0%		-

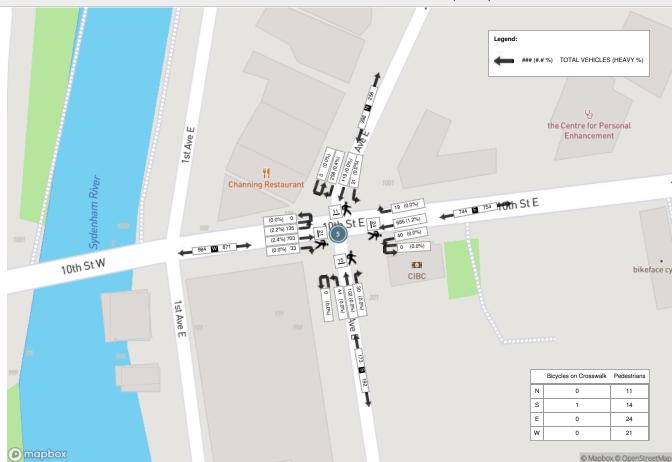

Turning Movement Count Location Name: 3RD AVE E / GREY RD 15 & 13TH ST E Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

								Pea	k Hour:	03:00 F	PM - 04:	00 PM Weatl	her: Ove	rcast C	louds	(-3.72 °C	C)								
Start Time				N Approa	ich E					E Approac	ch E					S Approa	ch 15					W Approac	ch E		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
15:00:00	6	45	0	0	0	51	1	1	0	0	0	2	1	58	4	0	0	63	1	0	11	0	1	12	128
15:15:00	9	65	0	0	4	74	2	5	0	0	7	7	1	49	2	0	2	52	3	3	4	0	2	10	143
15:30:00	8	60	1	0	2	69	2	3	1	0	1	6	0	53	1	0	1	54	3	1	6	0	6	10	139
15:45:00	3	64	0	0	0	67	1	2	1	0	0	4	1	48	1	0	0	50	0	2	11	0	1	13	134
Grand Total	26	234	1	0	6	261	6	11	2	0	8	19	3	208	8	0	3	219	7	6	32	0	10	45	544
Approach%	10%	89.7%	0.4%	0%		-	31.6%	57.9%	10.5%	0%		-	1.4%	95%	3.7%	0%		-	15.6%	13.3%	71.1%	0%		-	-
Totals %	4.8%	43%	0.2%	0%		48%	1.1%	2%	0.4%	0%		3.5%	0.6%	38.2%	1.5%	0%		40.3%	1.3%	1.1%	5.9%	0%		8.3%	-
PHF	0.72	0.9	0.25	0		0.88	0.75	0.55	0.5	0		0.68	0.75	0.9	0.5	0		0.87	0.58	0.5	0.73	0		0.87	-
Heavy	0	8	0	0		8	0	0	0	0		0	1	18	0	0		19	0	0	1	0		1	
Heavy %	0%	3.4%	0%	0%		3.1%	0%	0%	0%	0%		0%	33.3%	8.7%	0%	0%		8.7%	0%	0%	3.1%	0%		2.2%	-
Lights	26	225	1	0		252	6	11	2	0		19	2	190	8	0		200	7	6	31	0		44	
Lights %	100%	96.2%	100%	0%		96.6%	100%	100%	100%	0%		100%	66.7%	91.3%	100%	0%		91.3%	100%	100%	96.9%	0%		97.8%	-
Single-Unit Trucks	0	1	0	0		1	0	0	0	0		0	0	6	0	0		6	0	0	0	0		0	-
Single-Unit Trucks %	0%	0.4%	0%	0%		0.4%	0%	0%	0%	0%		0%	0%	2.9%	0%	0%		2.7%	0%	0%	0%	0%		0%	-
Buses	0	7	0	0		7	0	0	0	0		0	1	12	0	0		13	0	0	1	0		1	-
Buses %	0%	3%	0%	0%		2.7%	0%	0%	0%	0%		0%	33.3%	5.8%	0%	0%		5.9%	0%	0%	3.1%	0%		2.2%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	1	0	0		1	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0.4%	0%	0%		0.4%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	6	-	-	-	-	-	8	-	-	-	-	-	3	-	-	-	-	-	9	-	-
Pedestrians%	-	-	-	-	22.2%		-	-	-	-	29.6%		-	-	-	-	11.1%		-	-	-	-	33.3%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	3.7%		-

Turning Movement Count Location Name: 2ND AVE E & HWY 6 Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias


											Turi	ning Movement	Count (5 . 2ND	AVE E 8	k HWY 6	5)									
				N Approa	ch E					E Approa 10TH ST	ch E					S Approach 2ND AVE B	1					W Approac	ch E		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
06:00:00	5	3	0	0	0	8	2	14	2	0	0	18	1	1	0	0	0	2	1	53	9	0	2	63	91	'
06:15:00	7	1	1	0	0	9	1	21	2	0	3	24	4	4	1	0	1	9	2	67	6	0	0	75	117	
06:30:00	6	4	0	0	2	10	0	34	4	0	2	38	3	3	1	0	1	7	2	94	17	0	2	113	168	
06:45:00	11	1	1	0	2	13	3	36	4	0	0	43	3	6	1	0	1	10	0	106	27	0	4	133	199	575
07:00:00	19	3	1	0	0	23	1	71	5	0	0	77	10	7	2	0	2	19	1	84	23	0	1	108	227	711
07:15:00	20	3	2	0	2	25	1	84	4	0	3	89	3	7	3	0	1	13	4	118	36	0	3	158	285	879
07:30:00	31	7	2	0	0	40	3	96	5	0	1	104	2	12	4	0	0	18	1	146	30	0	4	177	339	1050
07:45:00	26	11	1	0	3	38	2	106	1	0	1	109	2	21	3	0	1	26	5	166	48	0	0	219	392	1243
08:00:00	33	3	0	0	2	36	2	100	5	0	2	107	6	14	5	0	0	25	2	144	46	0	2	192	360	1376
08:15:00	32	12	2	0	0	46	2	117	4	0	5	123	5	26	4	0	1	35	4	164	42	0	3	210	414	1505
08:30:00	51	13	4	0	7	68	8	119	4	0	4	131	7	39	2	0	0	48	8	183	53	0	4	244	491	1657
08:45:00	36	14	3	0	3	53	4	127	3	0	5	134	5	39	7	0	2	51	3	202	53	0	6	258	496	1761
09:00:00	28	8	4	0	3	40	1	84	13	0	2	98	5	31	5	0	2	41	6	124	45	0	6	175	354	1755
09:15:00	37	9	2	0	2	48	9	96	4	0	3	109	3	16	2	0	5	21	10	140	31	0	7	181	359	1700
09:30:00	32	8	5	0	0	45	3	96	3	0	5	102	9	17	6	0	3	32	7	128	29	0	7	164	343	1552
09:45:00	41	22	3	0	3	66	2	93	6	0	9	101	7	28	8	0	5	43	18	150	32	0	4	200	410	1466
BREAK	(
15:00:00	42	25	3	0	1	70	6	178	5	0	7	189	11	15	8	0	5	34	14	147	29	0	7	190	483	
15:15:00	50	16	2	0	4	68	9	192	5	0	10	206	9	27	12	0	3	48	13	159	27	0	6	199	521	
15:30:00	82	28	3	0	7	113	7	161	8	0	11	176	10	36	9	0	13	55	5	164	29	0	7	198	542	
15:45:00	59	13	5	0	1	77	7	170	12	0	3	189	4	27	12	0	4	43	13	151	33	0	5	197	506	2052
16:00:00	86	24	10	0	2	120	7	173	8	0	7	188	11	19	8	0	6	38	7	168	29	0	4	204	550	2119
16:15:00	53	25	5	0	2	83	7	180	7	0	5	194	8	20	10	0	6	38	6	177	29	0	5	212	527	2125
16:30:00	78	37	5	0	3	120	3	150	14	0	9	167	9	35	6	0	3	50	12	165	33	0	7	210	547	2130
16:45:00	68	28	4	0	5	100	5	184	7	0	5	196	7	21	5	0	2	33	6	178	31	0	2	215	544	2168
17:00:00	59	29	7	0	1	95	4	171	12	0	5	187	6	26	20	0	4	52	9	183	42	0	7	234	568	2186
17:15:00	51	23	7	0	2	81	8	173	5	0	5	186	6	12	4	0	3	22	13	170	37	0	5	220	509	2168
17:30:00	41	18	7	0	5	66	4	142	9	0	2	155	7	21	8	0	7	36	14	158	23	0	5	195	452	2073
17:45:00	35	12	3	0	5	50	4	141	10	0	6	155	10	13	8	0	7	31	9	145	35	0	7	189	425	1954
18:00:00	40	13	6	0	4	59	2	164	9	0	5	175	3	15	7	0	0	25	8	135	30	0	6	173	432	1818
18:15:00	38	8	5	0	5	51	8	136	7	0	6	151	7	5	5	0	2	17	10	135	23	0	5	168	387	1696
18:30:00	27	9	4	0	0	40	4	133	3	0	7	140	9	14	10	0	1	33	7	107	23	0	2	137	350	1594
18:45:00	35	15	3	0	2	53	5	137	9	0	0	151	10	5	6	0	7	21	13	99	30	0	5	142	367	1536
Grand Total	1259	445	110	0	78	1814	134	3879	199	0	138	4212	202	582	192	0	98	976	233	4510	1010	0	140	5753	12755	-
Approach%	69.4%	24.5%	6.1%	0%		-	3.2%	92.1%	4.7%	0%		-	20.7%	59.6%	19.7%	0%		-	4.1%	78.4%	17.6%	0%		-	-	-
Totals %	9.9%	3.5%	0.9%	0%		14.2%	1.1%	30.4%	1.6%	0%		33%	1.6%	4.6%	1.5%	0%		7.7%	1.8%	35.4%	7.9%	0%		45.1%	-	-
Heavy	18	3	2	0		-	2	162	1	0		-	1	6	2	0		-	2	154	15	0		-	-	-
Heavy % Bicycles	1.4%	0.7%	1.8%	0%		-	1.5%	4.2%	0.5%	0%		-	0.5%	1%	1%	0%		-	0.9%	3.4%	1.5%	0%		-	-	-
Bicycles Bicycle %	-		-	-		-	-		-			-						-	-		-	-		-		
Dicycle /o	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	

Turning Movement Count Location Name: 2ND AVE E & HWY 6 Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias


								Pe	ak Ho	ur: 08:0	0 AM - 0	9:00 AM We	ather: L	ight Sn	ow (-2.8	3 °C)									
Start Time				N Approa	ch E					E Approa	ach FE					S Approact	n					W Approa 10TH ST	ch E		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:00:00	33	3	0	0	2	36	2	100	5	0	2	107	6	14	5	0	0	25	2	144	46	0	2	192	360
08:15:00	32	12	2	0	0	46	2	117	4	0	5	123	5	26	4	0	1	35	4	164	42	0	3	210	414
08:30:00	51	13	4	0	7	68	8	119	4	0	4	131	7	39	2	0	0	48	8	183	53	0	4	244	491
08:45:00	36	14	3	0	3	53	4	127	3	0	5	134	5	39	7	0	2	51	3	202	53	0	6	258	496
Grand Total	152	42	9	0	12	203	16	463	16	0	16	495	23	118	18	0	3	159	17	693	194	0	15	904	1761
Approach%	74.9%	20.7%	4.4%	0%		-	3.2%	93.5%	3.2%	0%		-	14.5%	74.2%	11.3%	0%		-	1.9%	76.7%	21.5%	0%		-	-
Totals %	8.6%	2.4%	0.5%	0%		11.5%	0.9%	26.3%	0.9%	0%		28.1%	1.3%	6.7%	1%	0%		9%	1%	39.4%	11%	0%		51.3%	-
PHF	0.75	0.75	0.56	0		0.75	0.5	0.91	8.0	0		0.92	0.82	0.76	0.64	0		0.78	0.53	0.86	0.92	0		0.88	-
Heavy	3	0	0			3	0	41	0			41	1	2	1	0		4	0	41	3	0		44	
Heavy %	2%	0%	0%	0%		1.5%	0%	8.9%	0%	0%		8.3%	4.3%	1.7%	5.6%	0%		2.5%	0%	5.9%	1.5%	0%		4.9%	-
Lights	149	41	9	0		199	16	422	16	0		454	22	116	17	0		155	17	652	191	0		860	
Lights %	98%	97.6%	100%	0%		98%	100%	91.1%	100%	0%		91.7%	95.7%	98.3%	94.4%	0%		97.5%	100%	94.1%	98.5%	0%		95.1%	-
Single-Unit Trucks	0	0	0	0		0	0	11	0	0		11	1	1	0	0		2	0	10	2	0		12	-
Single-Unit Trucks %	0%	0%	0%	0%		0%	0%	2.4%	0%	0%		2.2%	4.3%	0.8%	0%	0%		1.3%	0%	1.4%	1%	0%		1.3%	-
Buses	3	0	0	0		3	0	27	0	0		27	0	1	1	0		2	0	27	1	0		28	-
Buses %	2%	0%	0%	0%		1.5%	0%	5.8%	0%	0%		5.5%	0%	0.8%	5.6%	0%		1.3%	0%	3.9%	0.5%	0%		3.1%	-
Articulated Trucks	0	0	0	0		0	0	3	0	0		3	0	0	0	0		0	0	4	0	0		4	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.6%	0%	0%		0.6%	0%	0%	0%	0%		0%	0%	0.6%	0%	0%		0.4%	-
Bicycles on Road	0	1	0	0		1	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	2.4%	0%	0%		0.5%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	12	-	-	-	-	-	16	-	-	-	-	-	3	-	-	-	-	-	15	-	-
Pedestrians%	-	-	-	-	26.1%		-	-	-	-	34.8%		-	-	-	-	6.5%		-	-	-	-	32.6%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	=	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-

Turning Movement Count Location Name: 2ND AVE E & HWY 6 Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

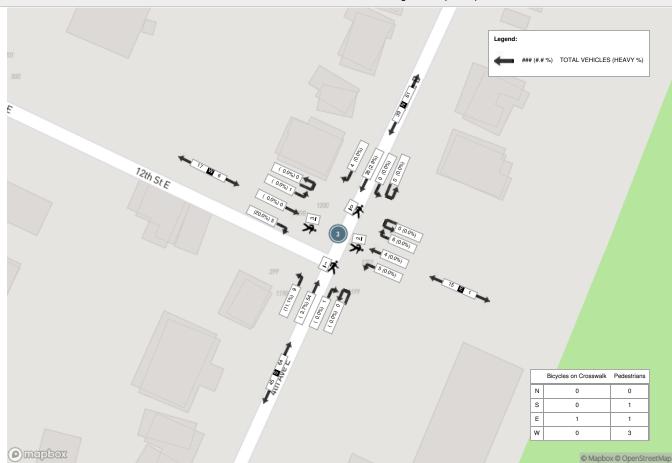
								Peak	Hour:	04:15 P	M - 05:1	5 PM Weath	er: Ove	rcast C	louds (-3.72 °C	;)								
Start Time				N Approa 2ND AVE	ch E					E Approa	ich E					S Approac	ch E					W Approa 10TH ST	ch E		Int. Tot (15 mir
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
16:15:00	53	25	5	0	2	83	7	180	7	0	5	194	8	20	10	0	6	38	6	177	29	0	5	212	527
16:30:00	78	37	5	0	3	120	3	150	14	0	9	167	9	35	6	0	3	50	12	165	33	0	7	210	547
16:45:00	68	28	4	0	5	100	5	184	7	0	5	196	7	21	5	0	2	33	6	178	31	0	2	215	544
17:00:00	59	29	7	0	1	95	4	171	12	0	5	187	6	26	20	0	4	52	9	183	42	0	7	234	568
Grand Total	258	119	21	0	11	398	19	685	40	0	24	744	30	102	41	0	15	173	33	703	135	0	21	871	2186
Approach%	64.8%	29.9%	5.3%	0%	<u> </u>	-	2.6%	92.1%	5.4%	0%		-	17.3%	59%	23.7%	0%		-	3.8%	80.7%	15.5%	0%		-	
Totals %	11.8%	5.4%	1%	0%		18.2%	0.9%	31.3%	1.8%	0%		34%	1.4%	4.7%	1.9%	0%		7.9%	1.5%	32.2%	6.2%	0%		39.8%	-
PHF	0.83	0.8	0.75	0		0.83	0.68	0.93	0.71	0		0.95	0.83	0.73	0.51	0		0.83	0.69	0.96	0.8	0		0.93	-
Heavy	1	0	0	0		1	0	8	0	0		8	0	0	0	0		0	0	17	3	0		20	
Heavy %	0.4%	0%	0%	0%		0.3%	0%	1.2%	0%	0%		1.1%	0%	0%	0%	0%		0%	0%	2.4%	2.2%	0%		2.3%	-
Lights	257	118	21	0		396	19	677	40	0		736	30	101	41	0		172	33	685	132	0		850	
Lights %	99.6%	99.2%	100%	0%		99.5%	100%	98.8%	100%	0%		98.9%	100%	99%	100%	0%		99.4%	100%	97.4%	97.8%	0%		97.6%	-
Single-Unit Trucks	1	0	0	0		1	0	4	0	0		4	0	0	0	0		0	0	9	3	0		12	-
Single-Unit Trucks %	0.4%	0%	0%	0%		0.3%	0%	0.6%	0%	0%		0.5%	0%	0%	0%	0%		0%	0%	1.3%	2.2%	0%		1.4%	-
Buses	0	0	0	0		0	0	3	0	0		3	0	0	0	0		0	0	8	0	0		8	-
Buses %	0%	0%	0%	0%		0%	0%	0.4%	0%	0%		0.4%	0%	0%	0%	0%		0%	0%	1.1%	0%	0%		0.9%	-
Articulated Trucks	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	0	0	0	0		0	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.1%	0%	0%		0.1%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	1	0	0		1	0	0	0	0		0	0	1	0	0		1	0	1	0	0		1	-
Bicycles on Road %	0%	0.8%	0%	0%		0.3%	0%	0%	0%	0%		0%	0%	1%	0%	0%		0.6%	0%	0.1%	0%	0%		0.1%	-
Pedestrians	-	-	-	-	11	-	-	-	-	-	24	-	-	-	-	-	14	-	-	-	-	-	21	-	-
Pedestrians%	-	-	-	-	15.5%		-	-	-	-	33.8%		-	-	-	-	19.7%		-	-	-	-	29.6%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	0	-	-
icycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	1.4%		-	-	-	-	0%		-

Peak Hour: 04:15 PM - 05:15 PM Weather: Overcast Clouds (-3.72 °C)

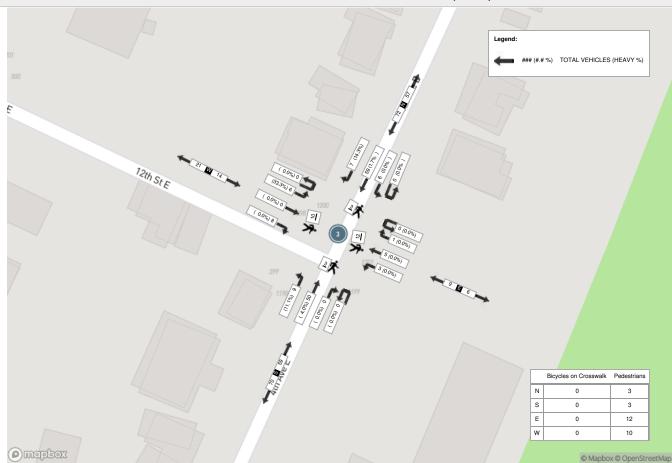
Turning Movement Count Location Name: 4TH AVE E & 12TH ST E Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

										7	Γurning	Movement Co	unt (3 .	4TH A\	/E E & -	12TH S	TE)									
				N Approac	ch E				EA	E Approac	h WAY					S Approac	ch E				,	W Approach	1		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
06:00:00	1	2	0	0	0	3	0	0	0	0	0	0	1	1	1	0	0	3	0	0	0	0	0	0	6	
06:15:00	0	0	0	0	0	0	1	0	0	0	1	1	0	0	0	0	0	0	1	0	0	0	0	1	2	
06:30:00	1	1	0	0	0	2	1	0	0	0	1	1	0	2	0	0	0	2	0	0	1	0	0	1	6	
06:45:00	0	1	0	0	0	1	0	1	0	0	1	1	0	5	2	0	0	7	0	0	0	0	0	0	9	23
07:00:00	0	6	0	0	0	6	1	0	0	0	0	1	0	4	0	0	0	4	1	0	1	0	0	2	13	30
07:15:00	0	3	0	0	0	3	2	0	1	0	0	3	0	6	0	0	0	6	3	0	0	0	0	3	15	43
07:30:00	0	4	0	0	0	4	0	0	0	0	0	0	0	5	5	0	1	10	1	0	2	0	2	3	17	54
07:45:00	0	7	0	0	0	7	0	0	2	0	2	2	0	9	4	0	0	13	1	0	0	0	1	1	23	68
08:00:00	0	6	0	0	0	6	0	1	1	0	0	2	0	9	3	0	0	12	1	1	1	0	1	3	23	78
08:15:00	2	5	0	0	0	7	6	2	1	0	0	9	0	12	4	0	1	16	0	0	0	0	1	0	32	95
08:30:00	0	10	0	0	0	10	0	0	3	0	1	3	0	19	2	0	0	21	3	0	0	0	1	3	37	115
08:45:00	1	12	0	0	0	13	0	0	0	0	0	0	1	13	1	0	0	15	1	0	1	0	0	2	30	122
09:00:00	1	8	0	0	0	9	0	2	1	0	1	3	0	10	2	0	0	12	1	0	0	0	1	1	25	124
09:15:00	1	9	0	0	0	10	0	0	0	0	1	0	0	8	2	0	0	10	2	0	2	0	0	4	24	116
09:30:00	0	12	0	0	0	12	2	1	2	0	2	5	0	7	1	0	0	8	1	1	1	0	2	3	28	107
09:45:00	0	11	1	0	0	12	0	0	1	0	0	1	0	15	4	0	0	19	2	0	0	0	1	2	34	111
***BREAK																										
15:00:00	3	16	1	0	1	20	1	0	2	0	3	3	0	11	6	0	1	17	4	0	0	0	1	4	44	
15:15:00	3	13	0	0	1	16	0	1	0	0	6	1	0	12	1	0	1	13	1	0	2	0	3	3	33 47	
15:45:00	0	16 14	3	0	0	19	0	3	0	0	3	3	0	20 7	1	0	0	21	2	0	2	0	3	3	30	154
16:00:00	3	8	0	0	0	11	0	0	0	0	0	0	1	13	1	0	0	15	2	0	2	0	1	4	30	140
16:15:00	1	13	1	0	0	15	2	2	1	0	0	5	0	8	1	0	0	9	1	0	1	0	0	2	31	138
16:30:00	2	10	1	0	0	13	2	0	1	0	1	3	2	14	3	0	0	19	0	0	2	0	1	2	37	128
16:45:00	2	6	1	0	0	9	2	1	1	0	1	4	1	17	5	0	0	23	2	1	0	0	0	3	39	137
17:00:00	1	7	2	0	0	10	0	0	1	0	3	1	2	11	3	0	1	16	4	0	1	0	0	5	32	139
17:15:00	3	5	1	0	0	9	0	0	1	0	1	1	0	17	1	1	0	19	3	0	2	0	0	5	34	142
17:30:00	1	9	3	0	0	13	0	3	1	0	0	4	1	5	1	0	0	7	1	1	2	0	0	4	28	133
17:45:00	3	6	0	0	0	9	0	0	1	0	1	1	2	5	2	0	1	9	0	1	2	0	0	3	22	116
18:00:00	2	3	1	0	0	6	1	1	2	0	2	4	1	8	3	0	0	12	2	0	0	0	0	2	24	108
18:15:00	2	5	0	0	0	7	1	1	0	0	2	2	1	10	2	0	0	13	1	1	0	0	1	2	24	98
18:30:00	0	3	1	0	1	4	0	2	0	0	3	2	0	10	3	0	1	13	1	1	0	0	1	2	21	91
18:45:00	3	9	1	0	0	13	1	1	0	0	1	2	1	8	0	0	1	9	0	1	1	0	2	2	26	95
Grand Total	37	240	19	0	4	296	23	23	24	0	37	70	14	301	65	1	9	381	43	8	28	0	26	79	826	-
Approach%	12.5%	81.1%	6.4%	0%		-	32.9%	32.9%	34.3%	0%		-	3.7%	79%	17.1%	0.3%		-	54.4%	10.1%	35.4%	0%		-	-	-
Totals %	4.5%	29.1%	2.3%	0%		35.8%	2.8%	2.8%	2.9%	0%		8.5%	1.7%	36.4%	7.9%	0.1%		46.1%	5.2%	1%	3.4%	0%		9.6%	-	-
Heavy	2	2	0	0		-	0	0	0	0		-	0	5	5	0		-	2	0	2	0		-	-	-
Heavy %	5.4%	0.8%	0%	0%		-	0%	0%	0%	0%		-	0%	1.7%	7.7%	0%		-	4.7%	0%	7.1%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

Turning Movement Count Location Name: 4TH AVE E & 12TH ST E Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias


								I	Peak Ho	our: 08:	15 AM -	09:15 AM W	eather:	Light S	now (-2	2.8 °C)									
Start Time				N Appro	ach E E				E	E Approa	ch EWAY					S Approa 4TH AVE	nch E					W Approa 12TH ST	ch E		Int. T (15 n
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:15:00	2	5	0	0	0	7	6	2	1	0	0	9	0	12	4	0	1	16	0	0	0	0	1	0	3
08:30:00	0	10	0	0	0	10	0	0	3	0	1	3	0	19	2	0	0	21	3	0	0	0	1	3	3
08:45:00	1	12	0	0	0	13	0	0	0	0	0	0	1	13	1	0	0	15	1	0	1	0	0	2	3
09:00:00	1	8	0	0	0	9	0	2	1	0	1	3	0	10	2	0	0	12	1	0	0	0	1	1	2
Grand Total	4	35	0	0	0	39	6	4	5	0	2	15	1	54	9	0	1	64	5	0	1	0	3	6	12
Approach%	10.3%	89.7%	0%	0%		-	40%	26.7%	33.3%	0%		-	1.6%	84.4%	14.1%	0%		-	83.3%	0%	16.7%	0%		-	
Totals %	3.2%	28.2%	0%	0%		31.5%	4.8%	3.2%	4%	0%		12.1%	0.8%	43.5%	7.3%	0%		51.6%	4%	0%	0.8%	0%		4.8%	
PHF	0.5	0.73	0	0		0.75	0.25	0.5	0.42	0		0.42	0.25	0.71	0.56	0		0.76	0.42	0	0.25	0		0.5	
Heavy	0	1	0	0		1	0	0	0	0		0	0	2	1	0		3	1	0	0	0		1	
Heavy %	0%	2.9%	0%	0%		2.6%	0%	0%	0%	0%		0%	0%	3.7%	11.1%	0%		4.7%	20%	0%	0%	0%		16.7%	
Lights	4	34	0	0		38	6	4	5	0		15	1	51	8	0		60	4	0	1	0		5	
Lights %	100%	97.1%	0%	0%		97.4%	100%	100%	100%	0%		100%	100%	94.4%	88.9%	0%		93.8%	80%	0%	100%	0%		83.3%	
Single-Unit Trucks	0	1	0	0		1	0	0	0	0		0	0	0	1	0		1	1	0	0	0		1	
Single-Unit Trucks %	0%	2.9%	0%	0%		2.6%	0%	0%	0%	0%		0%	0%	0%	11.1%	0%		1.6%	20%	0%	0%	0%		16.7%	
Buses	0	0	0	0		0	0	0	0	0		0	0	2	0	0		2	0	0	0	0		0	
Buses %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	3.7%	0%	0%		3.1%	0%	0%	0%	0%		0%	
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	1.9%	0%	0%		1.6%	0%	0%	0%	0%		0%	
Pedestrians	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	1	-	-	-	-	-	3	-	
Pedestrians%	-	-	-		0%		-	-	-	-	16.7%		-	-	-	-	16.7%		-	-		-	50%		
icycles on Crosswalk	-	-	-	-	0	=	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	0	-	
cycles on Crosswalk%	_	_	_	_	0%		_	_	_	_	16.7%		_	_			0%		_	_		_	0%		

Turning Movement Count Location Name: 4TH AVE E & 12TH ST E Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

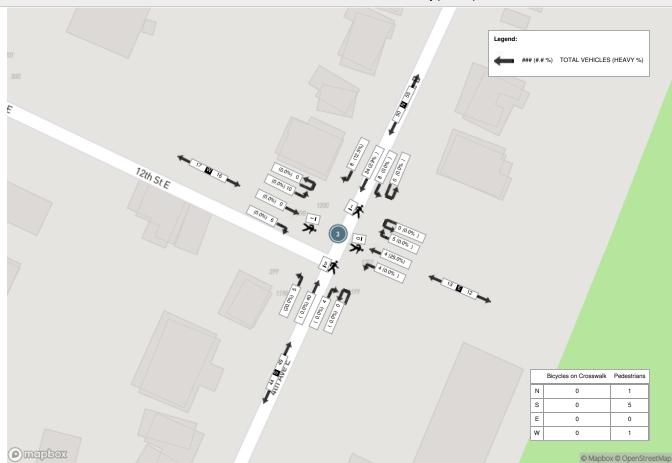

								reak			1 - 04:00	PM Weathe	i. Ovei	cast Cl	ouus (-										
Start Time				N Approa 4TH AVE	ch E				E	E Approac AST DRIVE	ch WAY					S Approac 4TH AVE	e h E					W Approa 12TH ST	ch E		Int. To (15 mi
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
15:00:00	3	16	1	0	1	20	1	0	2	0	3	3	0	11	6	0	1	17	4	0	0	0	1	4	44
15:15:00	3	13	0	0	1	16	0	1	0	0	6	1	0	12	1	0	1	13	1	0	2	0	3	3	33
15:30:00	1	16	2	0	1	19	0	3	0	0	3	3	0	20	1	0	0	21	2	0	2	0	3	4	47
15:45:00	0	14	3	0	0	17	0	1	1	0	0	2	0	7	1	0	1	8	1	0	2	0	3	3	30
Grand Total	7	59	6	0	3	72	1	5	3	0	12	9	0	50	9	0	3	59	8	0	6	0	10	14	154
Approach%	9.7%	81.9%	8.3%	0%		-	11.1%	55.6%	33.3%	0%		-	0%	84.7%	15.3%	0%		-	57.1%	0%	42.9%	0%		-	-
Totals %	4.5%	38.3%	3.9%	0%		46.8%	0.6%	3.2%	1.9%	0%		5.8%	0%	32.5%	5.8%	0%		38.3%	5.2%	0%	3.9%	0%		9.1%	-
PHF	0.58	0.92	0.5	0		0.9	0.25	0.42	0.38	0		0.75	0	0.63	0.38	0		0.7	0.5	0	0.75	0		0.88	-
Heavy	1	1	0	0		2	0	0	0	0		0	0	2	1	0		3	0	0	2	0		2	
Heavy %	14.3%	1.7%	0%	0%		2.8%	0%	0%	0%	0%		0%	0%	4%	11.1%	0%		5.1%	0%	0%	33.3%	0%		14.3%	-
Lights	6	58	6	0		70	1	5	3	0		9	0	48	8	0		56	8	0	4	0		12	
Lights %	85.7%	98.3%	100%	0%		97.2%	100%	100%	100%	0%		100%	0%	96%	88.9%	0%		94.9%	100%	0%	66.7%	0%		85.7%	-
Single-Unit Trucks	1	1	0	0		2	0	0	0	0		0	0	1	1	0		2	0	0	2	0		2	-
Single-Unit Trucks %	14.3%	1.7%	0%	0%		2.8%	0%	0%	0%	0%		0%	0%	2%	11.1%	0%		3.4%	0%	0%	33.3%	0%		14.3%	-
Buses	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Buses %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	2%	0%	0%		1.7%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	3	-	-	-	-	-	12	-	-	-	-	-	3	=	-	-	-	-	10	-	-
Pedestrians%	-	-	-	-	10.7%		-	-	-	-	42.9%		-	-	-	-	10.7%		-	-	-	-	35.7%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Pieveles on Crosswelk®					00/						00/						00/						00/		

Crozier & Associates SUITE 301 40 HURON STREET COLLINGWOOD ONTARIO, L9Y 4R3 CANADA

Peak Hour: 08:15 AM - 09:15 AM Weather: Light Snow (-2.8 °C)

Peak Hour: 03:00 PM - 04:00 PM Weather: Overcast Clouds (-3.72 °C)

Turning Movement Count Location Name: 4TH AVE E & 12TH ST E Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias


										•	Turning	g Movement Co	unt (3 .	4TH A	/E E & 1	12TH ST	E)									
				N Approac	ch E				E	E Approac	ch WAY					S Approac	:h E					W Approac	ch E		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
12:00:00	3	5	0	0	0	8	0	0	1	0	0	1	1	11	2	0	0	14	1	1	2	0	0	4	27	
12:15:00	1	7	1	0	0	9	0	3	2	0	0	5	0	12	1	0	1	13	1	0	2	0	1	3	30	
12:30:00	1	5	1	0	0	7	2	0	1	0	0	3	0	12	1	0	2	13	2	1	1	0	1	4	27	
12:45:00	1	4	1	0	0	6	0	4	1	0	0	5	0	15	0	0	0	15	4	0	1	0	0	5	31	115
13:00:00	0	5	0	0	0	5	1	1	0	0	1	2	0	4	3	0	0	7	0	0	1	0	2	1	15	103
13:15:00	0	8	1	0	0	9	0	0	0	0	3	0	2	5	1	0	0	8	0	1	2	0	1	3	20	93
13:30:00	0	9	0	0	0	9	1	1	0	0	1	2	1	8	3	0	0	12	2	1	1	0	0	4	27	93
13:45:00	1	9	3	0	0	13	2	2	0	0	0	4	1	14	3	0	4	18	0	0	1	0	1	1	36	98
14:00:00	4	6	2	0	1	12	1	0	0	0	0	1	2	8	1	0	0	11	2	0	3	0	0	5	29	112
14:15:00	2	9	2	0	0	13	0	1	0	0	0	1	1	7	0	0	1	8	3	0	3	0	0	6	28	120
14:30:00	1	10	1	0	0	12	2	1	4	0	0	7	0	11	1	0	0	12	1	0	3	0	0	4	35	128
14:45:00	0	6	0	0	0	6	0	0	0	1	1	1	0	7	4	0	0	11	1	0	1	0	1	2	20	112
15:00:00	3	8	0	0	0	11	1	0	1	0	2	2	1	6	3	0	0	10	0	0	0	0	0	0	23	106
15:15:00	0	13	0	0	0	13	0	0	0	0	0	0	2	12	2	0	0	16	1	0	2	0	0	3	32	110
15:30:00	2	7	3	0	1	12	2	0	2	0	0	4	2	7	1	0	0	10	1	0	2	0	0	3	29	104
15:45:00	1	6	0	0	0	7	0	1	0	0	0	1	2	7	3	0	0	12	0	2	0	0	0	2	22	106
16:00:00	2	5	1	0	0	8	0	0	0	0	1	0	0	9	2	0	0	11	1	0	0	0	0	1	20	103
16:15:00	0	6	1	0	2	7	1	1	0	0	4	2	0	16	1	0	2	17	0	0	1	0	2	1	27	98
16:30:00	1	7	0	0	0	8	2	1	0	0	0	3	0	11	1	0	0	12	0	0	0	0	3	0	23	92
16:45:00	2	8	0	0	0	10	0	1	0	0	1	1	0	10	0	0	0	10	0	0	1	0	1	1	22	92
17:00:00	0	7	2	0	0	9	0	1	0	0	2	1	0	10	0	0	0	10	2	0	3	0	1	5	25	97
17:15:00	0	8	2	0	0	10	0	0	1	0	1	1	0	5	6	0	0	11	0	0	1	0	4	1	23	93
17:30:00	1	10	1	0	2	12	0	0	0	0	2	0	1	7	2	0	1	10	2	0	1	0	0	3	25	95
17:45:00	3	9	0	0	0	12	2	0	0	0	0	2	0	7	1	0	1	8	1	0	2	0	0	3	25	98
18:00:00	1	5	0	0	0	6	2	0	0	0	0	2	0	3	0	0	0	3	3	0	2	0	0	5	16	89
18:15:00	1	4	2	0	0	7	0	1	0	0	0	1	0	8	0	0	0	8	1	0	1	0	2	2	18	84
18:30:00	0	6	0	0	0	6	1	0	1	0	0	2	0	8	2	0	0	10	1	1	1	0	1	3	21	80
18:45:00	4	9	0	0	0	13	0	0	0	0	0	0	0	8	3	0	0	11	0	0	0	0	0	0	24	79
Grand Total	35	201	24	0	6	260	20	19	14	1	19	54	16	248	47	0	12	311	30	7	38	0	21	75	700	-
Approach%	13.5%	77.3%	9.2%	0%		-	37%	35.2%	25.9%	1.9%		-	5.1%	79.7%	15.1%	0%		-	40%	9.3%	50.7%	0%		-	-	-
Totals %	5%	28.7%	3.4%	0%		37.1%	2.9%	2.7%	2%	0.1%		7.7%	2.3%	35.4%	6.7%	0%		44.4%	4.3%	1%	5.4%	0%		10.7%	-	-
Heavy	3	2	0	0		-	0	1	0	0		-	0	4	5	0		-	2	1	2	0		-	-	-
Heavy %	8.6%	1%	0%	0%		-	0%	5.3%	0%	0%		-	0%	1.6%	10.6%	0%		-	6.7%	14.3%	5.3%	0%		-	-	-
Bicycles	-	-	-	-		=	-	-	-	-		-	-	-	-	-		=	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-				

Turning Movement Count Location Name: 4TH AVE E & 12TH ST E Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias

								Pe	ak Hou	r: U1:45	PIVI - C)2:45 PM We	amer: (Jiear Si	ky (-6.82	2 -0)										
Start Time	N Approach 4TH AVE E								EA	E Approac	h WAY					S Approac 4TH AVE	e h E			W Approach 12TH ST E						
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total		
13:45:00	1	9	3	0	0	13	2	2	0	0	0	4	1	14	3	0	4	18	0	0	1	0	1	1	36	
14:00:00	4	6	2	0	1	12	1	0	0	0	0	1	2	8	1	0	0	11	2	0	3	0	0	5	29	
14:15:00	2	9	2	0	0	13	0	1	0	0	0	1	1	7	0	0	1	8	3	0	3	0	0	6	28	
14:30:00	1	10	1	0	0	12	2	1	4	0	0	7	0	11	1	0	0	12	1	0	3	0	0	4	35	
Grand Total	8	34	8	0	1	50	5	4	4	0	0	13	4	40	5	0	5	49	6	0	10	0	1	16	128	
Approach%	16%	68%	16%	0%		-	38.5%	30.8%	30.8%	0%		-	8.2%	81.6%	10.2%	0%		-	37.5%	0%	62.5%	0%		-	-	
Totals %	6.3%	26.6%	6.3%	0%		39.1%	3.9%	3.1%	3.1%	0%		10.2%	3.1%	31.3%	3.9%	0%		38.3%	4.7%	0%	7.8%	0%		12.5%	-	
PHF	0.5	0.85	0.67	0		0.96	0.63	0.5	0.25	0		0.46	0.5	0.71	0.42	0		0.68	0.5	0	0.83	0		0.67	-	
Heavy	1	1		0		2	0	1	0	0		1	0	0	1	0		1	0	0	0	0		0		
Heavy %	12.5%	2.9%	0%	0%		4%	0%	25%	0%	0%		7.7%	0%	0%	20%	0%		2%	0%	0%	0%	0%		0%	-	
Lights	7	32	8	0		47	5	3	4	0		12	4	40	4	0		48	6	0	10	0		16	-	
Lights %	87.5%	94.1%	100%	0%		94%	100%	75%	100%	0%		92.3%	100%	100%	80%	0%		98%	100%	0%	100%	0%		100%	-	
Single-Unit Trucks	1	1	0	0		2	0	1	0	0		1	0	0	1	0		1	0	0	0	0		0	-	
Single-Unit Trucks %	12.5%	2.9%	0%	0%		4%	0%	25%	0%	0%		7.7%	0%	0%	20%	0%		2%	0%	0%	0%	0%		0%	-	
Buses	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-	
Buses %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-	
Bicycles on Road	0	1	0	0		1	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-	
Bicycles on Road %	0%	2.9%	0%	0%		2%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-	
Pedestrians	-	-	-	-	1	-	-	-	-	-	0	-	-	-	-	-	5	-	-	-	-	-	1	-	-	
Pedestrians%	-	-	-	-	14.3%		-	-	-	-	0%		-	-	-	-	71.4%		-	-	-	-	14.3%		-	
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-		-	-	-	0	-	-	-	-	-	0	-	-	
Ricycles on Crosswalk%					0%				_	_	0%						0%						0%			

Crozier & Associates SUITE 301 40 HURON STREET COLLINGWOOD ONTARIO, L9Y 4R3 CANADA

Peak Hour: 01:45 PM - 02:45 PM Weather: Clear Sky (-6.82 °C)

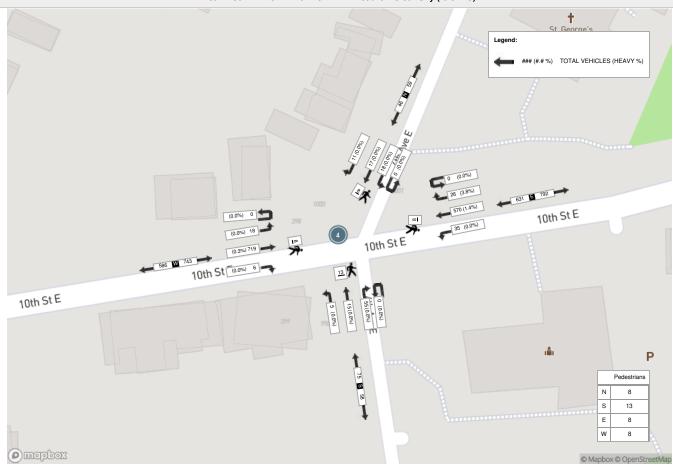
Turning Movement Count Location Name: 3RD AVE E / GREY RD 15 & 13TH ST E Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias

												•			REY R			•								
Otract Time	N Approach 3RD AVE E									E Approact	h					S Approa	ach 0 15				,	Int. Total (15 min)	Int. Total (1 hr)			
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
12:00:00	4	37	1	0	0	42	3	0	0	0	0	3	0	41	0	0	0	41	0	0	3	0	1	3	89	
12:15:00	5	40	0	0	0	45	0	2	1	0	0	3	1	42	2	0	0	45	0	0	4	0	0	4	97	
12:30:00	8	38	0	0	0	46	0	0	0	0	0	0	1	39	0	0	0	40	0	0	3	0	7	3	89	
12:45:00	8	46	0	0	0	54	1	0	1	0	1	2	0	62	2	0	0	64	1	0	8	0	2	9	129	404
13:00:00	6	42	2	0	0	50	0	1	0	0	2	1	0	40	0	0	1	40	0	3	6	0	3	9	100	415
13:15:00	3	41	1	0	0	45	1	1	1	0	1	3	1	38	0	0	0	39	0	0	4	0	3	4	91	409
13:30:00	5	53	0	0	1	58	0	2	1	0	0	3	1	39	0	0	0	40	0	2	6	0	3	8	109	429
13:45:00	13	52	0	0	0	65	2	0	0	0	0	2	0	33	0	0	0	33	0	2	4	0	0	6	106	406
14:00:00	9	49	0	0	0	58	0	4	1	0	1	5	0	48	2	0	0	50	0	0	10	0	0	10	123	429
14:15:00	4	47	1	0	0	52	0	0	0	0	0	0	1	30	1	0	3	32	4	5	4	0	6	13	97	435
14:30:00	9	49	0	0	0	58	1	1	0	0	1	2	1	37	1	0	3	39	1	0	6	0	0	7	106	432
14:45:00	11	49	1	0	0	61	1	1	0	0	3	2	0	52	0	0	0	52	0	0	6	0	5	6	121	447
15:00:00	9	41	0	0	0	50	2	0	1	0	3	3	0	54	1	0	0	55	3	0	5	0	0	8	116	440
15:15:00	4	53	0	0	0	57	1	0	2	0	1	3	1	32	1	0	0	34	2	2	14	0	0	18	112	455
15:30:00	6	44	0	0	0	50	0	0	1	0	1	1	0	35	0	0	0	35	0	0	4	0	2	4	90	439
15:45:00	13	42	0	0	0	55	1	0	1	0	2	2	1	19	3	0	1	23	1	1	7	0	0	9	89	407
16:00:00	7	44	1	0	0	52	0	1	0	0	1	1	0	34	1	0	0	35	1	1	6	0	1	8	96	387
16:15:00	9	42	0	0	0	51	1	0	1	0	0	2	1	37	1	0	0	39	0	1	8	0	0	9	101	376
16:30:00	3	42	0	0	4	45	0	0	0	0	4	0	1	29	2	0	1	32	0	0	4	0	0	4	81	367
16:45:00	10	46	1	0	1	57	0	1	2	0	0	3	0	29	1	0	1	30	1	0	5	0	3	6	96	374
17:00:00	5	43	0	0	0	48	0	2	1	0	5	3	1	33	0	0	1	34	2	1	7	0	3	10	95	373
17:15:00	9	31	0	0	2	40	0	1	2	0	4	3	1	28	0	0	0	29	0	0	6	0	2	6	78	350
17:30:00	8	35	0	0	0	43	0	0	1	0	0	1	0	26	0	0	0	26	1	1	4	0	0	6	76	345
17:45:00	4	36	0	0	3	40	2	0	1	0	1	3	1	26	1	0	0	28	0	1	2	0	3	3	74	323
18:00:00	6	30	0	0	0	36	0	0	0	0	3	0	1	27	1	0	0	29	0	1	2	0	5	3	68	296
18:15:00	5	35	0	0	0	40	2	0	0	0	1	2	0	44	0	0	1	44	1	0	2	0	5	3	89	307
18:30:00	4	28	0	0	2	32	2	2	2	0	4	6	0	50	1	0	0	51	0	0	3	0	2	3	92	323
18:45:00	1	26	0	0	0	27	1	1	0	0	1	2	0	75	0	0	0	75	1	2	0	0	0	3	107	356
Grand Total	188	1161	8	0	13	1357	21	20	20	0	40	61	14	1079	21	0	12	1114	19	23	143	0	56	185	2717	-
Approach%	13.9%	85.6%	0.6%	0%		-	34.4%	32.8%	32.8%	0%		-	1.3%	96.9%	1.9%	0%		-	10.3%	12.4%	77.3%	0%		-	-	-
Totals %	6.9%	42.7%	0.3%	0%		49.9%	0.8%	0.7%	0.7%	0%		2.2%	0.5%	39.7%	0.8%	0%		41%	0.7%	0.8%	5.3%	0%		6.8%	-	-
Heavy	0	6	1	0		-	0	0	0	0		-	0	16	0	0		-	0	0	0	0		-	-	-
Heavy %	0%	0.5%	12.5%	0%		-	0%	0%	0%	0%		-	0%	1.5%	0%	0%		-	0%	0%	0%	0%		-	-	-
Bicycles Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	•	-

Turning Movement Count Location Name: 3RD AVE E / GREY RD 15 & 13TH ST E Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias

								F	Peak H	our: 02	:30 PM	- 03:30 PM	Weathe	r: Clear	Sky (-6	5.82 °C)										
Start Time	N Approach 3RD AVE E							E Approach 13TH ST E								S Approa	ach) 15			W Approach 13TH ST E						
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total		
14:30:00	9	49	0	0	0	58	1	1	0	0	1	2	1	37	1	0	3	39	1	0	6	0	0	7	106	
14:45:00	11	49	1	0	0	61	1	1	0	0	3	2	0	52	0	0	0	52	0	0	6	0	5	6	121	
15:00:00	9	41	0	0	0	50	2	0	1	0	3	3	0	54	1	0	0	55	3	0	5	0	0	8	116	
15:15:00	4	53	0	0	0	57	1	0	2	0	1	3	1	32	1	0	0	34	2	2	14	0	0	18	112	
Grand Total	33	192	1	0	0	226	5	2	3	0	8	10	2	175	3	0	3	180	6	2	31	0	5	39	455	
Approach%	14.6%	85%	0.4%	0%		-	50%	20%	30%	0%		-	1.1%	97.2%	1.7%	0%		-	15.4%	5.1%	79.5%	0%		-	-	
Totals %	7.3%	42.2%	0.2%	0%		49.7%	1.1%	0.4%	0.7%	0%		2.2%	0.4%	38.5%	0.7%	0%		39.6%	1.3%	0.4%	6.8%	0%		8.6%	-	
PHF	0.75	0.91	0.25	0		0.93	0.63	0.5	0.38	0		0.83	0.5	0.81	0.75	0		0.82	0.5	0.25	0.55	0		0.54	-	
Heavy	0	0	0	0		0	0	0	0	0		0	0	4	0	0		4	0	0	0	0		0		
Heavy %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	2.3%	0%	0%		2.2%	0%	0%	0%	0%		0%	-	
Lights	33	192	1	0		226	5	2	3	0		10	2	170	3	0		175	6	2	31	0		39		
Lights %	100%	100%	100%	0%		100%	100%	100%	100%	0%		100%	100%	97.1%	100%	0%		97.2%	100%	100%	100%	0%		100%	-	
Single-Unit Trucks	0	0	0	0		0	0	0	0	0		0	0	2	0	0		2	0	0	0	0		0	-	
Single-Unit Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	1.1%	0%	0%		1.1%	0%	0%	0%	0%		0%	-	
Buses	0	0	0	0		0	0	0	0	0		0	0	2	0	0		2	0	0	0	0		0	-	
Buses %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	1.1%	0%	0%		1.1%	0%	0%	0%	0%		0%	-	
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-	
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0.6%	0%	0%		0.6%	0%	0%	0%	0%		0%	-	
Pedestrians	-	-	-	-	0	-	-	-	-	-	8	-	-	-	-	-	3	-	-	-	-	-	5	-	-	
Pedestrians%	-	-	-	-	0%		-	-	-	-	50%		-	-	-	-	18.8%		-	-	-	-	31.3%		-	
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	

Peak Hour: 02:30 PM - 03:30 PM Weather: Clear Sky (-6.82 °C) Legend: ### (#.# %) TOTAL VEHICLES (HEAVY %) th St E Bicycles on Crosswalk Pedestrians 0 3 3rd Ave E 0 8 5 0 xodepom (a) © Mapbox © OpenStreetMap


Turning Movement Count Location Name: 4TH AVE E & HWY 6 Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias

											Turni	ng Movement C	ount (4	. 4TH A	VEE 8	HWY 6)									
				N Approac	eh E					E Approa	ch					S Approac	:h E					W Approa	ch		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
12:00:00	2	5	3	0	0	10	3	158	3	0	0	164	9	6	1	0	4	16	0	185	4	0	0	189	379	
12:15:00	6	6	4	0	0	16	10	153	6	0	0	169	15	6	0	0	0	21	1	162	8	0	0	171	377	
12:30:00	2	3	4	0	3	9	4	142	4	0	3	150	9	1	1	0	3	11	1	175	6	0	1	182	352	
12:45:00	2	2	5	0	2	9	5	140	9	0	0	154	12	7	3	0	4	22	0	180	6	0	0	186	371	1479
13:00:00	2	3	3	0	0	8	6	132	12	0	0	150	14	3	1	0	5	18	1	197	3	0	2	201	377	1477
13:15:00	5	6	0	0	3	11	6	162	7	0	3	175	20	4	0	0	1	24	2	166	5	0	4	173	383	1483
13:30:00	2	6	10	0	3	18	9	136	7	0	5	152	9	1	1	0	3	11	3	176	4	0	2	183	364	1495
13:45:00	7	4	2	0	1	13	5	151	9	0	3	165	9	5	2	0	8	16	2	159	8	0	1	169	363	1487
14:00:00	2	4	2	0	0	8	14	127	7	0	0	148	9	10	1	0	0	20	3	174	0	0	0	177	353	1463
14:15:00	4	7	6	0	0	17	4	155	7	0	0	166	10	3	0	0	3	13	1	172	3	0	2	176	372	1452
14:30:00	2	11	4	0	3	17	6	139	5	0	0	150	3	7	0	0	5	10	2	143	7	0	1	152	329	1417
14:45:00	4	3	4	0	0	11	5	155	7	0	3	167	4	3	1	0	6	8	0	139	8	0	0	147	333	1387
15:00:00	3	5	2	0	1	10	4	135	8	0	0	147	4	6	4	0	0	14	1	156	4	0	0	161	332	1366
15:15:00	6	10	4	0	0	20	8	148	7	0	0	163	15	6	3	0	0	24	5	159	5	0	0	169	376	1370
15:30:00	5	4	2	0	1	11	6	161	14	0	0	181	5	5	1	0	2	11	3	157	2	0	1	162	365	1406
15:45:00	1	2	4	0	0	7	7	143	5	0	0	155	3	5	3	0	3	11	6	155	3	0	1	164	337	1410
16:00:00	3	4	2	0	1	9	6	132	5	0	0	143	7	5	0	0	0	12	2	151	3	0	1	156	320	1398
16:15:00	4	1	4	0	2	9	5	116	6	0	1	127	3	5	0	0	3	8	2	146	9	0	1	157	301	1323
16:30:00	5	2	5	0	1	12	4	113	10	0	2	127	6	8	0	0	1	14	2	126	6	0	4	134	287	1245
16:45:00	4	4	3	0	1	11	3	117	8	0	2	128	6	8	2	0	1	16	2	130	4	0	3	136	291	1199
17:00:00	3	4	2	0	0	9	5	95	7	0	0	107	2	4	2	0	0	8	3	134	3	0	1	140	264	1143
17:15:00	6	5	2	0	0	13	6	140	3	0	0	149	6	6	3	0	1	15	1	124	3	0	1	128	305	1147
17:30:00	6	5	3	0	1	14	8	129	2	0	1	139	5	3	1	0	0	9	1	90	6	0	1	97	259	1119
17:45:00	4	3	4	0	1	11	5	126	4	0	1	135	3	5	1	0	3	9	1	119	2	0	2	122	277	1105
18:00:00	6	3	3	0	1	12	1	108	7	0	0	116	8	3	0	0	0	11	1	105	3	0	1	109	248	1089
18:15:00	3	3	1	0	0	7	5	102	7	0	0	114	1	5	2	0	0	8	7	101	1	0	0	109	238	1022
18:30:00	5	3	0	0	2	8	3	87	4	0	0	94	2	5	0	0	1	7	1	88	2	0	4	91	200	963
18:45:00	5	4	0	0	0	9	8	103	8	0	0	119	5	1	0	0	0	6	2	72	3	0	0	77	211	897
Grand Total	109	122	88	0	27	319	161	3705	188	0	24	4054	204	136	33	0	57	373	56	4041	121	0	34	4218	8964	-
Approach%	34.2%	38.2%	27.6%	0%		-	4%	91.4%	4.6%	0%		-	54.7%	36.5%	8.8%	0%		-	1.3%	95.8%	2.9%	0%		-	-	-
Totals %	1.2%	1.4%	1%	0%		3.6%	1.8%	41.3%	2.1%	0%		45.2%	2.3%	1.5%	0.4%	0%		4.2%	0.6%	45.1%	1.3%	0%		47.1%	-	-
Heavy	1	1	0	0		-	5	24	0	0		-	0	3	0	0		-	0	19	0	0		-	-	-
Heavy %	0.9%	0.8%	0%	0%		-	3.1%	0.6%	0%	0%		-	0%	2.2%	0%	0%		-	0%	0.5%	0%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

Turning Movement Count Location Name: 4TH AVE E & HWY 6 Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias

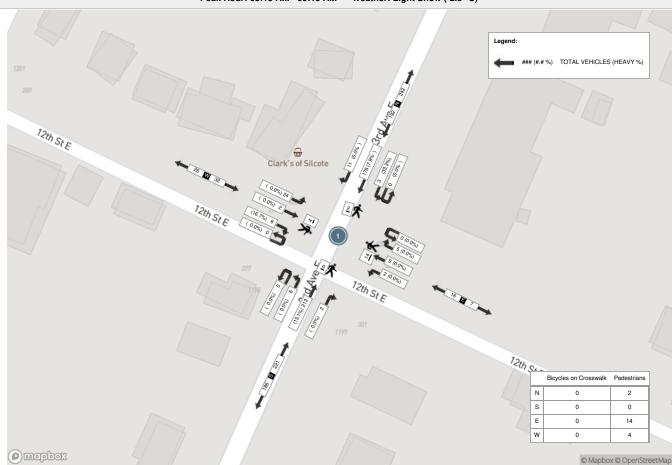
									cakii	Oui. 12	. - 5 F W	- 01:45 PM W	eather:	Oicui c	J y (-0.	.02 0)									
Start Time				N Approa	ch E					E Approac	ch					S Approad	ch E					W Approa	ch		Int. To (15 m
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
12:45:00	2	2	5	0	2	9	5	140	9	0	0	154	12	7	3	0	4	22	0	180	6	0	0	186	37
13:00:00	2	3	3	0	0	8	6	132	12	0	0	150	14	3	1	0	5	18	1	197	3	0	2	201	37
13:15:00	5	6	0	0	3	11	6	162	7	0	3	175	20	4	0	0	1	24	2	166	5	0	4	173	3
13:30:00	2	6	10	0	3	18	9	136	7	0	5	152	9	1	1	0	3	11	3	176	4	0	2	183	3
Grand Total	11	17	18	0	8	46	26	570	35	0	8	631	55	15	5	0	13	75	6	719	18	0	8	743	14
Approach%	23.9%	37%	39.1%	0%		-	4.1%	90.3%	5.5%	0%		-	73.3%	20%	6.7%	0%		-	0.8%	96.8%	2.4%	0%		-	
Totals %	0.7%	1.1%	1.2%	0%		3.1%	1.7%	38.1%	2.3%	0%		42.2%	3.7%	1%	0.3%	0%		5%	0.4%	48.1%	1.2%	0%		49.7%	
PHF	0.55	0.71	0.45	0		0.64	0.72	0.88	0.73	0		0.9	0.69	0.54	0.42	0		0.78	0.5	0.91	0.75	0		0.92	
Heavy	0	0	0	0		0	1	8	0	0		9	0	0	0	0		0	0	2	0	0		2	
Heavy %	0%	0%	0%	0%		0%	3.8%	1.4%	0%	0%		1.4%	0%	0%	0%	0%		0%	0%	0.3%	0%	0%		0.3%	
Lights	11	17	18	0		46	25	562	35	0		622	55	15	5	0		75	6	717	18	0		741	
Lights %	100%	100%	100%	0%		100%	96.2%	98.6%	100%	0%		98.6%	100%	100%	100%	0%		100%	100%	99.7%	100%	0%		99.7%	
ingle-Unit Trucks	0	0	0	0		0	1	4	0	0		5	0	0	0	0		0	0	2	0	0		2	
ngle-Unit Trucks %	0%	0%	0%	0%		0%	3.8%	0.7%	0%	0%		0.8%	0%	0%	0%	0%		0%	0%	0.3%	0%	0%		0.3%	
Buses	0	0	0	0		0	0	3	0	0		3	0	0	0	0		0	0	0	0	0		0	
Buses %	0%	0%	0%	0%		0%	0%	0.5%	0%	0%		0.5%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	
rticulated Trucks	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	0	0	0	0		0	
ticulated Trucks %	0%	0%	0%	0%		0%	0%	0.2%	0%	0%		0.2%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	
cycles on Road %	0%	0%	υ%	0%	•	0%	0%	0%	0%	0%		0%	0%	υ%	0%	0%	40	0%	0%	0%	0%	0%		0%	
Pedestrians	-	-	-	-	21.60/	-	-	-	-	-	8 21 69/	-	-	-	-	-	13	-	-	-	-	-	8 21 69/	-	

Peak Hour: 12:45 PM - 01:45 PM Weather: Clear Sky (-6.82 °C)

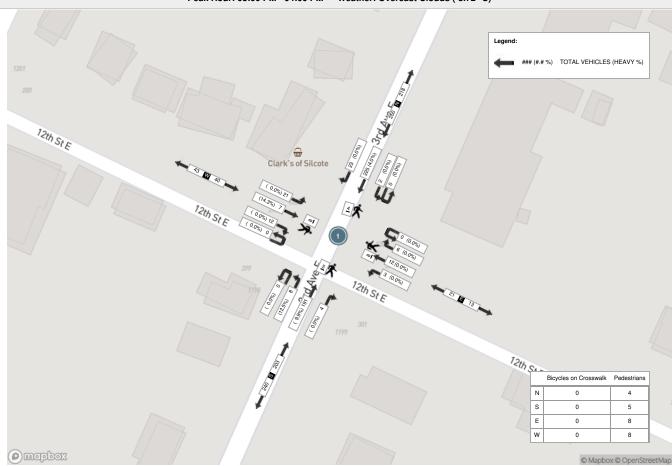
Turning Movement Count Location Name: GREY RD 15 & 12TH ST Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

											Turnin	g Movement Co	ount (1	. GREY	RD 15	& 12TH	ST)									
				N Approa	ch 15					E Approac	ch .					S Approa	ch 15					W Approacl	h		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
06:00:00	0	5	0	0	1	5	0	1	1	0	1	2	1	11	0	0	0	12	1	0	0	0	0	1	20	
06:15:00	0	6	0	0	0	6	0	0	0	0	0	0	0	16	2	0	0	18	0	0	0	0	0	0	24	
06:30:00	0	10	0	0	0	10	0	1	0	0	2	1	0	20	0	0	0	20	0	0	3	0	0	3	34	
06:45:00	0	14	1	0	0	15	0	1	0	0	1	1	0	28	1	0	0	29	1	1	3	0	0	5	50	128
07:00:00	2	29	2	0	0	33	0	0	0	0	0	0	1	31	2	0	1	34	0	0	4	0	1	4	71	179
07:15:00	1	15	1	0	0	17	1	0	0	0	0	1	1	19	2	0	1	22	1	1	4	0	0	6	46	201
07:30:00	0	25	0	0	0	25	0	6	1	0	2	7	2	21	0	0	0	23	0	3	1	0	0	4	59	226
07:45:00	1	27	0	0	0	28	1	3	0	0	1	4	2	20	2	0	0	24	2	2	3	0	0	7	63	239
08:00:00	2	17	1	0	0	20	1	3	1	0	0	5	0	29	4	0	4	33	1	2	7	0	2	10	68	236
08:15:00	2	42	0	0	0	44	3	6	0	0	9	9	0	42	1	0	0	43	1	1	3	0	1	5	101	291
08:30:00	3	36	2	0	0	41	0	1	1	0	4	2	1	71	0	0	0	72	0	1	5	0	0	6	121	353
08:45:00	3	61	1	0	2	65	0	0	1	0	0	1	1	68	3	0	0	72	3	0	8	0	0	11	149	439
09:00:00	3	39	0	0	0	42	2	2	0	0	1	4	0	32	2	0	0	34	2	0	8	0	3	10	90	461
09:15:00	4	33	1	0	0	38	1	1	0	0	1	2	2	28	0	0	1	30	2	2	8	0	1	12	82	442
09:30:00	3	32	0	0	0	35	1	2	0	0	1	3	1	26	1	0	0	28	2	3	7	0	1	12	78	399
09:45:00	2	34	1	0	0	37	1	4	0	0	1	5	0	31	3	0	3	34	0	1	5	0	4	6	82	332
BREAK*		**********																								
15:00:00	4	46	1	0	0	51	4	2	1	0	0	7	3	57	1	0	0	61	2	1	4	0	0	7	126	
15:15:00	4	64	0	0	0	68	1	4	0	0	1	5	0	48	0	0	1	48	6	2	3	0	3	11	132	
15:30:00	10	54	1	0	4	65	0	4	1	0	7	5	0	45	3	0	1	48	2	1	9	0	5	12	130	
15:45:00	5	61	0	0	0	66	1	2	1	0	0	4	1	41	4	0	3	46	2	3	5	0	0	10	126	514
16:00:00	6	59	1	0	1	66	0	3	0	0	1	3	1	30	2	0	0	33	0	1	7	0	1	8	110	498
16:15:00	9	40	0	0	0	49	0	4	1	0	1	5	2	43	4	0	0	49	2	1	8	0	2	11	114	480
16:30:00	8	44	1	0	0	53	2	5	2	0	1	9	0	49	4	0	2	53	0	1	13	0	2	14	129	479
16:45:00	3	46	0	0	0	49	0	4	0	0	1	4	2	36	3	0	0	41	5	1	9	0	1	15	109	462
17:00:00	4	50	0	0	0	54	1	6	0	0	2	7	1	63	0	0	0	64	5	3	10	0	1	18	143	495
17:15:00	6	36	4	0	0	46	0	6	1	0	1	7	1	39	3	0	0	43	4	1	2	0	2	7	103	484
17:30:00	2	47	0	0	0	49	0	3	2	0	0	5	2	32	1	0	0	35	1	3	5	0	2	9	98	453
17:45:00	1	45	0	0	0	46	1	2	1	0	0	4	2	34	3	0	0	39	3	0	4	0	2	7	96	440
18:00:00	4	33	1	0	0	38	1	4	2	0	2	7	1	32	1	0	0	34	1	1	6	0	2	8	87	384
18:15:00	2	33	1	0	3	36	1	2	2	0	0	5	0	36	0	0	0	36	3	1	2	0	1	6	83	364
18:30:00	5	33 24	0	0	0	39 26	0	3	0	0	0	3	0	28	1	0	1	29	3	0	2	0	1	3	76 57	342
Grand Total Approach%	101	90.3%	1.7%	0	11	1262	17.6%	66.4%	21	0%	41	131	29	93.2%	54 4.5%	0%	19	1212	21.8%	38 15.1%	159 63.1%	0%	38	252	2857	-
Totals %	3.5%	39.9%	0.7%	0%		44.2%	0.8%	3%	0.7%	0%		4.6%	1%	39.5%	1.9%	0%		42.4%	1.9%	1.3%	5.6%	0%		8.8%		-
Heavy	1	44	1	0			1	1	0.7 /8	0		-	0	76	1.5%	0		-	1.5%	2	1	0		-	-	-
Heavy %	1%	3.9%	4.8%	0%		-	4.3%	1.1%	0%	0%		-	0%	6.7%	1.9%	0%		-	1.8%	5.3%	0.6%	0%		-		-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-			-	-					-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

Turning Movement Count Location Name: GREY RD 15 & 12TH ST Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias


								Pe	ak Houi	r: 08:15	AM - 0	9:15 AM We	ather: L	ight Sn	ow (-2.	8 °C)									
Start Time				N Approac	h 15					E Approac	h					S Approa	ch 15					W Approa	ch		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:15:00	2	42	0	0	0	44	3	6	0	0	9	9	0	42	1	0	0	43	1	1	3	0	1	5	101
08:30:00	3	36	2	0	0	41	0	1	1	0	4	2	1	71	0	0	0	72	0	1	5	0	0	6	121
08:45:00	3	61	1	0	2	65	0	0	1	0	0	1	1	68	3	0	0	72	3	0	8	0	0	11	149
09:00:00	3	39	0	0	0	42	2	2	0	0	1	4	0	32	2	0	0	34	2	0	8	0	3	10	90
Grand Total	11	178	3	0	2	192	5	9	2	0	14	16	2	213	6	0	0	221	6	2	24	0	4	32	461
Approach%	5.7%	92.7%	1.6%	0%		-	31.3%	56.3%	12.5%	0%		-	0.9%	96.4%	2.7%	0%		-	18.8%	6.3%	75%	0%		-	
Totals %	2.4%	38.6%	0.7%	0%		41.6%	1.1%	2%	0.4%	0%		3.5%	0.4%	46.2%	1.3%	0%		47.9%	1.3%	0.4%	5.2%	0%		6.9%	-
PHF	0.92	0.73	0.38	0		0.74	0.42	0.38	0.5	0		0.44	0.5	0.75	0.5	0		0.77	0.5	0.5	0.75	0		0.73	-
Heavy		14	1	0		15	0	0				0	0	28				28	1			0		1	
Heavy %	0%	7.9%	33.3%	0%		7.8%	0%	0%	0%	0%		0%	0%	13.1%	0%	0%		12.7%	16.7%	0%	0%	0%		3.1%	-
Lights	11	164	2	0		177	5	9	2	0		16	2	184	6	0		192	5	2	24	0		31	
Lights %	100%	92.1%	66.7%	0%		92.2%	100%	100%	100%	0%		100%	100%	86.4%	100%	0%		86.9%	83.3%	100%	100%	0%		96.9%	-
Single-Unit Trucks	0	3	1	0		4	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Single-Unit Trucks %	0%	1.7%	33.3%	0%		2.1%	0%	0%	0%	0%		0%	0%	0.5%	0%	0%		0.5%	0%	0%	0%	0%		0%	-
Buses	0	11	0	0		11	0	0	0	0		0	0	27	0	0		27	1	0	0	0		1	-
Buses %	0%	6.2%	0%	0%		5.7%	0%	0%	0%	0%		0%	0%	12.7%	0%	0%		12.2%	16.7%	0%	0%	0%		3.1%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0.5%	0%	0%		0.5%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	2	-	-	-	-	-	14	=	-	-	-	-	0	-	-	-	-	-	4	=	-
Pedestrians%	-	-	-	-	10%		-	-	-	-	70%		-	-	-	-	0%		-	-	-	-	20%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-

Turning Movement Count Location Name: GREY RD 15 & 12TH ST Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias


								Peak	Hour:	03:00 P	M - 04:	00 PM Weath	er: Ove	ercast (Clouds	(-3.72°C	C)								
Start Time				N Approa	ch 15					E Approac 12TH ST	h					S Approac	:h 15					W Approac	:h		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
15:00:00	4	46	1	0	0	51	4	2	1	0	0	7	3	57	1	0	0	61	2	1	4	0	0	7	126
15:15:00	4	64	0	0	0	68	1	4	0	0	1	5	0	48	0	0	1	48	6	2	3	0	3	11	132
15:30:00	10	54	1	0	4	65	0	4	1	0	7	5	0	45	3	0	1	48	2	1	9	0	5	12	130
15:45:00	5	61	0	0	0	66	1	2	1	0	0	4	1	41	4	0	3	46	2	3	5	0	0	10	126
Grand Total	23	225	2	0	4	250	6	12	3	0	8	21	4	191	8	0	5	203	12	7	21	0	8	40	514
Approach%	9.2%	90%	0.8%	0%		-	28.6%	57.1%	14.3%	0%		-	2%	94.1%	3.9%	0%		-	30%	17.5%	52.5%	0%		-	
Totals %	4.5%	43.8%	0.4%	0%		48.6%	1.2%	2.3%	0.6%	0%		4.1%	0.8%	37.2%	1.6%	0%		39.5%	2.3%	1.4%	4.1%	0%		7.8%	-
PHF	0.58	0.88	0.5	0		0.92	0.38	0.75	0.75	0		0.75	0.33	0.84	0.5	0		0.83	0.5	0.58	0.58	0		0.83	-
Heavy		9				9						0	0	19	1			20	0	1				1	
Heavy %	0%	4%	0%	0%		3.6%	0%	0%	0%	0%		0%	0%	9.9%	12.5%	0%		9.9%	0%	14.3%	0%	0%		2.5%	-
Lights	23	215				240	6	12	3			21	4	171	7			182	12	6	21	0		39	
Lights %	100%	95.6%	100%	0%		96%	100%	100%	100%	0%		100%	100%	89.5%	87.5%	0%		89.7%	100%	85.7%	100%	0%		97.5%	-
Single-Unit Trucks	0	2	0	0		2	0	0	0	0		0	0	6	1	0		7	0	1	0	0		1	-
Single-Unit Trucks %	0%	0.9%	0%	0%		0.8%	0%	0%	0%	0%		0%	0%	3.1%	12.5%	0%		3.4%	0%	14.3%	0%	0%		2.5%	-
Buses	0	7	0	0		7	0	0	0	0		0	0	13	0	0		13	0	0	0	0		0	-
Buses %	0%	3.1%	0%	0%		2.8%	0%	0%	0%	0%		0%	0%	6.8%	0%	0%		6.4%	0%	0%	0%	0%		0%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	1	0	0		1	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Bicycles on Road %	0%	0.4%	0%	0%		0.4%	0%	0%	0%	0%		0%	0%	0.5%	0%	0%		0.5%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	4	-	-	-	-	-	8	-	-	-	-	-	5	-	-	-	-	-	8	-	-
Pedestrians%	-	-	-	-	16%		-	-	-	-	32%		-	-	-	-	20%		-	-	-	-	32%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-

Crozier & Associates SUITE 301 40 HURON STREET COLLINGWOOD ONTARIO, L9Y 4R3 CANADA

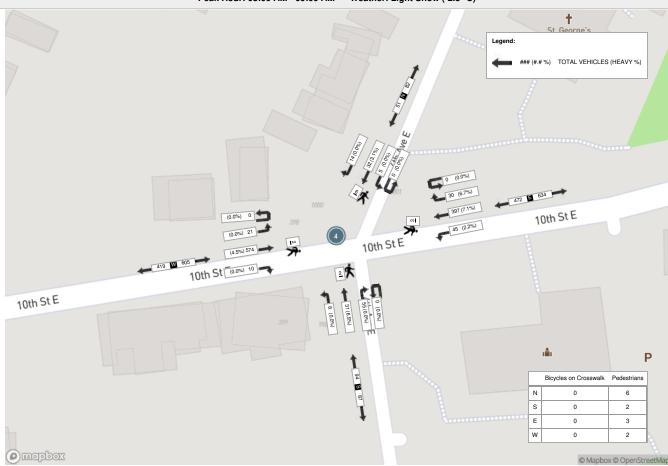
Peak Hour: 08:15 AM - 09:15 AM Weather: Light Snow (-2.8 °C)

Peak Hour: 03:00 PM - 04:00 PM Weather: Overcast Clouds (-3.72 °C)

Turning Movement Count Location Name: 4TH AVE E & HWY 6 Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

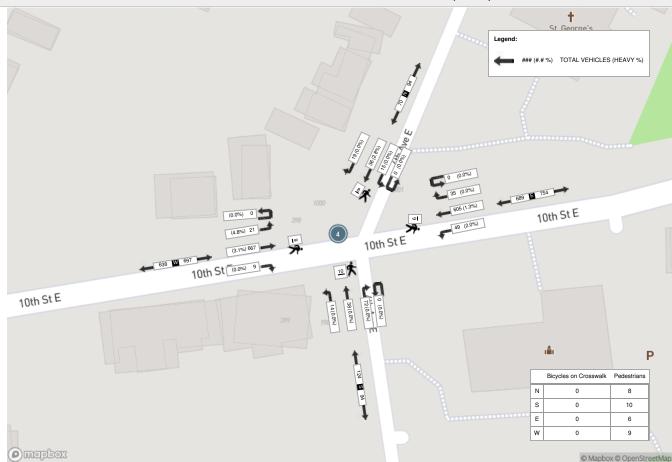
											Turni	ng Movement C	ount (4	. 4TH A	VEE&	HWY 6)									
				N Approac	ch					E Approa HWY 6	ch					S Approac	h =					W Approa	ch		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total	(13 11111)	(1)
06:00:00	1	2	1	0	0	4	1	16	1	0	0	18	1	0	0	0	0	1	2	36	0	0	0	38	61	
06:15:00	0	0	2	0	0	2	1	22	3	0	0	26	3	0	0	0	1	3	1	61	0	0	1	62	93	
06:30:00	1	0	3	0	0	4	1	26	0	0	1	27	1	0	0	0	0	1	1	81	0	0	0	82	114	
06:45:00	2	0	1	0	0	3	6	37	1	0	0	44	8	2	0	0	1	10	3	84	4	0	1	91	148	416
07:00:00	1	1	2	0	1	4	0	64	4	0	0	68	2	4	0	0	0	6	1	74	1	0	0	76	154	509
07:15:00	3	3	5	0	1	11	5	70	3	0	0	78	2	3	0	0	1	5	1	105	1	0	1	107	201	617
07:30:00	2	2	3	0	1	7	6	80	1	0	1	87	10	2	2	0	0	14	2	107	3	0	1	112	220	723
07:45:00	4	8	4	0	1	16	6	90	7	0	1	103	9	4	1	0	1	14	3	171	7	0	1	181	314	889
08:00:00	3	9	0	0	0	12	4	98	6	0	2	108	12	7	1	0	0	20	3	126	2	0	0	131	271	1006
08:15:00	5	6	1	0	0	12	9	97	14	0	0	120	10	7	4	0	1	21	2	123	8	0	2	133	286	1091
08:30:00	3	9	2	0	2	14	8	97	12	0	1	117	11	8	1	0	0	20	2	150	9	0	0	161	312	1183
08:45:00	3	8	2	0	4	13	9	105	13	0	0	127	22	9	2	0	1	33	3	175	2	0	0	180	353	1222
09:00:00	2	8	2	0	0	12	4	79	7	0	0	90	8	5	1	0	1	14	1	124	7	0	1	132	248	1199
09:15:00	2	6	2	0	1	10	8	86	5	0	0	99	6	3	6	0	1	15	1	117	3	0	0	121	245	1158
09:30:00	4	4	7	0	0	15	5	83	10	0	2	98	8	1	0	0	2	9	0	124	4	0	0	128	250	1096
09:45:00	2	6	5	0	0	13	13	95	14	0	2	122	7	8	2	0	2	17	2	148	2	0	0	152	304	1047
BREAK*	**	*********																								
15:00:00	6	10	3	0	0	19	12	153	12	0	2	177	13	6	2	0	1	21	2	134	4	0	0	140	357	
15:15:00	6	12	3	0	4	21	15	157	14	0	3	186	20	9	2	0	5	31	2	149	4	0	2	155	393	
15:30:00	7	9	3	0	5	19	9	148	10	0	2	167	22	11	7	0	5	40	2	168	7	0	6	177	403	
15:45:00	7	10	3	0	0	20	6	136	18	0	3	160	19	9	3	0	1	31	4	161	2	0	1	167	378	1531
16:00:00	3	7	5	0	2	15	8	150	11	0	1	169	14	12	2	0	2	28	3	170	6	0	0	179	391	1565
16:15:00	2	10	4	0	1	16	12	171	10	0	0	193	17	6	2	0	2	25	0	168	6	0	2	174	408	1580
16:30:00	1	10	2	0	0	13	8	142	9	0	1	159	16	10	5	0	5	31	4	157	7	0	1	168	371	1548
16:45:00	4	4	4	0	2	12	11	167	11	0	0	189	9	8	0	0	5	17	1	156	12	0	1	169	387	1557
17:00:00	1	12	6	0	0	19	9	156	10	0	1	175	21	12	0	0	3	33	2	174	5	0	0	181	408	1574
17:15:00	6	4	3	0	0	13	6	146	2	0	1	154	21	12	3	0	1	36	3	164	6	0	0	173	376	1542
17:30:00	3	8	2	0	0	13	6	131	10	0	0	147	16	2	1	0	0	19	1	152	4	0	0	157	336	1507
17:45:00	6	6	1	0	0	13	5	109	4	0	0	118	8	1	1	0	1	10	1	137	3	0	2	141	282	1402
18:00:00	3	5	5	0	1	13	4	142	8	0	1	154	5	7	0	0	0	12	4	118	2	0	0	124	303	1297
18:15:00	1	3	1	0	0	5	4	115	8	0	1	127	12	5	2	0	3	19	3	117	3	0	0	123	274	1195
18:30:00	2	3	2	0	2	7	4	118	7	0	2	129	1	7	1	0	0	9	3	105	3	0	0	111	256	1115
18:45:00	3	7	1	0	0	11	5	122	7	0	0	134	6	2	1	0	0	9	1	95	5	0	2	101	255	1088
Grand Total	99	192	90	0	28	381	210	3408	252	0	28	3870	340	182	52	0	46	574	64	4131	132	0	25	4327	9152	-
Approach%	26%	50.4%	23.6%	0%		-	5.4%	88.1%	6.5%	0%		-	59.2%	31.7%	9.1%	0%		-	1.5%	95.5%	3.1%	0%		-	-	-
Totals %	1.1%	2.1%	1%	0%		4.2%	2.3%	37.2%	2.8%	0%		42.3%	3.7%	2%	0.6%	0%		6.3%	0.7%	45.1%	1.4%	0%		47.3%	-	-
Heavy	0	3	0	0		-	7	144	7	0		-	4	2	0	0		-	0	109	2	0		-	-	-
Heavy %	0%	1.6%	0%	0%		-	3.3%	4.2%	2.8%	0%		-	1.2%	1.1%	0%	0%		-	0%	2.6%	1.5%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-		•	-	-	-	-		•	-	-	-	-		•	-	-

Turning Movement Count Location Name: 4TH AVE E & HWY 6 Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias


								Pe	ak Hou	r: 08:00	AM - 09	9:00 AM Wea	ather: Li	ght Sn	ow (-2.8	B °C)									
Start Time				N Approa	i ch E					E Approac	h					S Approad	ch E					W Approa	nch		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:00:00	3	9	0	0	0	12	4	98	6	0	2	108	12	7	1	0	0	20	3	126	2	0	0	131	271
08:15:00	5	6	1	0	0	12	9	97	14	0	0	120	10	7	4	0	1	21	2	123	8	0	2	133	286
08:30:00	3	9	2	0	2	14	8	97	12	0	1	117	11	8	1	0	0	20	2	150	9	0	0	161	312
08:45:00	3	8	2	0	4	13	9	105	13	0	0	127	22	9	2	0	1	33	3	175	2	0	0	180	353
Grand Total	14	32	5	0	6	51	30	397	45	0	3	472	55	31	8	0	2	94	10	574	21	0	2	605	1222
Approach%	27.5%	62.7%	9.8%	0%		-	6.4%	84.1%	9.5%	0%		-	58.5%	33%	8.5%	0%		-	1.7%	94.9%	3.5%	0%		-	-
Totals %	1.1%	2.6%	0.4%	0%		4.2%	2.5%	32.5%	3.7%	0%		38.6%	4.5%	2.5%	0.7%	0%		7.7%	0.8%	47%	1.7%	0%		49.5%	-
PHF	0.7	0.89	0.63	0		0.91	0.83	0.95	0.8	0		0.93	0.63	0.86	0.5	0		0.71	0.83	0.82	0.58	0		0.84	-
Heavy	0	1	0			1	2	28	1	0		31	0	2	0	0		2	0	26		0		26	
Heavy %	0%	3.1%	0%	0%		2%	6.7%	7.1%	2.2%	0%		6.6%	0%	6.5%	0%	0%		2.1%	0%	4.5%	0%	0%		4.3%	-
Lights	14	31	5			50	28	368	44	0		440	55	28	8	0		91	10	548	21	0		579	
Lights %	100%	96.9%	100%	0%		98%	93.3%	92.7%	97.8%	0%		93.2%	100%	90.3%	100%	0%		96.8%	100%	95.5%	100%	0%		95.7%	-
Single-Unit Trucks	0	1	0	0		1	1	8	0	0		9	0	0	0	0		0	0	10	0	0		10	-
Single-Unit Trucks %	0%	3.1%	0%	0%		2%	3.3%	2%	0%	0%		1.9%	0%	0%	0%	0%		0%	0%	1.7%	0%	0%		1.7%	-
Buses	0	0	0	0		0	1	17	1	0		19	0	2	0	0		2	0	12	0	0		12	-
Buses %	0%	0%	0%	0%		0%	3.3%	4.3%	2.2%	0%		4%	0%	6.5%	0%	0%		2.1%	0%	2.1%	0%	0%		2%	-
Articulated Trucks	0	0	0	0		0	0	3	0	0		3	0	0	0	0		0	0	4	0	0		4	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.8%	0%	0%		0.6%	0%	0%	0%	0%		0%	0%	0.7%	0%	0%		0.7%	-
Bicycles on Road	0	0	0	0		0	0	1	0	0		1	0	1	0	0		1	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0.3%	0%	0%		0.2%	0%	3.2%	0%	0%		1.1%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	6	-	-	-	-	-	3	-	-	-	-	-	2	-	-	-	-	-	2	-	-
Pedestrians%	-	-	-	-	46.2%		-	-	-	-	23.1%		-	-	-	-	15.4%		-	-	-	-	15.4%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-

Turning Movement Count Location Name: 4TH AVE E & HWY 6 Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

								Peak	Hour	: 03:30 I	PM - 04:	30 PM Weatl	her: Ove	ercast C	louds (-3.72 °C	;)								
Start Time				N Approa	ich E					E Approa	ich					S Approac	h E					W Approa HWY 6	ch		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
15:30:00	7	9	3	0	5	19	9	148	10	0	2	167	22	11	7	0	5	40	2	168	7	0	6	177	403
15:45:00	7	10	3	0	0	20	6	136	18	0	3	160	19	9	3	0	1	31	4	161	2	0	1	167	378
16:00:00	3	7	5	0	2	15	8	150	11	0	1	169	14	12	2	0	2	28	3	170	6	0	0	179	391
16:15:00	2	10	4	0	1	16	12	171	10	0	0	193	17	6	2	0	2	25	0	168	6	0	2	174	408
Grand Total	19	36	15	0	8	70	35	605	49	0	6	689	72	38	14	0	10	124	9	667	21	0	9	697	1580
Approach%	27.1%	51.4%	21.4%	0%		-	5.1%	87.8%	7.1%	0%		-	58.1%	30.6%	11.3%	0%		-	1.3%	95.7%	3%	0%		-	-
Totals %	1.2%	2.3%	0.9%	0%		4.4%	2.2%	38.3%	3.1%	0%		43.6%	4.6%	2.4%	0.9%	0%		7.8%	0.6%	42.2%	1.3%	0%		44.1%	-
PHF	0.68	0.9	0.75	0		0.88	0.73	0.88	0.68	0		0.89	0.82	0.79	0.5	0		0.78	0.56	0.98	0.75	0		0.97	-
Heavy	0	1	0	0		1	0	8	1	0		9	0	0		0		0	0	21	1	0		22	
Heavy %	0%	2.8%	0%	0%		1.4%	0%	1.3%	2%	0%		1.3%	0%	0%	0%	0%		0%	0%	3.1%	4.8%	0%		3.2%	-
Lights	19	35	15	0		69	35	597	48	0		680	72	38	14	0		124	9	646	20	0		675	
Lights %	100%	97.2%	100%	0%		98.6%	100%	98.7%	98%	0%		98.7%	100%	100%	100%	0%		100%	100%	96.9%	95.2%	0%		96.8%	-
Single-Unit Trucks	0	1	0	0		1	0	4	0	0		4	0	0	0	0		0	0	14	1	0		15	-
Single-Unit Trucks %	0%	2.8%	0%	0%		1.4%	0%	0.7%	0%	0%		0.6%	0%	0%	0%	0%		0%	0%	2.1%	4.8%	0%		2.2%	-
Buses	0	0	0	0		0	0	4	1	0		5	0	0	0	0		0	0	4	0	0		4	-
Buses %	0%	0%	0%	0%		0%	0%	0.7%	2%	0%		0.7%	0%	0%	0%	0%		0%	0%	0.6%	0%	0%		0.6%	-
Articulated Trucks	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	3	0	0		3	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0.4%	0%	0%		0.4%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	8	-	-	-	-	-	6	-	-	-	-	-	10	-	-	-	-	-	9	-	-
Pedestrians%	-	-	-	-	24.2%		-	-	-	-	18.2%		-	-	-	-	30.3%		-	-	-	-	27.3%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-


Crozier & Associates SUITE 301 40 HURON STREET COLLINGWOOD ONTARIO, L9Y 4R3 CANADA

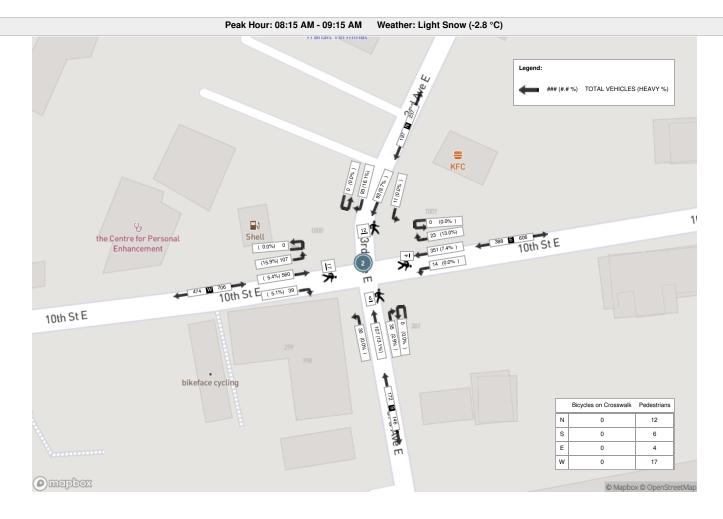
Peak Hour: 08:00 AM - 09:00 AM Weather: Light Snow (-2.8 °C)

Crozier & Associates SUITE 301 40 HURON STREET COLLINGWOOD ONTARIO, L9Y 4R3 CANADA

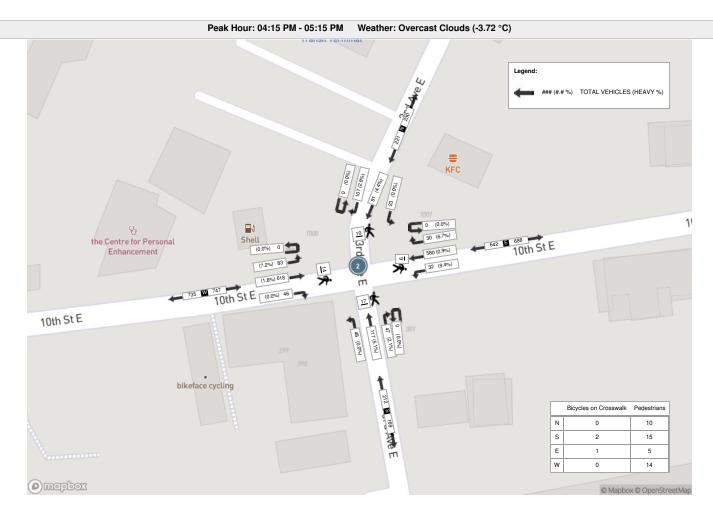
Peak Hour: 03:30 PM - 04:30 PM Weather: Overcast Clouds (-3.72 °C)

Turning Movement Count Location Name: GREY RD 15 & HWY 6 Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

											Turni	ng Movement C	Count (2	. GRE	/ RD 15	& HWY	6)									
				N Approa	ich					E Approa	ch					S Approac	ch E					W Approac	:h		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total	(10 11111)	(,
06:00:00	4	2	1	0	0	7	4	9	2	0	1	15	1	2	2	0	0	5	1	36	11	0	0	48	75	
06:15:00	2	4	2	0	0	8	5	16	1	0	0	22	1	7	1	0	0	9	2	59	10	0	2	71	110	
06:30:00	8	5	0	0	3	13	1	27	0	0	0	28	1	7	0	0	1	8	4	84	7	0	4	95	144	
06:45:00	9	3	1	0	1	13	4	32	2	0	0	38	3	16	2	0	0	21	2	86	19	0	2	107	179	508
07:00:00	15	15	4	0	1	34	5	52	2	0	0	59	5	11	1	0	1	17	4	66	17	0	0	87	197	630
07:15:00	13	8	3	0	1	24	5	73	1	0	2	79	3	13	1	0	1	17	6	103	10	0	2	119	239	759
07:30:00	23	6	4	0	2	33	2	75	5	0	0	82	3	9	3	0	0	15	8	121	17	0	0	146	276	891
07:45:00	18	10	4	0	2	32	4	90	2	0	2	96	7	14	3	0	2	24	10	158	8	0	3	176	328	1040
08:00:00	15	5	4	0	1	24	8	86	6	0	0	100	5	17	5	0	0	27	7	126	15	0	2	148	299	1142
08:15:00	23	13	4	0	1	40	6	92	2	0	1	100	5	25	6	0	1	36	12	124	23	0	8	159	335	1238
08:30:00	20	23	3	0	8	46	6	94	4	0	0	104	5	30	8	0	0	43	7	155	34	0	5	196	389	1351
08:45:00	26	31	3	0	1	60	3	99	4	0	1	106	11	36	10	0	3	57	13	166	37	0	1	216	439	1462
09:00:00	24	26	1	0	2	51	8	66	4	0	2	78	14	16	6	0	2	36	7	115	13	0	3	135	300	1463
09:15:00	21	15	1	0	1	37	3	85	6	0	0	94	4	19	7	0	2	30	10	121	12	0	2	143	304	1432
09:30:00	17	20	6	0	1	43	7	80	2	0	2	89	7	16	3	0	1	26	10	126	7	0	6	143	301	1344
09:45:00	15	19	5	0	1	39	8	87	5	0	1	100	6	26	3	0	2	35	19	126	12	0	6	157	331	1236
***BREAK	**																									
15:00:00	26	23	7	0	2	56	10	146	4	0	0	160	19	34	7	0	4	60	12	115	21	0	2	148	424	
15:15:00	33	27	5	0	2	65	7	160	6	0	0	173	15	27	7	0	3	49	13	135	21	0	3	169	456	
15:30:00	31	29	5	0	5	65	0	144	6	0	5	150	20	40	10	0	8	70	8	153	15	0	11	176	461	
15:45:00	42	26	7	0	2	75	10	133	9	0	5	152	23	25	9	0	0	57	12	136	10	0	0	158	442	1783
16:00:00	35	33	4	0	4	72	1	141	4	0	2	146	13	22	10	0	2	45	13	158	13	0	6	184	447	1806
16:15:00	21	18	3	0	3	42	8	158	12	0	1	178	11	30	6	0	2	47	15	157	17	0	2	189	456	1806
16:30:00	29	22	8	0	0	59	6	127	9	0	3	142	14	30	16	0	7	60	11	147	16	0	4	174	435	1780
16:45:00	25	23	3	0	3	51	8	158	5	0	0	171	9	24	11	0	5	44	8	156	25	0	4	189	455	1793
17:00:00	32	28	9	0	4	69	8	137	6	0	2	151	13	33	15	0	3	61	12	158	25	0	4	195	476	1822
17:15:00	26	12	7	0	1	45	2	145	16	0	1	163	16	20	10	0	1	46	14	151	19	0	1	184	438	1804
17:30:00	23	26	2	0	0	51	6	116	4	0	3	126	12	22	17	0	2	51	10	145	11	0	1	166	394	1763
17:45:00	34	19	3	0	1	56	6	99	9	0	0	114	9	20	8	0	3	37	14	126	22	0	4	162	369	1677
18:00:00	30	15	5	0	2	50	1	135	6	0	0	142	5	17	10	0	1	32	11	113	15	0	3	139	363	1564
18:15:00	24	12	7	0	3	43	4	106	8	1	0	119	7	13	17	0	5	37	15	109	24	0	4	148	347	1473
18:30:00	25	20	3	0	1	48	5	105	6	0	0	116	17	12	10	0	1	39	10	90	16	0	1	116	319	1398
18:45:00	16	10	4	0	1	30	5	119	4	0	0	128	8	9	11	0	0	28	16	89	8	0	4	113	299	1328
Grand Total	705	548	128	0	60	1381	166	3192	162	1	34	3521	292	642	235	0	63	1169	316	3910	530	0	100	4756	10827	-
Approach%	51%	39.7%	9.3%	0%		-	4.7%	90.7%	4.6%	0%		-	25%	54.9%	20.1%	0%		-	6.6%	82.2%	11.1%	0%		-	-	-
Totals %	6.5%	5.1%	1.2%	0%		12.8%	1.5%	29.5%	1.5%	0%		32.5%	2.7%	5.9%	2.2%	0%		10.8%	2.9%	36.1%	4.9%	0%		43.9%	-	-
Heavy	45	42	6	0		-	20	117	9	0		-	5	48	1	0		-	4	95	52	0		-	-	-
Heavy %	6.4%	7.7%	4.7%	0%		-	12%	3.7%	5.6%	0%		-	1.7%	7.5%	0.4%	0%		-	1.3%	2.4%	9.8%	0%		-	-	-
Bicycles	-	-	-	-		÷	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-
Bicycle %	-	-	-	-		-	-	-	-	-			-	-	-	-			-	-	-	-			-	-

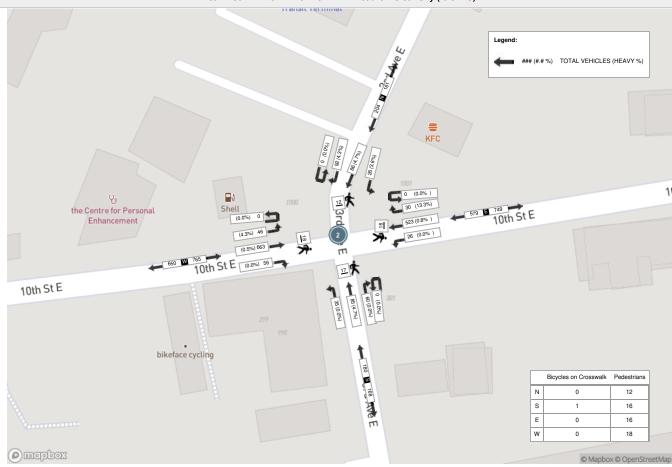

Turning Movement Count Location Name: GREY RD 15 & HWY 6 Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

								F	Peak Ho	our: 08:	15 AM -	- 09:15 AM V	/eather:	Light S	Snow (-	2.8 °C)									
Start Time				N Approa	ich E E					E Approa	nch E					S Approac	:h E					W Approac	ch E		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
08:15:00	23	13	4	0	1	40	6	92	2	0	1	100	5	25	6	0	1	36	12	124	23	0	8	159	335
08:30:00	20	23	3	0	8	46	6	94	4	0	0	104	5	30	8	0	0	43	7	155	34	0	5	196	389
08:45:00	26	31	3	0	1	60	3	99	4	0	1	106	11	36	10	0	3	57	13	166	37	0	1	216	439
09:00:00	24	26	1	0	2	51	8	66	4	0	2	78	14	16	6	0	2	36	7	115	13	0	3	135	300
Grand Total	93	93	11	0	12	197	23	351	14	0	4	388	35	107	30	0	6	172	39	560	107	0	17	706	1463
Approach%	47.2%	47.2%	5.6%	0%		-	5.9%	90.5%	3.6%	0%		-	20.3%	62.2%	17.4%	0%		-	5.5%	79.3%	15.2%	0%		-	-
Totals %	6.4%	6.4%	0.8%	0%		13.5%	1.6%	24%	1%	0%		26.5%	2.4%	7.3%	2.1%	0%		11.8%	2.7%	38.3%	7.3%	0%		48.3%	-
PHF	0.89	0.75	0.69	0		0.82	0.72	0.89	0.88	0		0.92	0.63	0.74	0.75	0		0.75	0.75	0.84	0.72	0		0.82	-
Heavy	15	9	0	0		24	3	26	0	0		29	1	14	0	0		15	2	30	17	0		49	
Heavy %	16.1%	9.7%	0%	0%		12.2%	13%	7.4%	0%	0%		7.5%	2.9%	13.1%	0%	0%		8.7%	5.1%	5.4%	15.9%	0%		6.9%	-
Lights	78	84	11	0		173	20	325	14	0		359	34	92	30	0		156	37	530	90	0		657	
Lights %	83.9%	90.3%	100%	0%		87.8%	87%	92.6%	100%	0%		92.5%	97.1%	86%	100%	0%		90.7%	94.9%	94.6%	84.1%	0%		93.1%	-
Single-Unit Trucks	4	0	0	0		4	0	9	0	0		9	0	1	0	0		1	1	12	0	0		13	-
Single-Unit Trucks %	4.3%	0%	0%	0%		2%	0%	2.6%	0%	0%		2.3%	0%	0.9%	0%	0%		0.6%	2.6%	2.1%	0%	0%		1.8%	-
Buses	10	9	0	0		19	2	13	0	0		15	1	13	0	0		14	1	13	17	0		31	-
Buses %	10.8%	9.7%	0%	0%		9.6%	8.7%	3.7%	0%	0%		3.9%	2.9%	12.1%	0%	0%		8.1%	2.6%	2.3%	15.9%	0%		4.4%	-
Articulated Trucks	1	0	0	0		1	1	4	0	0		5	0	0	0	0		0	0	5	0	0		5	-
Articulated Trucks %	1.1%	0%	0%	0%		0.5%	4.3%	1.1%	0%	0%		1.3%	0%	0%	0%	0%		0%	0%	0.9%	0%	0%		0.7%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0.9%	0%	0%		0.6%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	12	-	-	-	-	-	4	-	-	-	-	-	6	-	-	-	-	-	17	-	-
Pedestrians%	-	-	-	-	30.8%		-	-	-	-	10.3%		-	-	-	-	15.4%		-	-	-	-	43.6%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	0%		-


Turning Movement Count Location Name: GREY RD 15 & HWY 6 Date: Fri, Jan 13, 2023 Deployment Lead: Peter Ilias

								Peak	Hour:	04:15 F	PM - 05:	15 PM Weath	er: Ove	rcast C	louds (-3.72 °C	;)								
Start Time				N Approa	ch E					E Approac	ch E					S Approac	h E					W Approa 10TH ST	ch E		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
16:15:00	21	18	3	0	3	42	8	158	12	0	1	178	11	30	6	0	2	47	15	157	17	0	2	189	456
16:30:00	29	22	8	0	0	59	6	127	9	0	3	142	14	30	16	0	7	60	11	147	16	0	4	174	435
16:45:00	25	23	3	0	3	51	8	158	5	0	0	171	9	24	11	0	5	44	8	156	25	0	4	189	455
17:00:00	32	28	9	0	4	69	8	137	6	0	2	151	13	33	15	0	3	61	12	158	25	0	4	195	476
Grand Total	107	91	23	0	10	221	30	580	32	0	6	642	47	117	48	0	17	212	46	618	83	0	14	747	1822
Approach%	48.4%	41.2%	10.4%	0%		-	4.7%	90.3%	5%	0%		-	22.2%	55.2%	22.6%	0%		-	6.2%	82.7%	11.1%	0%		-	
Totals %	5.9%	5%	1.3%	0%		12.1%	1.6%	31.8%	1.8%	0%		35.2%	2.6%	6.4%	2.6%	0%		11.6%	2.5%	33.9%	4.6%	0%		41%	-
PHF	0.84	0.81	0.64	0		0.8	0.94	0.92	0.67	0		0.9	0.84	0.89	0.75	0		0.87	0.77	0.98	0.83	0		0.96	-
Heavy	3	4	0	0		7		5	3	0		10	1	6		0		7	0	11	6			17	
Heavy %	2.8%	4.4%	0%	0%		3.2%	6.7%	0.9%	9.4%	0%		1.6%	2.1%	5.1%	0%	0%		3.3%	0%	1.8%	7.2%	0%		2.3%	-
Lights	104	86	23	0		213	28	575	29	0		632	46	110	48	0		204	46	607	77	0		730	
Lights %	97.2%	94.5%	100%	0%		96.4%	93.3%	99.1%	90.6%	0%		98.4%	97.9%	94%	100%	0%		96.2%	100%	98.2%	92.8%	0%		97.7%	-
Single-Unit Trucks	1	0	0	0		1	0	3	2	0		5	1	1	0	0		2	0	6	2	0		8	-
Single-Unit Trucks %	0.9%	0%	0%	0%		0.5%	0%	0.5%	6.3%	0%		0.8%	2.1%	0.9%	0%	0%		0.9%	0%	1%	2.4%	0%		1.1%	-
Buses	2	4	0	0		6	2	1	1	0		4	0	5	0	0		5	0	4	4	0		8	-
Buses %	1.9%	4.4%	0%	0%		2.7%	6.7%	0.2%	3.1%	0%		0.6%	0%	4.3%	0%	0%		2.4%	0%	0.6%	4.8%	0%		1.1%	-
Articulated Trucks	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	0	1	0	0		1	-
Articulated Trucks %	0%	0%	0%	0%		0%	0%	0.2%	0%	0%		0.2%	0%	0%	0%	0%		0%	0%	0.2%	0%	0%		0.1%	-
Bicycles on Road	0	1	0	0		1	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Bicycles on Road %	0%	1.1%	0%	0%		0.5%	0%	0%	0%	0%		0%	0%	0.9%	0%	0%		0.5%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	10	-	-	-	-	-	5	-	-	-	-	-	15	-	-	-	-	-	14	-	-
Pedestrians%	-	-	-	-	21.3%		-	-	-	-	10.6%		-	-	-	-	31.9%		-	-	-	-	29.8%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	2	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	2.1%		-	-	-	-	4.3%		-	-	-	-	0%		-

Turning Movement Count Location Name: GREY RD 15 & HWY 6 Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias

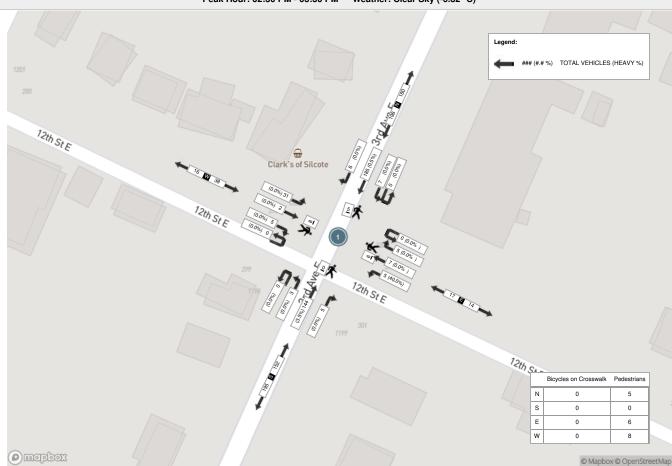

Start Time 12:00:00	Right N:W	Thru N:S		N Approac	h																					
	N:W	Thru N:S		OI ID AVE	E					E Approa 10TH ST	ch E					S Approach 3RD AVE E	n E					W Approa 10TH ST	ch E		Int. Total (15 min)	Int. Total (1 hr)
12:00:00	25		Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
12.00.00		7	8	0	3	40	7	137	13	0	6	157	15	24	7	0	8	46	11	166	16	0	2	193	436	
12:15:00	26	20	3	0	3	49	5	150	12	0	4	167	19	21	8	0	2	48	17	156	16	0	8	189	453	
12:30:00	22	12	0	0	3	34	6	126	9	0	0	141	19	23	6	0	2	48	12	163	4	0	7	179	402	
12:45:00	18	31	7	0	2	56	6	131	7	0	4	144	13	27	7	0	6	47	8	160	17	0	5	185	432	1723
13:00:00	23	20	6	0	4	49	9	124	2	0	1	135	17	18	9	0	6	44	13	179	11	0	3	203	431	1718
13:15:00	23	14	6	0	4	43	8	151	8	0	5	167	13	20	10	0	4	43	13	161	8	0	7	182	435	1700
13:30:00	28	21	7	0	2	56	7	117	9	0	6	133	17	20	9	0	1	46	22	163	10	0	3	195	430	1728
13:45:00	28	25	7	0	0	60	11	129	12	0	2	152	14	20	1	0	7	35	18	144	11	0	7	173	420	1716
14:00:00	25	16	7	0	2	48	6	119	9	0	1	134	19	23	10	0	0	52	8	155	15	0	3	178	412	1697
14:15:00	19	27	6	0	1	52	9	140	10	0	1	159	16	17	10	0	1	43	9	151	13	0	2	173	427	1689
14:30:00	24	22	8	0	7	54	5	131	5	0	8	141	6	22	9	0	2	37	11	137	6	0	11	154	386	1645
14:45:00	29	18	3	0	0	50	9	141	7	0	0	157	14	26	15	0	3	55	5	132	15	0	15	152	414	1639
15:00:00	23	18	3	0	3	44	5	131	7	0	3	143	13	21	11	0	0	45	7	146	16	0	7	169	401	1628
15:15:00	29	16	11	0	1	56	3	159	6	0	0	168	11	23	5	0	0	39	11	145	11	0	6	167	430	1631
15:30:00	32	15	3	0	3	50	6	146	7	0	3	159	12	11	5	0	2	28	9	146	14	0	4	169	406	1651
15:45:00	29	9	6	0	3	44	5	140	7	0	0	152	5	13	9	0	2	27	10	153	8	0	5	171	394	1631
16:00:00	21	23	1	0	2	45	3	108	7	0	1	118	8	16	9	0	0	33	7	148	20	0	2	175	371	1601
16:15:00	37	14	5	0	7	56	8	116	7	0	6	131	17	15	9	0	4	41	13	135	16	0	6	164	392	1563
16:30:00	33	14	7	0	2	54	4	94	5	0	1	103	7	12	12	0	3	31	6	120	13	0	1	139	327	1484
16:45:00	25	10	5	0	2	40	3	112	8	0	0	123	11	11	11	0	2	33	15	119	15	0	4	149	345	1435
17:00:00	26	14	6	0	1	46	5	87	6	0	3	98	14	19	10	0	0	43	11	121	14	0	2	146	333	1397
17:15:00	17	14	3	0	0	34	3	141	14	0	2	158	10	11	6	0	0	27	12	114	12	0	1	138	357	1362
17:30:00	25	14	3	0	0	42	5	115	6	0	1	126	7	9	10	0	2	26	11	90	13	0	1	114	308	1343
17:45:00	26	12	5	0	1	43	3	116	14	0	1	133	12	5	6	0	1	23	8	104	16	0	1	128	327	1325
18:00:00	20	12	2	0	2	34	4	91	12	0	0	107	9	12	11	0	0	32	18	96	16	0	0	130	303	1295
18:15:00	21	9	7	0	3	37	4	91	12	0	0	107	9	24	8	0	0	41	7	93	19	0	3	119	304	1242
18:30:00	16	16	5	0	1	37	7	73	9	0	0	89	10	26	9	0	0	45	10	76	23	0	5	109	280	1214
18:45:00	15	11	2	0	0	28	14	88	8	0	3	110	3	32	7	0	0	42	19	70	32	0	0	121	301	1188
Grand Total	685	454	142	0	62	1281	170	3404	238	0	62	3812	340	521	239	0	58	1100	321	3743	400	0	121	4464	10657	-
Approach%	53.5%	35.4%	11.1%	0%		-	4.5%	89.3%	6.2%	0%		-	30.9%	47.4%	21.7%	0%		-	7.2%	83.8%	9%	0%		-	-	-
Totals %	6.4%	4.3%	1.3%	0%		12%	1.6%	31.9%	2.2%	0%		35.8%	3.2%	4.9%	2.2%	0%		10.3%	3%	35.1%	3.8%	0%		41.9%	-	-
Heavy	16	18	5	0		-	12	16	0	0		-	0	18	1	0		-	1	13	13	0		-	-	-
Heavy %	2.3%	4%	3.5%	0%		-	7.1%	0.5%	0%	0%		-	0%	3.5%	0.4%	0%		-	0.3%	0.3%	3.3%	0%		-	-	-
Bicycles Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

Turning Movement Count Location Name: GREY RD 15 & HWY 6 Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias

								P	eak H	our: 12:	45 PM -	01:45 PM W	eather:	Clear S	ky (-6.8	32 °C)									
Start Time				N Approac	ch E					E Approa	ch E					S Approac	:h E					W Approa 10TH ST	ch E		Int. Total (15 min)
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
12:45:00	18	31	7	0	2	56	6	131	7	0	4	144	13	27	7	0	6	47	8	160	17	0	5	185	432
13:00:00	23	20	6	0	4	49	9	124	2	0	1	135	17	18	9	0	6	44	13	179	11	0	3	203	431
13:15:00	23	14	6	0	4	43	8	151	8	0	5	167	13	20	10	0	4	43	13	161	8	0	7	182	435
13:30:00	28	21	7	0	2	56	7	117	9	0	6	133	17	20	9	0	1	46	22	163	10	0	3	195	430
Grand Total	92	86	26	0	12	204	30	523	26	0	16	579	60	85	35	0	17	180	56	663	46	0	18	765	1728
Approach%	45.1%	42.2%	12.7%	0%		-	5.2%	90.3%	4.5%	0%		-	33.3%	47.2%	19.4%	0%		-	7.3%	86.7%	6%	0%		-	-
Totals %	5.3%	5%	1.5%	0%		11.8%	1.7%	30.3%	1.5%	0%		33.5%	3.5%	4.9%	2%	0%		10.4%	3.2%	38.4%	2.7%	0%		44.3%	-
PHF	0.82	0.69	0.93	0		0.91	0.83	0.87	0.72	0		0.87	0.88	0.79	0.88	0		0.96	0.64	0.93	0.68	0		0.94	-
Heavy	4	4	1	0		9	4	4	0	0		8	0	4	0	0		4	0	3	2	0		5	
Heavy %	4.3%	4.7%	3.8%	0%		4.4%	13.3%	0.8%	0%	0%		1.4%	0%	4.7%	0%	0%		2.2%	0%	0.5%	4.3%	0%		0.7%	-
Lights	88	80	25	0		193	26	519	26	0		571	60	80	35	0		175	56	660	44	0		760	
Lights %	95.7%	93%	96.2%	0%		94.6%	86.7%	99.2%	100%	0%		98.6%	100%	94.1%	100%	0%		97.2%	100%	99.5%	95.7%	0%		99.3%	-
Single-Unit Trucks	1	0	1	0		2	0	4	0	0		4	0	0	0	0		0	0	3	0	0		3	-
Single-Unit Trucks %	1.1%	0%	3.8%	0%		1%	0%	0.8%	0%	0%		0.7%	0%	0%	0%	0%		0%	0%	0.5%	0%	0%		0.4%	-
Buses	3	4	0	0		7	3	0	0	0		3	0	4	0	0		4	0	0	2	0		2	-
Buses %	3.3%	4.7%	0%	0%		3.4%	10%	0%	0%	0%		0.5%	0%	4.7%	0%	0%		2.2%	0%	0%	4.3%	0%		0.3%	-
Articulated Trucks	0	0	0	0		0	1	0	0	0		1	0	0	0	0		0	0	0	0	0		0	-
Articulated Trucks %	0%	0%	0%	0%		0%	3.3%	0%	0%	0%		0.2%	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	2	0	0		2	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Bicycles on Road %	0%	2.3%	0%	0%		1%	0%	0%	0%	0%		0%	0%	1.2%	0%	0%		0.6%	0%	0%	0%	0%		0%	-
Pedestrians	-	-	-	-	12	-	-	-	-	-	16	-	-	-	-	-	16	-	-	-	-	-	18	-	-
Pedestrians%	-	-	-	-	19%		-	-	-	-	25.4%		-	-	-	-	25.4%		-	-	-	-	28.6%		-
Bicycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	1	-	-	-	-	-	0	-	-
Bicycles on Crosswalk%	-	-	-	-	0%		-	-	-	-	0%		-	-	-	-	1.6%		-	-	-	-	0%		-

Crozier & Associates SUITE 301 40 HURON STREET COLLINGWOOD ONTARIO, L9Y 4R3 CANADA

Peak Hour: 12:45 PM - 01:45 PM Weather: Clear Sky (-6.82 °C)


Turning Movement Count Location Name: GREY RD 15 & 12TH ST Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias

										1	Turning	Movement Cou	ınt (1 .	GREY F	RD 15 8	ፄ 12TH :	ST)									
				N Approa						E Approact	'n					S Approa GREY RD	ch					W Approac	h		Int. Total (15 min)	Int. Total (1 hr)
Start Time	Right N:W	Thru N:S	Left N:E	UTurn N:N	Peds N:	Approach Total	Right E:N	Thru E:W	Left E:S	UTurn E:E	Peds E:	Approach Total	Right S:E	Thru S:N	Left S:W	UTurn S:S	Peds S:	Approach Total	Right W:S	Thru W:E	Left W:N	UTurn W:W	Peds W:	Approach Total		
12:00:00	5	34	0	0	0	39	2	2	1	0	0	5	0	35	3	0	1	38	0	3	6	0	4	9	91	
12:15:00	2	41	0	0	0	43	1	3	1	0	1	5	0	38	0	0	0	38	1	1	5	0	5	7	93	
12:30:00	6	32	0	0	2	38	0	0	1	0	0	1	2	32	1	0	2	35	3	1	10	0	1	14	88	
12:45:00	1	46	0	0	0	47	1	0	1	0	1	2	2	53	0	0	3	55	1	1	11	0	2	13	117	389
13:00:00	3	36	0	0	1	39	1	1	0	0	0	2	1	31	2	0	0	34	2	0	7	0	2	9	84	382
13:15:00	7	36	1	0	0	44	1	0	0	0	0	1	0	30	1	0	0	31	0	0	5	0	6	5	81	370
13:30:00	5	48	2	0	2	55	1	1	1	0	0	3	1	33	1	0	0	35	1	1	7	0	1	9	102	384
13:45:00	3	53	1	0	0	57	4	2	0	0	0	6	1	27	1	0	2	29	2	2	7	0	0	11	103	370
14:00:00	5	45	1	0	1	51	1	1	0	0	0	2	0	41	1	0	3	42	3	1	6	0	3	10	105	391
14:15:00	2	45	2	0	0	49	1	0	2	0	0	3	0	24	1	0	0	25	0	3	4	0	6	7	84	394
14:30:00	4	46	0	0	2	50	1	1	1	0	2	3	3	34	1	0	0	38	0	1	8	0	3	9	100	392
14:45:00	1	45	1	0	3	47	2	2	1	0	2	5	0	39	0	0	0	39	1	1	11	0	4	13	104	393
15:00:00	0	40	5	0	0	45	1	3	2	0	1	6	0	47	2	0	0	49	3	0	4	0	1	7	107	395
15:15:00	1	54	1	0	0	56	1	1	1	0	1	3	2	24	0	0	0	26	1	0	8	0	0	9	94	405
15:30:00	0	41	3	0	0	44	0	2	0	0	0	2	1	30	0	0	1	31	3	3	6	0	4	12	89	394
15:45:00	1	38	7	0	0	46	1	3	2	0	1	6	0	19	1	0	2	20	1	1	4	0	2	6	78	368
16:00:00	1	39	4	0	1	44	0	2	1	0	1	3	0	30	1	0	0	31	0	0	5	0	1	5	83	344
16:15:00	1	43	2	0	3	46	0	2	2	0	2	4	0	32	1	0	2	33	1	1	6	0	3	8	91	341
16:30:00	0	43	0	0	2	43	0	4	0	0	4	4	0	25	1	0	0	26	1	1	7	0	1	9	82	334
16:45:00	1	40	6	0	1	47	0	2	0	0	0	2	0	26	3	0	0	29	2	2	4	0	4	8	86	342
17:00:00	2	40	4	0	0	46	0	0	0	0	1	0	2	29	4	0	1	35	3	2	7	0	2	12	93	352
17:15:00	0	30	2	0	0	32	1	6	0	0	2	7	0	20	0	0	0	20	0	1	5	0	0	6	65	326
17:30:00	0	36	0	0	2	36	2	1	1	0	2	4	1	19	0	0	1	20	0	1	6	0	0	7	67	311
17:45:00	0	31	5	0	0	36	1	2	1	0	1	4	0	21	0	0	1	21	2	3	5	0	2	10	71	296
18:00:00	1	28	1	0	1	30	0	0	0	0	0	0	3	27	0	0	0	30	1	1	3	0	1	5	65	268
18:15:00	1	35	0	0	0	36	0	1	2	0	0	3	1	40	2	0	0	43	1	0	3	0	1	4	86	289
18:30:00	1	27	1	0	0	29	0	1	0	0	1	1	2	45	1	0	2	48	1	0	6	0	1	7	85	307
18:45:00	3	24	0	0	0	27	3	3	0	0	0	6	0	70	1	0	0	71	0	0	1	0	1	1	105	341
Grand Total	57	1096	49	0	21	1202	26	46	21	0	23	93	22	921	29	0	21	972	34	31	167	0	61	232	2499	-
Approach%	4.7%	91.2%	4.1%	0%		-	28%	49.5%	22.6%	0%		-	2.3%	94.8%	3%	0%		-	14.7%	13.4%	72%	0%		-	-	-
Totals %	2.3%	43.9%	2%	0%		48.1%	1%	1.8%	0.8%	0%		3.7%	0.9%	36.9%	1.2%	0%		38.9%	1.4%	1.2%	6.7%	0%		9.3%	-	-
Heavy	3	13	2	0		-	4	0	2	0		-	1	17	0	0		-	0	0	0	0		-	-	-
Heavy %	5.3%	1.2%	4.1%	0%		-	15.4%	0%	9.5%	0%		-	4.5%	1.8%	0%	0%		-	0%	0%	0%	0%		-	-	-
Bicycles	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	•	-
Bicycle %	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-	-	-		-	-	-

Turning Movement Count Location Name: GREY RD 15 & 12TH ST Date: Sat, Jan 14, 2023 Deployment Lead: Peter Ilias

								Pe	eak Hou	ır: 02:30	0 PM - 0	3:30 PM We	ather: C	Clear Sk	y (-6.82	2 °C)									
Start Time				N Approa	nch) 15					E Approac	;h					S Approa	:h 15					W Approa	ch T		Int. To (15 mi
	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	Right	Thru	Left	UTurn	Peds	Approach Total	
14:30:00	4	46	0	0	2	50	1	1	1	0	2	3	3	34	1	0	0	38	0	1	8	0	3	9	100
14:45:00	1	45	1	0	3	47	2	2	1	0	2	5	0	39	0	0	0	39	1	1	11	0	4	13	10-
15:00:00	0	40	5	0	0	45	1	3	2	0	1	6	0	47	2	0	0	49	3	0	4	0	1	7	10
15:15:00	1	54	1	0	0	56	1	1	1	0	1	3	2	24	0	0	0	26	1	0	8	0	0	9	94
Grand Total	6	185	7	0	5	198	5	7	5	0	6	17	5	144	3	0	0	152	5	2	31	0	8	38	40
Approach%	3%	93.4%	3.5%	0%		-	29.4%	41.2%	29.4%	0%		-	3.3%	94.7%	2%	0%		-	13.2%	5.3%	81.6%	0%		-	-
Totals %	1.5%	45.7%	1.7%	0%		48.9%	1.2%	1.7%	1.2%	0%		4.2%	1.2%	35.6%	0.7%	0%		37.5%	1.2%	0.5%	7.7%	0%		9.4%	-
PHF	0.38	0.86	0.35	0		0.88	0.63	0.58	0.63	0		0.71	0.42	0.77	0.38	0		0.78	0.42	0.5	0.7	0		0.73	-
Heavy	0	1	0	0		1	0	0	2	0		2	0	5	0	0		5	0	0	0	0		0	
Heavy %	0%	0.5%	0%	0%		0.5%	0%	0%	40%	0%		11.8%	0%	3.5%	0%	0%		3.3%	0%	0%	0%	0%		0%	.
Lights	6	184	7	0		197	5	7	3	0		15	5	138	3	0		146	5	2	31	0		38	
Lights %	100%	99.5%	100%	0%		99.5%	100%	100%	60%	0%		88.2%	100%	95.8%	100%	0%		96.1%	100%	100%	100%	0%		100%	-
Single-Unit Trucks	0	1	0	0		1	0	0	2	0		2	0	3	0	0		3	0	0	0	0		0	-
ingle-Unit Trucks %	0%	0.5%	0%	0%		0.5%	0%	0%	40%	0%		11.8%	0%	2.1%	0%	0%		2%	0%	0%	0%	0%		0%	-
Buses	0	0	0	0		0	0	0	0	0		0	0	2	0	0		2	0	0	0	0		0	-
Buses %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	1.4%	0%	0%		1.3%	0%	0%	0%	0%		0%	-
Bicycles on Road	0	0	0	0		0	0	0	0	0		0	0	1	0	0		1	0	0	0	0		0	-
Bicycles on Road %	0%	0%	0%	0%		0%	0%	0%	0%	0%		0%	0%	0.7%	0%	0%		0.7%	0%	0%	0%	0%		0%	
Pedestrians	-	-	-	-	5	-	-	-	-	-	6	-	-	-	-	-	0	-	-	-	-	-	8	-	
Pedestrians%	-	-	-	-	26.3%		-	-	-	-	31.6%		-	-	-	-	0%		-	-	-	-	42.1%		
cycles on Crosswalk	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	-	-	-	-	0	-	
ovolos on Crosswalk%					09/						00/						00/						00/		

Peak Hour: 02:30 PM - 03:30 PM Weather: Clear Sky (-6.82 °C)

APPENDIX D

Level of Service Definitions

Level of Service Definitions

Two-Way Stop Controlled Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
А	≤ 10	EXCELLENT. Large and frequent gaps in traffic on the main roadway. Queuing on the minor street is rare.
В	> 10 and ≤ 15	VERY GOOD. Many gaps exist in traffic on the main roadway. Queuing on the minor street is minimal.
С	> 15 and ≤ 25	GOOD. Fewer gaps exist in traffic on the main roadway. Delay on minor approach becomes more noticeable.
D	> 25 and ≤ 35	FAIR. Infrequent and shorter gaps in traffic on the main roadway. Queue lengths develop on the minor street.
Е	> 35 and ≤ 50	POOR. Very infrequent gaps in traffic on the main roadway. Queue lengths become noticeable.
F	> 50	UNSATISFACTORY. Very few gaps in traffic on the main roadway. Excessive delay with significant queue lengths on the minor street.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

Signalized Intersections

Level of Service	Control Delay per Vehicle (seconds)	Interpretation
А	≤ 10	EXCELLENT. Extremely favourable progression with most vehicles arriving during the green phase. Most vehicles do not stop and short cycle lengths may contribute to low delay.
В	> 10 and ≤ 20	VERY GOOD. Very good progression and/or short cycle lengths with slightly more vehicles stopping than LOS "A" causing slightly higher levels of average delay.
С	> 20 and ≤ 35	GOOD. Fair progression and longer cycle lengths lead to a greater number of vehicles stopping than LOS "B".
D	> 35 and ≤ 55	FAIR. Congestion becomes noticeable with higher average delays resulting from a combination of long cycle lengths, high volumeto-capacity ratios and unfavourable progression.
E	> 55 and ≤ 80	POOR. Lengthy delays values are indicative of poor progression, long cycle lengths and high volume-to-capacity ratios. Individual cycle failures are common with individual movement failures also common.
F	> 80	UNSATISFACTORY. Indicative of oversaturated conditions with vehicular demand greater than the capacity of the intersection.

Adapted from Highway Capacity Manual 2000, Transportation Research Board

APPENDIX E

Detailed Capacity Analysis

	۶	→	*	•	←	•	1	1	~	/	Ţ	-√
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		41			414		7	f)		×	†	7
Traffic Volume (vph)	135	705	33	40	685	19	41	102	30	21	119	258
Future Volume (vph)	135	705	33	40	685	19	41	102	30	21	119	258
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	20.0		0.0	20.0		25.0
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			10.0		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00		0.98	0.99		0.97		0.96
Frt		0.994			0.996			0.966				0.850
Flt Protected		0.992			0.997		0.950			0.950		
Satd. Flow (prot)	0	3485	0	0	3548	0	1805	1817	0	1805	1900	1615
Flt Permitted		0.570			0.837		0.677			0.669		
Satd. Flow (perm)	0	2000	0	0	2977	0	1256	1817	0	1239	1900	1551
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		6			4			11				238
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		166.0			137.0			188.2			151.7	
Travel Time (s)		12.0			9.9			13.6			10.9	
Confl. Peds. (#/hr)	11		15	15		11	21		24	24		21
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	2%	2%	0%	0%	1%	0%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	141	734	34	42	714	20	43	106	31	22	124	269
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	909	0	0	776	0	43	137	0	22	124	269
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	<u> </u>		0.0	, i		3.6	, i		3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	۶	-	•	1	-	•	1	†	1	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	pm+ov
Protected Phases	7	4		3	8			2			6	7
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		6	6	7
Switch Phase												
Minimum Initial (s)	5.0	30.0		5.0	30.0		27.0	27.0		27.0	27.0	5.0
Minimum Split (s)	11.0	36.0		11.0	36.0		33.0	33.0		33.0	33.0	11.0
Total Split (s)	11.0	76.0		11.0	76.0		33.0	33.0		33.0	33.0	11.0
Total Split (%)	9.2%	63.3%		9.2%	63.3%		27.5%	27.5%		27.5%	27.5%	9.2%
Maximum Green (s)	6.5	70.0		7.0	70.0		27.0	27.0		27.0	27.0	6.5
Yellow Time (s)	3.5	4.0		3.0	4.0		4.0	4.0		4.0	4.0	3.5
All-Red Time (s)	1.0	2.0		1.0	2.0		2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	4.5
Lead/Lag	Lead	Lag		Lead	Lag							Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	None
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)		15.0			19.0		17.0	17.0		17.0	17.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)		55.3			45.1		52.7	52.7		52.7	52.7	59.9
Actuated g/C Ratio		0.46			0.38		0.44	0.44		0.44	0.44	0.50
v/c Ratio		0.93			0.69		0.08	0.17		0.04	0.15	0.30
Control Delay		44.5			41.0		24.6	22.4		24.5	23.9	4.6
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Delay		44.5			41.0		24.6	22.4		24.5	23.9	4.6
LOS		D			D		С	С		С	С	Α
Approach Delay		44.5			41.0			22.9			11.4	
Approach LOS		D			D			С			В	
Queue Length 50th (m)		82.0			63.0		6.2	18.8		3.1	18.5	3.6
Queue Length 95th (m)		82.0			62.5		16.3	38.5		10.0	37.2	20.6
Internal Link Dist (m)		142.0			113.0			164.2			127.7	
Turn Bay Length (m)							20.0			20.0		25.0
Base Capacity (vph)		1220			1738		551	804		544	834	905
Starvation Cap Reductn		0			52		0	0		0	0	0
Spillback Cap Reductn		0			0		0	0		0	0	0
Storage Cap Reductn		0			0		0	0		0	0	0
Reduced v/c Ratio		0.75			0.46		0.08	0.17		0.04	0.15	0.30

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120

Offset: 72 (60%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.93

Intersection Signal Delay: 35.6 Intersection LOS: D

Intersection Capacity Utilization 87.59	%	ICU Level of Service E
Analysis Period (min) 15		
Splits and Phases: 1: 2nd Avenue	East & Highway 6	
1 Ø2 (R)	√ø3 →ø4	1.7
33 s	11 s 76 s	
Ø6 (R)	¥ ø7 ₹ ø8	
33 s	11 s 76 s	

	۶	-	•	•	•	•	1	†	~	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414		7	f)			ર્ન	7
Traffic Volume (vph)	83	627	46	32	583	30	48	117	47	23	91	126
Future Volume (vph)	83	627	46	32	583	30	48	117	47	23	91	126
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	0.0		35.0
Storage Lanes	0		0	0		0	1		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00		0.98	0.99			1.00	0.97
Frt		0.991			0.993			0.957				0.850
Flt Protected		0.995			0.998		0.950				0.990	
Satd. Flow (prot)	0	3491	0	0	3545	0	1805	1736	0	0	1823	1583
Flt Permitted		0.680			0.834		0.681				0.928	
Satd. Flow (perm)	0	2384	0	0	2960	0	1272	1736	0	0	1706	1533
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		9			7			16				131
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		137.0			165.6			160.8			431.4	
Travel Time (s)		9.9			11.9			11.6			31.1	
Confl. Peds. (#/hr)	10		17	17		10	14		6	6		14
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	7%	1%	0%	9%	0%	6%	0%	5%	2%	0%	4%	2%
Adj. Flow (vph)	86	653	48	33	607	31	50	122	49	24	95	131
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	787	0	0	671	0	50	171	0	0	119	131
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	<u> </u>		0.0			3.6	<u> </u>		3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel		J L.			J L.			5. LX			J L.	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Edition 2 Extend (5)		0.0			0.0			0.0			0.0	

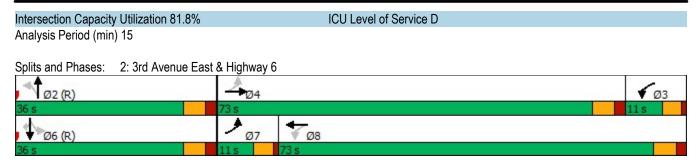
	•	→	•	•	←	*	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		6	6	6
Switch Phase												
Minimum Initial (s)	5.0	25.0		5.0	25.0		25.0	25.0		25.0	25.0	25.0
Minimum Split (s)	11.0	31.0		11.0	31.0		31.0	31.0		31.0	31.0	31.0
Total Split (s)	11.0	73.0		11.0	73.0		36.0	36.0		36.0	36.0	36.0
Total Split (%)	9.2%	60.8%		9.2%	60.8%		30.0%	30.0%		30.0%	30.0%	30.0%
Maximum Green (s)	6.5	67.0		6.5	67.0		30.0	30.0		30.0	30.0	30.0
Yellow Time (s)	3.5	4.0		3.5	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	2.0		1.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)		6.0			6.0		6.0	6.0			6.0	6.0
Lead/Lag	Lead	Lead		Lag	Lag							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	C-Max
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	10.0
Flash Dont Walk (s)		15.0			15.0		15.0	15.0		15.0	15.0	15.0
Pedestrian Calls (#/hr)		0			0		0	0		0	0	0
Act Effct Green (s)		46.0			46.0		62.0	62.0			62.0	62.0
Actuated g/C Ratio		0.38			0.38		0.52	0.52			0.52	0.52
v/c Ratio		0.86			0.59		0.08	0.19			0.14	0.15
Control Delay		17.3			9.1		18.1	16.6			17.8	3.8
Queue Delay		0.1			0.0		0.0	0.0			0.0	0.0
Total Delay		17.4			9.1		18.1	16.6			17.8	3.8
LOS		В			Α		В	В			В	Α
Approach Delay		17.4			9.1			16.9			10.5	
Approach LOS		В			Α			В			В	
Queue Length 50th (m)		60.9			9.0		6.1	19.8			14.9	0.0
Queue Length 95th (m)		64.1			7.4		15.7	40.0			30.8	11.8
Internal Link Dist (m)		113.0			141.6			136.8			407.4	
Turn Bay Length (m)							15.0					35.0
Base Capacity (vph)		1335			1655		657	905			881	855
Starvation Cap Reductn		47			0		0	0			0	0
Spillback Cap Reductn		0			0		0	0			0	0
Storage Cap Reductn		0			0		0	0			0	0
Reduced v/c Ratio		0.61			0.41		0.08	0.19			0.14	0.15

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120


Offset: 88 (73%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 13.5 Intersection LOS: B

Traffic Volume (vph)		۶	→	*	•	+	•	1	†	~	1	↓	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations		413			4Th		*	T _a		*	T ₂	
Future Volume (vph)		21		9	49		35			72			19
Ideal Flow (vphpl)	\ , ,	21		9	49	612	35	14	38	72	15	38	19
Storage Length (m)	· · · /		1900	1900				1900		1900		1900	1900
Storage Lanes													0.0
Taper Length (m)													0
Lane Util. Factor				•						-			-
Ped Bike Factor			0.95	0.95		0.95	0.95		1.00	1.00		1.00	1.00
Fit													
Fit Protected													
Satd. Flow (prot)								0.950	0.002		0.950	0.0.0	
Fit Permitted		0		0	0		0		1692	0		1765	0
Satd. Flow (perm)		•		•			•			•			
Right Turn on Red		0		0	0		0		1692	0		1765	0
Satd. Flow (RTOR)			0021			2100		1001	1002		1201	1700	
Link Speed (k/h)			2	100		8	100		74	100		20	100
Link Distance (m)	,												
Travel Time (s)													
Confil Peds (#/hr)	· ,												
Peak Hour Factor 0.97		8	11.5	10	10	21.0	8	q		6	6	27.7	g
Heavy Vehicles (%)			0 97			0.97			0.97			0.97	
Adj. Flow (vph) 22 688 9 51 631 36 14 39 74 15 39 20 Shared Lane Traffic (%) Lane Group Flow (vph) 0 719 0 0 718 0 14 113 0 15 59 0 Enter Blocked Intersection No No <t< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></t<>													
Shared Lane Traffic (%) Lane Group Flow (vph) 0 719 0 0 718 0 14 113 0 15 59 0 0													
Lane Group Flow (vph) 0 719 0 0 718 0 14 113 0 15 59 0 0			000		0.	001				, ,	10		20
Enter Blocked Intersection No 3.6 3.6 3.6		0	719	0	0	718	0	14	113	0	15	59	0
Lane Alignment Left Left Right													
Median Width(m) 0.0 0.0 3.6 3.6 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.00 1													
Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.00													July
Crosswalk Width(m) 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.00 <td></td>													
Two way Left Turn Lane Headway Factor 1.00													
Headway Factor	` ,												
Turning Speed (k/h) 25 15 25 15 25 15 25 15 Number of Detectors 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 1 2 1 0 0 </td <td></td> <td>1.00</td>		1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Number of Detectors 1 2 1 0 1 0													15
Detector Template Left Thru Left <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td> <td></td> <td>2</td> <td></td>			2			2			2			2	
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0	Detector Template	Left	Thru		Left	Thru		Left			Left	Thru	
Trailing Detector (m) 0.0												10.0	
Detector 1 Position(m) 0.0											0.0		
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 Detector 1 Type CI+Ex		0.0			0.0			0.0	0.0		0.0	0.0	
Detector 1 Channel Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0		2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Channel Detector 1 Extend (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
	Detector 1 Channel												
	Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0	Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s) 0.0 0.0 0.0 0.0 0.0 0.0 0.0													
Detector 2 Position(m) 9.4 9.4 9.4 9.4													
Detector 2 Size(m) 0.6 0.6 0.6													
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex													
Detector 2 Channel													
Detector 2 Extend (s) 0.0 0.0 0.0			0.0			0.0			0.0			0.0	

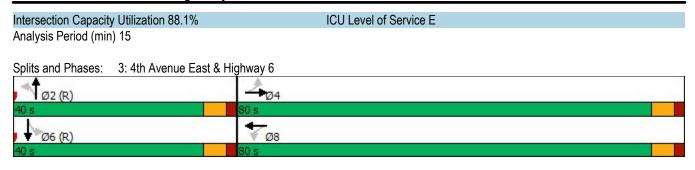
	۶	-	*	1	•	•	1	†	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	33.0	33.0		33.0	33.0		27.0	27.0		27.0	27.0	
Minimum Split (s)	39.0	39.0		39.0	39.0		33.0	33.0		33.0	33.0	
Total Split (s)	80.0	80.0		80.0	80.0		40.0	40.0		40.0	40.0	
Total Split (%)	66.7%	66.7%		66.7%	66.7%		33.3%	33.3%		33.3%	33.3%	
Maximum Green (s)	74.0	74.0		74.0	74.0		34.0	34.0		34.0	34.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)	23.0	23.0		23.0	23.0		17.0	17.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		37.0			37.0		71.0	71.0		71.0	71.0	
Actuated g/C Ratio		0.31			0.31		0.59	0.59		0.59	0.59	
v/c Ratio		0.77			0.93		0.02	0.11		0.02	0.06	
Control Delay		32.4			58.6		12.1	5.4		12.1	8.7	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		32.4			58.6		12.1	5.4		12.1	8.7	
LOS		С			Е		В	Α		В	Α	
Approach Delay		32.4			58.6			6.1			9.4	
Approach LOS		С			Е			Α			Α	
Queue Length 50th (m)		43.8			92.4		1.3	3.6		1.4	3.6	
Queue Length 95th (m)		42.8			104.9		5.1	14.0		5.3	11.5	
Internal Link Dist (m)		141.6			267.5			129.7			318.7	
Turn Bay Length (m)							10.0			5.0		
Base Capacity (vph)		1867			1538		799	1031		763	1052	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.39			0.47		0.02	0.11		0.02	0.06	

Intersection Summary

Area Type: Other

Cycle Length: 120

Actuated Cycle Length: 120


Offset: 86 (72%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.93

Intersection Signal Delay: 40.8 Intersection LOS: D

Synchro 11 Report C.F. Crozier & Associates DB Page 9

	۶	→	*	•	←	•	1	†	<i>></i>	/	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	21	8	12	3	12	6	8	218	4	2	225	23
Future Volume (Veh/h)	21	8	12	3	12	6	8	218	4	2	225	23
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (vph)	22	8	12	3	12	6	8	225	4	2	232	24
Pedestrians		8			8			5			5	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	516	509	257	520	519	240	264			237		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	516	509	257	520	519	240	264			237		
tC, single (s)	7.1	6.6	6.2	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.1	3.3	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	95	98	98	99	97	99	99			100		
cM capacity (veh/h)	447	441	778	444	454	795	1236			1333		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	42	21	237	258								
Volume Left	22	3	8	2								
Volume Right	12	6	4	24								
cSH	508	516	1236	1333								
Volume to Capacity	0.08	0.04	0.01	0.00								
Queue Length 95th (m)	2.2	1.0	0.2	0.0								
Control Delay (s)	12.7	12.3	0.3	0.1								
Lane LOS	В	В	Α	Α								
Approach Delay (s)	12.7	12.3	0.3	0.1								
Approach LOS	В	В										
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utilizat	tion		31.1%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	•	•	4	1	~	1	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	6	0	8	1	5	3	9	85	0	6	59	7
Future Volume (Veh/h)	6	0	8	1	5	3	9	85	0	6	59	7
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	7	0	10	1	6	4	11	104	0	7	72	9
Pedestrians		10			12			3			3	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)								343				
pX, platoon unblocked												
vC, conflicting volume	236	238	90	242	243	119	91			116		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	236	238	90	242	243	119	91			116		
tC, single (s)	7.4	6.5	6.2	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.8	4.0	3.3	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	99	100	99	100	99	100	99			100		
cM capacity (veh/h)	628	646	963	684	642	926	1437			1470		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	17	11	115	88								
Volume Left	7	1	11	7								
Volume Right	10	4	0	9								
cSH	790	727	1437	1470								
Volume to Capacity	0.02	0.02	0.01	0.00								
Queue Length 95th (m)	0.5	0.4	0.2	0.1								
Control Delay (s)	9.7	10.0	0.8	0.6								
Lane LOS	Α	В	Α	Α								
Approach Delay (s)	9.7	10.0	0.8	0.6								
Approach LOS	Α	В										
Intersection Summary												
Average Delay			1.8									
Intersection Capacity Utiliza	ation		19.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	←	•	1	1	~	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	32	6	7	2	11	6	8	234	3	1	241	26
Future Volume (Veh/h)	32	6	7	2	11	6	8	234	3	1	241	26
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	34	6	7	2	12	6	8	246	3	1	254	27
Pedestrians		10			10			6			6	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			1			1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	561	554	284	559	566	264	291			259		
vC1, stage 1 conf vol	001	00.	201	000	000					200		
vC2, stage 2 conf vol												
vCu, unblocked vol	561	554	284	559	566	264	291			259		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	7.1	0.0	0.2	7.1	0.0	0.2	7.1			7.1		
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	92	99	99	100	97	99	99			100		
cM capacity (veh/h)	411	433	750	420	426	770	1272			1306		
					420	110	1212			1300		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	47	20	257	282								
Volume Left	34	2	8	1								
Volume Right	7	6	3	27								
cSH	444	491	1272	1306								
Volume to Capacity	0.11	0.04	0.01	0.00								
Queue Length 95th (m)	2.8	1.0	0.2	0.0								
Control Delay (s)	14.1	12.6	0.3	0.0								
Lane LOS	В	В	Α	Α								
Approach Delay (s)	14.1	12.6	0.3	0.0								
Approach LOS	В	В										
Intersection Summary												
Average Delay			1.7									
Intersection Capacity Utiliza	ation		34.6%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	*	•	←	•	1	1	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414		*	7		×	^	7
Traffic Volume (vph)	119	696	56	34	599	27	31	118	47	22	68	185
Future Volume (vph)	119	696	56	34	599	27	31	118	47	22	68	185
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	20.0		0.0	20.0		25.0
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			10.0		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			1.00		0.97	0.99		0.97		0.96
Frt		0.990			0.994			0.957				0.850
Flt Protected		0.993			0.997		0.950			0.950		
Satd. Flow (prot)	0	3534	0	0	3569	0	1805	1792	0	1736	1900	1615
Flt Permitted		0.607			0.851		0.709			0.645		
Satd. Flow (perm)	0	2156	0	0	3044	0	1308	1792	0	1142	1900	1545
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		11			7			23				187
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		166.0			137.0			188.2			151.7	
Travel Time (s)		12.0			9.9			13.6			10.9	
Confl. Peds. (#/hr)	27		25	25		27	32		40	40		32
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	4%	0%	0%
Adj. Flow (vph)	128	748	60	37	644	29	33	127	51	24	73	199
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	936	0	0	710	0	33	178	0	24	73	199
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		<u>-</u> /			<u>-</u> /			J			- /	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
		0.0			0.0			0.0			0.0	

	٠	-	7	1	•	*	1	†	1	-	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	pm+ov
Protected Phases	7	4		3	8			2			6	7
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		6	6	7
Switch Phase												
Minimum Initial (s)	4.0	25.0		4.5	29.0		27.0	27.0		27.0	27.0	4.0
Minimum Split (s)	8.0	31.0		9.5	35.0		33.0	33.0		33.0	33.0	8.0
Total Split (s)	8.0	47.5		9.5	49.0		33.0	33.0		33.0	33.0	8.0
Total Split (%)	8.9%	52.8%		10.6%	54.4%		36.7%	36.7%		36.7%	36.7%	8.9%
Maximum Green (s)	4.0	41.5		4.5	43.0		27.0	27.0		27.0	27.0	4.0
Yellow Time (s)	3.0	4.0		3.5	4.0		4.0	4.0		4.0	4.0	3.0
All-Red Time (s)	1.0	2.0		1.5	2.0		2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	4.0
Lead/Lag	Lead	Lag		Lead	Lag							Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	None
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)		15.0			19.0		17.0	17.0		17.0	17.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)		39.6			31.6		38.4	38.4		38.4	38.4	44.4
Actuated g/C Ratio		0.44			0.35		0.43	0.43		0.43	0.43	0.49
v/c Ratio		0.95			0.66		0.06	0.23		0.05	0.09	0.23
Control Delay		43.1			16.3		16.9	15.8		16.9	16.9	3.0
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Delay		43.1			16.3		16.9	15.8		16.9	16.9	3.0
LOS		D			В		В	В		В	В	Α
Approach Delay		43.1			16.3			16.0			7.6	
Approach LOS		D			В			В			Α	
Queue Length 50th (m)		66.5			19.8		3.4	16.9		2.5	7.6	1.0
Queue Length 95th (m)		#85.6			22.6		9.9	33.9		8.0	17.4	11.8
Internal Link Dist (m)		142.0			113.0			164.2			127.7	
Turn Bay Length (m)							20.0			20.0		25.0
Base Capacity (vph)		1040			1458		558	778		487	811	860
Starvation Cap Reductn		0			0		0	0		0	0	0
Spillback Cap Reductn		0			0		0	0		0	0	0
Storage Cap Reductn		0			0		0	0		0	0	0
Reduced v/c Ratio		0.90			0.49		0.06	0.23		0.05	0.09	0.23

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.95

Intersection Signal Delay: 26.7

C.F. Crozier & Associates

DB

Synchro 11 Report
Page 2

Intersection LOS: C

Intersection Capacity Utilization 86.3% ICU Level of Service E Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 1: 2nd Avenue East & Highway 6 # 92 (R) 9,5 s 47.5 s 9,6 (R)

	۶	→	*	•	—	•	1	1	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414		*	f)			ર્ન	7
Traffic Volume (vph)	46	663	56	26	533	30	35	85	60	26	86	92
Future Volume (vph)	46	663	56	26	533	30	35	85	60	26	86	92
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	0.0		35.0
Storage Lanes	0		0	0		0	1		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00		0.98	0.99			1.00	0.97
Frt		0.989			0.992			0.938				0.850
Flt Protected		0.997			0.998		0.950				0.989	
Satd. Flow (prot)	0	3538	0	0	3543	0	1805	1721	0	0	1811	1553
Flt Permitted		0.879			0.897		0.684				0.920	
Satd. Flow (perm)	0	3118	0	0	3183	0	1279	1721	0	0	1680	1506
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		11			7			40				93
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		137.0			165.6			160.8			431.4	
Travel Time (s)		9.9			11.9			11.6			31.1	
Confl. Peds. (#/hr)	12		17	17		12	18		16	16		18
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Heavy Vehicles (%)	4%	0%	0%	0%	0%	13%	0%	4%	0%	3%	4%	4%
Adj. Flow (vph)	46	670	57	26	538	30	35	86	61	26	87	93
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	773	0	0	594	0	35	147	0	0	113	93
Enter Blocked Intersection	No	No	No									
Lane Alignment	Left	Left	Right									
Median Width(m)		0.0			0.0			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		<u>-</u> /			<u>-</u> /			- /			<u>-</u> /	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
		0.0			0.0			0.0			0.0	

	٠	-	7	1	+	*	1	†	1	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	Perm
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		1	6	6
Switch Phase												
Minimum Initial (s)	5.0	25.0		5.0	25.0		26.0	26.0		5.0	26.0	26.0
Minimum Split (s)	9.5	31.0		9.5	31.0		32.0	32.0		9.5	32.0	32.0
Total Split (s)	9.5	39.0		9.5	39.0		32.0	32.0		9.5	41.5	41.5
Total Split (%)	10.6%	43.3%		10.6%	43.3%		35.6%	35.6%		10.6%	46.1%	46.1%
Maximum Green (s)	5.0	33.0		5.0	33.0		26.0	26.0		5.0	35.5	35.5
Yellow Time (s)	3.5	4.0		3.5	4.0		4.0	4.0		3.5	4.0	4.0
All-Red Time (s)	1.0	2.0		1.0	2.0		2.0	2.0		1.0	2.0	2.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)		6.0			6.0		6.0	6.0			6.0	6.0
Lead/Lag	Lead	Lag		Lead	Lag		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	Max		None	Max		C-Max	C-Max		None	C-Max	C-Max
Walk Time (s)		10.0			10.0		10.0	10.0			10.0	10.0
Flash Dont Walk (s)		15.0			15.0		16.0	16.0			16.0	16.0
Pedestrian Calls (#/hr)		0			0		0	0			0	0
Act Effct Green (s)		42.5			42.5		35.5	35.5			35.5	35.5
Actuated g/C Ratio		0.47			0.47		0.39	0.39			0.39	0.39
v/c Ratio		0.52			0.39		0.07	0.21			0.17	0.14
Control Delay		10.0			7.1		17.6	13.9			18.6	4.5
Queue Delay		0.0			0.0		0.0	0.0			0.0	0.0
Total Delay		10.0			7.1		17.6	13.9			18.6	4.5
LOS		Α			Α		В	В			В	Α
Approach Delay		10.0			7.1			14.6			12.3	
Approach LOS		Α			Α			В			В	
Queue Length 50th (m)		17.6			36.7		3.9	12.3			13.1	0.0
Queue Length 95th (m)		m29.4			50.6		10.1	25.3			24.8	9.3
Internal Link Dist (m)		113.0			141.6			136.8			407.4	
Turn Bay Length (m)							15.0					35.0
Base Capacity (vph)		1478			1506		504	703			662	650
Starvation Cap Reductn		0			0		0	0			0	0
Spillback Cap Reductn		0			0		0	0			0	0
Storage Cap Reductn		0			0		0	0			0	0
Reduced v/c Ratio		0.52			0.39		0.07	0.21			0.17	0.14

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 85

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.52

Intersection Signal Delay: 9.7

Intersection LOS: A

Intersection Capacity Utilization 84.6%	ICU Level of Service E
Analysis Period (min) 15	
m Volume for 95th percentile queue is metered by upstream s	ignal.
Splits and Phases: 2: 3rd Avenue East & Highway 6	√ Ø3 →Ø4
9.5 s 32 s	9.5 s 39 s
\$ Ø6 (R) ■	<u>→</u> _{Ø7}
41.5 s	9.5 s 39 s

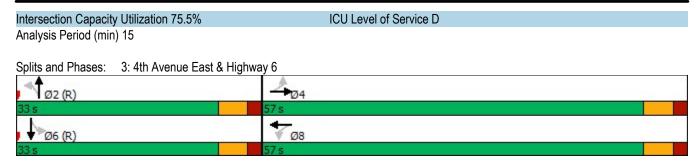
	۶	→	*	•	←	•	1	1	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		€1 }			414		*	f)		×	1	
Traffic Volume (vph)	18	725	6	35	573	26	5	15	55	18	17	11
Future Volume (vph)	18	725	6	35	573	26	5	15	55	18	17	11
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	10.0		0.0	5.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00		0.99	0.98		0.99	0.99	
Frt		0.999			0.994			0.882			0.941	
Flt Protected		0.999			0.997		0.950			0.950		
Satd. Flow (prot)	0	3602	0	0	3537	0	1805	1650	0	1805	1774	0
Flt Permitted		0.933			0.877		0.739			0.711		
Satd. Flow (perm)	0	3364	0	0	3110	0	1393	1650	0	1341	1774	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		1			8			56			11	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		165.6			291.5			153.7			342.7	
Travel Time (s)		11.9			21.0			11.1			24.7	
Confl. Peds. (#/hr)	8		13	13		8	8		8	8		8
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	0%	0%	0%	0%	1%	3%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	18	740	6	36	585	27	5	15	56	18	17	11
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	764	0	0	648	0	5	71	0	18	28	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			Cl+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		<u>-</u> .			<u>-</u> /			J			<u>-</u> ^	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
= 5.00.0. E EXONO (0)		0.0			0.0			0.0			0.0	

	۶	→	•	•	•	•	1	1	~	1	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	50.0	50.0		50.0	50.0		20.0	20.0		20.0	20.0	
Minimum Split (s)	56.0	56.0		56.0	56.0		33.0	33.0		33.0	33.0	
Total Split (s)	57.0	57.0		57.0	57.0		33.0	33.0		33.0	33.0	
Total Split (%)	63.3%	63.3%		63.3%	63.3%		36.7%	36.7%		36.7%	36.7%	
Maximum Green (s)	51.0	51.0		51.0	51.0		27.0	27.0		27.0	27.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	Max	Max		Max	Max		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	15.0	15.0		15.0	15.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)	23.0	23.0		23.0	23.0		17.0	17.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		51.0			51.0		27.0	27.0		27.0	27.0	
Actuated g/C Ratio		0.57			0.57		0.30	0.30		0.30	0.30	
v/c Ratio		0.40			0.37		0.01	0.13		0.04	0.05	
Control Delay		18.3			11.3		22.4	9.6		22.9	16.5	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		18.3			11.3		22.4	9.6		22.9	16.5	
LOS		В			В		С	Α		С	В	
Approach Delay		18.3			11.3			10.5			19.0	
Approach LOS		В			В			В			В	
Queue Length 50th (m)		49.0			31.1		0.7	1.9		2.3	2.2	
Queue Length 95th (m)		54.2			42.6		3.2	11.6		7.4	8.4	
Internal Link Dist (m)		141.6			267.5			129.7			318.7	
Turn Bay Length (m)							10.0			5.0		
Base Capacity (vph)		1906			1765		417	534		402	539	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.40			0.37		0.01	0.13		0.04	0.05	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90


Offset: 67 (74%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.40

Intersection Signal Delay: 15.0 Intersection LOS: B

Synchro 11 Report C.F. Crozier & Associates DB Page 9

	۶	→	•	1	—	•	1	1	~	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	31	4	5	5	7	5	3	153	5	7	194	6
Future Volume (Veh/h)	31	4	5	5	7	5	3	153	5	7	194	6
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	33	4	5	5	7	5	3	161	5	7	204	6
Pedestrians		8			8			5			5	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	412	409	220	410	410	176	218			174		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	412	409	220	410	410	176	218			174		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)			<u> </u>			<u> </u>						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	94	99	99	99	99	99	100			100		
cM capacity (veh/h)	531	524	816	534	524	862	1354			1405		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	42	17	169	217								
Volume Left	33	5	3	7								
Volume Right	5	5	5	6								
cSH	553	596	1354	1405								
Volume to Capacity	0.08	0.03	0.00	0.00								
Queue Length 95th (m)	2.0	0.03	0.00	0.00								
	12.0	11.2	0.1	0.1								
Control Delay (s)	12.0 B	11.2 B		0.5 A								
Lane LOS			A									
Approach LOS	12.0 B	11.2 B	0.2	0.3								
Approach LOS	Б	Б										
Intersection Summary			1.0									
Average Delay			1.8						_			
Intersection Capacity Utiliza	ation		26.1%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	*	1	+	•	1	†	~	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	10	0	6	5	4	4	5	50	4	8	36	8
Future Volume (Veh/h)	10	0	6	5	4	4	5	50	4	8	36	8
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	11	0	7	6	4	4	6	56	4	9	40	9
Pedestrians		1			1			5			5	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		0			0			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)								343				
pX, platoon unblocked												
vC, conflicting volume	144	136	50	146	139	64	50			61		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	144	136	50	146	139	64	50			61		
tC, single (s)	7.1	6.5	6.2	7.1	6.8	6.2	4.3			4.1		
tC, 2 stage (s)			<u> </u>			<u> </u>						
tF (s)	3.5	4.0	3.3	3.5	4.2	3.3	2.4			2.2		
p0 queue free %	99	100	99	99	99	100	100			99		
cM capacity (veh/h)	811	749	1018	811	703	1001	1447			1554		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	18	14	66	58								
Volume Left	11	6	6	9								
Volume Right	7	4	4	9								
cSH	881	820	1447	1554								
Volume to Capacity	0.02	0.02	0.00	0.01								
Queue Length 95th (m)	0.02	0.02	0.00	0.01								
Control Delay (s)	9.2	9.5	0.7	1.2								
Lane LOS	9.2 A	9.5 A	Α	Α								
Approach Delay (s)	9.2	9.5	0.7	1.2								
Approach LOS	9.2 A	9.5 A	0.7	1.2								
Intersection Summary												
			2.6									
Average Delay	ntion			10	والمينماء	of Comics			Λ			
Intersection Capacity Utiliza	1110[]		16.4%	IC	o Level (of Service			Α			
Analysis Period (min)			15									

	۶	→	•	1	—	•	1	1	~	-	Ţ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	31	2	6	3	2	5	3	184	2	1	198	33
Future Volume (Veh/h)	31	2	6	3	2	5	3	184	2	1	198	33
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	33	2	6	3	2	5	3	196	2	1	211	35
Pedestrians		8			8			3			3	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	450	450	240	452	467	208	254			206		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	450	450	240	452	467	208	254			206		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)			<u> </u>									
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	93	100	99	99	100	99	100			100		
cM capacity (veh/h)	507	499	797	505	488	830	1314			1368		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	41	10	201	247								
Volume Left	33	3	3	1								
Volume Right	6	5	2	35								
cSH	535	623	1314	1368								
Volume to Capacity	0.08	0.02	0.00	0.00								
Queue Length 95th (m)	2.0	0.02	0.00	0.00								
Control Delay (s)	12.3	10.9	0.1	0.0								
Lane LOS	12.3 B	10.9	Α	Α								
Approach Delay (s)	12.3	10.9	0.1	0.0								
Approach LOS	12.3 B	10.9 B	0.1	0.0								
	В	D										
Intersection Summary			4.0									
Average Delay			1.3									
Intersection Capacity Utiliza	ation		25.6%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	*	1	+	•	1	†	~	1	Į.	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		€Î}			414		*	f.		*	↑	7
Traffic Volume (vph)	149	778	36	44	756	21	45	113	33	23	131	285
Future Volume (vph)	149	778	36	44	756	21	45	113	33	23	131	285
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	20.0		0.0	20.0		25.0
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (m)	7.5			7.5		•	7.5		•	10.0		•
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.00	1.00	0.00	0.00	1.00	0.00	0.98	0.99	1.00	0.98	1.00	0.97
Frt		0.994			0.996		0.00	0.966		0.00		0.850
Flt Protected		0.992			0.997		0.950	0.000		0.950		0.000
Satd. Flow (prot)	0	3487	0	0	3549	0	1805	1822	0	1805	1900	1615
Flt Permitted	•	0.561	J	•	0.833	•	0.670	IOLL	J	0.660	1000	1010
Satd. Flow (perm)	0	1971	0	0	2964	0	1253	1822	0	1232	1900	1566
Right Turn on Red	0	1071	Yes	0	2004	Yes	1200	1022	Yes	1202	1500	Yes
Satd. Flow (RTOR)		6	100		4	100		20	100			123
Link Speed (k/h)		50			50			50			50	120
Link Distance (m)		166.0			137.0			188.2			158.7	
Travel Time (s)		12.0			9.9			13.6			11.4	
Confl. Peds. (#/hr)	11	12.0	15	15	5.5	11	21	10.0	24	24	11.7	21
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	2%	2%	0.50	0.30	1%	0.30	0.30	0.30	0.30	0.30	0.50	0.50
Adj. Flow (vph)	155	810	38	46	788	22	47	118	34	24	136	297
Shared Lane Traffic (%)	100	010	30	70	700	22	7/	110	J-T	27	100	231
Lane Group Flow (vph)	0	1003	0	0	856	0	47	152	0	24	136	297
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Loit	0.0	rtigit	Loit	0.0	rtigitt	Loit	3.6	rtigit	Loit	3.6	rugiit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		1.0			1.0			1.0			1.0	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25	1.00	15	25	1.00	15	25	1.00	15	25	1.00	15
Number of Detectors	1	2	10	1	2	10	1	2	10	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OI · LX	OI · EX		OI LX	OI · LX		OI LX	OI · LX		OI LX	OI · LX	OI LX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4		0.0	9.4	0.0
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OI. LX			O1 · L∧			OI. LX			O1. LX	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
DOTOGO Z EXTERIO (3)		0.0			0.0			0.0			0.0	

	۶	-	•	1	-	•	1	†	1	1	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	pm+ov
Protected Phases	7	4		3	8			2			6	7
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		6	6	7
Switch Phase												
Minimum Initial (s)	5.0	30.0		5.0	30.0		27.0	27.0		27.0	27.0	5.0
Minimum Split (s)	11.0	36.0		11.0	36.0		33.0	33.0		33.0	33.0	11.0
Total Split (s)	11.0	36.0		11.0	36.0		33.0	33.0		33.0	33.0	11.0
Total Split (%)	13.8%	45.0%		13.8%	45.0%		41.3%	41.3%		41.3%	41.3%	13.8%
Maximum Green (s)	6.5	30.0		7.0	30.0		27.0	27.0		27.0	27.0	6.5
Yellow Time (s)	3.5	4.0		3.0	4.0		4.0	4.0		4.0	4.0	3.5
All-Red Time (s)	1.0	2.0		1.0	2.0		2.0	2.0		2.0	2.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	4.5
Lead/Lag	Lead	Lead		Lag	Lag							Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	None
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)		15.0			19.0		17.0	17.0		17.0	17.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)		40.6			30.0		27.4	27.4		27.4	27.4	35.0
Actuated g/C Ratio		0.51			0.38		0.34	0.34		0.34	0.34	0.44
v/c Ratio		0.92			0.77		0.11	0.24		0.06	0.21	0.39
Control Delay		32.1			16.3		19.1	17.6		18.4	19.8	8.8
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Delay		32.1			16.3		19.1	17.6		18.4	19.8	8.8
LOS		С			В		В	В		В	В	Α
Approach Delay		32.1			16.3			18.0			12.6	
Approach LOS		С			В			В			В	
Queue Length 50th (m)		54.7			19.0		5.1	14.7		2.5	15.1	15.0
Queue Length 95th (m)		#87.4			50.4		12.7	28.8		7.8	28.6	30.9
Internal Link Dist (m)		142.0			113.0			164.2			134.7	
Turn Bay Length (m)							20.0			20.0		25.0
Base Capacity (vph)		1088			1115		429	638		422	651	766
Starvation Cap Reductn		0			0		0	0		0	0	0
Spillback Cap Reductn		0			0		0	0		0	0	0
Storage Cap Reductn		0			0		0	0		0	0	0
Reduced v/c Ratio		0.92			0.77		0.11	0.24		0.06	0.21	0.39

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 10 (13%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 90

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.92

Intersection Signal Delay: 22.1

Intersection LOS: C

03-21-2023

Intersection Capacity Utilization 104.4% ICU Level of Service G Analysis Period (min) 15 # 95th percentile volume exceeds capacity, queue may be longer. Queue shown is maximum after two cycles. Splits and Phases: 1: 2nd Avenue East & Highway 6 # Ø2 (R) # Ø6 (R) # Ø8

	۶	→	*	•	+	•	1	1	~	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			414		7	ĵ.			ર્ન	7
Traffic Volume (vph)	92	692	51	35	644	33	53	129	52	25	100	139
Future Volume (vph)	92	692	51	35	644	33	53	129	52	25	100	139
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	0.0		35.0
Storage Lanes	0.0		0.0	0.0		0.0	1		0.0	0.0		1
Taper Length (m)	7.5		•	7.5		•	7.5		•	7.5		•
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.00	1.00	0.00	0.00	1.00	0.00	0.99	0.99	1.00	1.00	1.00	0.97
Frt		0.991			0.993		0.00	0.957			1.00	0.850
Flt Protected		0.995			0.998		0.950	0.001			0.990	0.000
Satd. Flow (prot)	0	3494	0	0	3546	0	1805	1737	0	0	1823	1583
Flt Permitted	U	0.703	0	U	0.871	U	0.674	1101	0	U	0.925	1000
Satd. Flow (perm)	0	2467	0	0	3094	0	1266	1737	0	0	1702	1543
Right Turn on Red	U	2401	Yes	U	JUJ4	Yes	1200	1101	Yes	U	1702	Yes
Satd. Flow (RTOR)		10	163		7	163		26	163			184
Link Speed (k/h)		50			50			50			50	104
Link Distance (m)		137.0			165.6			160.8			431.4	
Travel Time (s)		9.9			11.9			11.6			31.1	
Confl. Peds. (#/hr)	10	9.9	17	17	11.9	10	14	11.0	6	6	31.1	14
\	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Peak Hour Factor												
Heavy Vehicles (%)	7% 96	1%	0%	9%	0%	6%	0%	5% 134	2% 54	0% 26	4% 104	2%
Adj. Flow (vph)	90	721	53	36	671	34	55	134	54	20	104	145
Shared Lane Traffic (%)	0	070	^		711	^		400	^	0	420	4.45
Lane Group Flow (vph)	0	870	0	0	741	0	55 No.	188	0	0	130	145
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25	0	15	25	0	15	25	0	15	25	0	15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	٠	-	*	•	•	*	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	Perm
Protected Phases	7	4		3	8			2			6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		6	6	6
Switch Phase												
Minimum Initial (s)	5.0	25.0		5.0	25.0		25.0	25.0		25.0	25.0	25.0
Minimum Split (s)	11.0	31.0		11.0	31.0		31.0	31.0		31.0	31.0	31.0
Total Split (s)	11.0	38.0		11.0	38.0		31.0	31.0		31.0	31.0	31.0
Total Split (%)	13.8%	47.5%		13.8%	47.5%		38.8%	38.8%		38.8%	38.8%	38.8%
Maximum Green (s)	6.5	32.0		6.5	32.0		25.0	25.0		25.0	25.0	25.0
Yellow Time (s)	3.5	4.0		3.5	4.0		4.0	4.0		4.0	4.0	4.0
All-Red Time (s)	1.0	2.0		1.0	2.0		2.0	2.0		2.0	2.0	2.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)		6.0			6.0		6.0	6.0			6.0	6.0
Lead/Lag	Lag	Lag		Lead	Lead							
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	C-Max
Walk Time (s)		10.0			10.0		10.0	10.0		10.0	10.0	10.0
Flash Dont Walk (s)		15.0			15.0		15.0	15.0		15.0	15.0	15.0
Pedestrian Calls (#/hr)		0			0		0	0		0	0	0
Act Effct Green (s)		33.5			33.5		34.5	34.5			34.5	34.5
Actuated g/C Ratio		0.42			0.42		0.43	0.43			0.43	0.43
v/c Ratio		0.84			0.57		0.10	0.25			0.18	0.19
Control Delay		14.4			6.7		17.3	15.5			17.2	2.3
Queue Delay		0.0			0.0		0.0	0.0			0.0	0.0
Total Delay		14.4			6.7		17.3	15.5			17.2	2.3
LOS		В			Α		В	В			В	Α
Approach Delay		14.4			6.7			15.9			9.4	
Approach LOS		В			Α			В			Α	
Queue Length 50th (m)		22.8			10.2		5.0	15.7			12.4	0.0
Queue Length 95th (m)		m14.4			4.8		14.6	35.7			28.5	7.4
Internal Link Dist (m)		113.0			141.6			136.8			407.4	
Turn Bay Length (m)							15.0					35.0
Base Capacity (vph)		1100			1376		545	763			733	770
Starvation Cap Reductn		0			0		0	0			0	0
Spillback Cap Reductn		0			0		0	0			0	0
Storage Cap Reductn		0			0		0	0			0	0
Reduced v/c Ratio		0.79			0.54		0.10	0.25			0.18	0.19
l-tti 0												

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 16 (20%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.84

Intersection Signal Delay: 11.2 Intersection LOS: B

Intersection Capacity Utilization 86.2% ICU Level of Service E Analysis Period (min) 15 m Volume for 95th percentile queue is metered by upstream signal. Splits and Phases: 2: 3rd Avenue East & Highway 6 ÿ3 104 Ø2 (R) Ø6 (R) Ø8

Synchro 11 Report C.F. Crozier & Associates D.B. Page 6

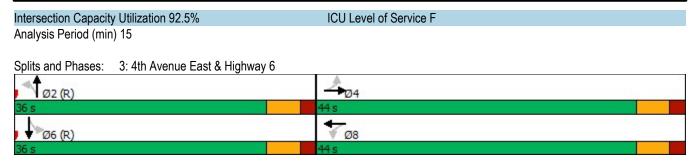
	۶	→	•	1	+	•	1	†	~	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			414		*	ĵ»		7	ĵ»	
Traffic Volume (vph)	23	736	10	54	676	39	15	42	79	17	42	21
Future Volume (vph)	23	736	10	54	676	39	15	42	79	17	42	21
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	10.0		0.0	5.0		0.0
Storage Lanes	0.0		0.0	0.0		0.0	1		0.0	1		0.0
Taper Length (m)	7.5		· ·	7.5			7.5			7.5		· ·
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.00	1.00	0.00	0.00	1.00	0.00	0.99	0.99	1.00	1.00	0.99	1.00
Frt		0.998			0.992		0.00	0.902		1.00	0.949	
Flt Protected		0.998			0.996		0.950	0.002		0.950	0.010	
Satd. Flow (prot)	0	3490	0	0	3526	0	1805	1695	0	1805	1768	0
Flt Permitted	U	0.913	0	U	0.805	U	0.715	1000	0	0.677	1700	O
Satd. Flow (perm)	0	3192	0	0	2849	0	1349	1695	0	1281	1768	0
Right Turn on Red	U	0102	Yes	U	2043	Yes	1073	1033	Yes	1201	1700	Yes
Satd. Flow (RTOR)		2	163		9	163		81	163		22	163
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		165.6			291.5			153.7			342.7	
Travel Time (s)		11.9			21.0			11.1			24.7	
Confl. Peds. (#/hr)	8	11.9	10	10	21.0	8	9	11.1	6	6	24.1	9
\	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Peak Hour Factor			0.97		1%					0.97		
Heavy Vehicles (%)	4% 24	3%	10%	2% 56		0%	0%	0% 43	0% 81	18	2% 43	0% 22
Adj. Flow (vph)	24	759	10	50	697	40	15	43	01	10	43	22
Shared Lane Traffic (%)	^	700	^		700	^	4.5	404	^	40	0.5	0
Lane Group Flow (vph)	0	793	0	0	793	0	15	124	0	18 No.	65 No.	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25	0	15	25	0	15	25	0	15	25	0	15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	۶	-	*	1	•	•	1	†	1	1	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	33.0	33.0		33.0	33.0		27.0	27.0		27.0	27.0	
Minimum Split (s)	39.0	39.0		39.0	39.0		33.0	33.0		33.0	33.0	
Total Split (s)	44.0	44.0		44.0	44.0		36.0	36.0		36.0	36.0	
Total Split (%)	55.0%	55.0%		55.0%	55.0%		45.0%	45.0%		45.0%	45.0%	
Maximum Green (s)	38.0	38.0		38.0	38.0		30.0	30.0		30.0	30.0	
Yellow Time (s)	4.0	4.0		4.0	4.0		4.0	4.0		4.0	4.0	
All-Red Time (s)	2.0	2.0		2.0	2.0		2.0	2.0		2.0	2.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		6.0			6.0		6.0	6.0		6.0	6.0	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	10.0	10.0		10.0	10.0		10.0	10.0		10.0	10.0	
Flash Dont Walk (s)	23.0	23.0		23.0	23.0		17.0	17.0		17.0	17.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		33.2			33.2		34.8	34.8		34.8	34.8	
Actuated g/C Ratio		0.42			0.42		0.44	0.44		0.44	0.44	
v/c Ratio		0.60			0.67		0.03	0.16		0.03	0.08	
Control Delay		17.6			22.1		13.3	6.4		13.4	10.1	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		17.6			22.1		13.3	6.4		13.4	10.1	
LOS		В			С		В	Α		В	В	
Approach Delay		17.6			22.1			7.2			10.8	
Approach LOS		В			С			Α			В	
Queue Length 50th (m)		30.4			52.0		1.3	3.8		1.6	3.8	
Queue Length 95th (m)		49.3			70.8		4.8	13.7		5.5	11.1	
Internal Link Dist (m)		141.6			267.5			129.7			318.7	
Turn Bay Length (m)							10.0			5.0		
Base Capacity (vph)		1517			1358		587	783		557	781	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.52			0.58		0.03	0.16		0.03	0.08	

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80


Offset: 8 (10%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.67

Intersection Signal Delay: 18.4 Intersection LOS: B

D.B. Page 9

	٠	→	*	1	←	1	1	1	~	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	23	9	13	3	13	7	9	241	4	2	248	25
Future Volume (Veh/h)	23	9	13	3	13	7	9	241	4	2	248	25
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (vph)	24	9	13	3	13	7	9	248	4	2	256	26
Pedestrians		8			8			5			5	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	568	559	282	572	570	263	290			260		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	568	559	282	572	570	263	290			260		
tC, single (s)	7.1	6.6	6.2	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.1	3.3	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	94	98	98	99	97	99	99			100		
cM capacity (veh/h)	411	412	753	408	424	772	1209			1307		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	46	23	261	284								
Volume Left	24	3	9	2								
Volume Right	13	7	4	26								
cSH	472	489	1209	1307								
Volume to Capacity	0.10	0.05	0.01	0.00								
Queue Length 95th (m)	2.6	1.2	0.2	0.0								
Control Delay (s)	13.4	12.7	0.3	0.1								
Lane LOS	В	В	A	Α								
Approach Delay (s)	13.4	12.7	0.3	0.1								
Approach LOS	В	В		V								
Intersection Summary												
Average Delay			1.7									
Intersection Capacity Utiliza	tion		33.9%	IC	U Level	of Service			Α			
Analysis Period (min)			15									

2028 Future Background P.M. Optimized 03-21-2023

	٠	→	*	1	—	1	1	†	~	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	7	0	9	1	6	3	10	94	0	7	65	8
Future Volume (Veh/h)	7	0	9	1	6	3	10	94	0	7	65	8
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	9	0	11	1	7	4	12	115	0	9	79	10
Pedestrians		10			12			3			3	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)								343				
pX, platoon unblocked												
vC, conflicting volume	262	263	97	267	268	130	99			127		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	262	263	97	267	268	130	99			127		
tC, single (s)	7.4	6.5	6.2	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.8	4.0	3.3	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	99	100	99	100	99	100	99			99		
cM capacity (veh/h)	602	625	954	657	621	914	1427			1457		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	20	12	127	98								
Volume Left	9	1	12	9								
Volume Right	11	4	0	10								
cSH	755	698	1427	1457								
Volume to Capacity	0.03	0.02	0.01	0.01								
Queue Length 95th (m)	0.7	0.4	0.2	0.1								
Control Delay (s)	9.9	10.2	0.8	0.7								
Lane LOS	A	В	A	A								
Approach Delay (s)	9.9	10.2	0.8	0.7								
Approach LOS	Α	В										
Intersection Summary												
Average Delay			1.9									
Intersection Capacity Utiliza	ition		20.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	٠	→	*	1	—		4	†	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	35	7	8	2	12	7	9	258	3	1	266	29
Future Volume (Veh/h)	35	7	8	2	12	7	9	258	3	1	266	29
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	37	7	8	2	13	7	9	272	3	1	280	31
Pedestrians		10			10			6			6	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			1			1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	618	610	312	616	624	290	321			285		
vC1, stage 1 conf vol		0.0	V	0.0	V = .		<u></u>					
vC2, stage 2 conf vol												
vCu, unblocked vol	618	610	312	616	624	290	321			285		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)	• • • • • • • • • • • • • • • • • • • •	0.0	0.2		0.0	0.2						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	90	98	99	99	97	99	99			100		
cM capacity (veh/h)	374	402	724	383	394	744	1240			1278		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1			1210			1210		
Volume Total	52	22	284	312								
Volume Left	37	2	9	1								
Volume Right	8	7	3	31								
cSH	408	462	1240	1278								
Volume to Capacity	0.13	0.05	0.01	0.00								
Queue Length 95th (m)	3.5	1.2	0.2	0.0								
Control Delay (s)	15.1	13.2	0.3	0.0								
Lane LOS	C	В	Α	Α								
Approach Delay (s)	15.1	13.2	0.3	0.0								
Approach LOS	С	В										
Intersection Summary												
Average Delay			1.8									
Intersection Capacity Utiliza	ation		36.9%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	*	•	—	•	1	1	~	/	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414		7	1		7	^	7
Traffic Volume (vph)	131	768	62	38	661	30	34	130	52	24	75	204
Future Volume (vph)	131	768	62	38	661	30	34	130	52	24	75	204
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	20.0		0.0	20.0		25.0
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (m)	7.5			7.5			7.5			10.0		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			1.00		0.96	0.98		0.96		0.95
Frt		0.990			0.994			0.957				0.850
Flt Protected		0.993			0.997		0.950			0.950		
Satd. Flow (prot)	0	3532	0	0	3566	0	1805	1785	0	1736	1900	1615
Flt Permitted	-	0.604	-		0.850	•	0.704			0.603		10.10
Satd. Flow (perm)	0	2144	0	0	3038	0	1287	1785	0	1061	1900	1528
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		13			8			24				168
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		166.0			137.0			188.2			158.7	
Travel Time (s)		12.0			9.9			13.6			11.4	
Confl. Peds. (#/hr)	27		25	25	0.0	27	32		40	40		32
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	0%	0%	4%	0%	0%
Adj. Flow (vph)	141	826	67	41	711	32	37	140	56	26	81	219
Shared Lane Traffic (%)		020	0.			- U	U.	110			<u> </u>	2.0
Lane Group Flow (vph)	0	1034	0	0	784	0	37	196	0	26	81	219
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25	1.00	15	25	1.00	15	25	1.00	15	25	1.00	15
Number of Detectors	1	2		1	2		1	2	.0	1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	CI+Ex
Detector 1 Channel	OI LX	OI · LX		OI · LX	OI. LX		OI LX	OI LX		OI · LX	OI LX	OILLX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4		0.0	9.4	0.0
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
` ,		CI+Ex			CI+Ex			CI+Ex			Cl+Ex	
Detector 2 Type		UI+EX			UI+EX			UI+EX			OI+EX	
Detector 2 Channel		0.0			0.0			0.0			0.0	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	•	-	*	1	←	•	1	†	1	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	pm+ov
Protected Phases	7	4		3	8			2			6	7
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		6	6	7
Switch Phase												
Minimum Initial (s)	3.5	5.0		5.0	5.0		5.0	5.0		5.0	5.0	3.5
Minimum Split (s)	8.0	22.5		9.5	22.5		22.5	22.5		22.5	22.5	8.0
Total Split (s)	9.0	47.0		9.5	47.5		23.5	23.5		23.5	23.5	9.0
Total Split (%)	11.3%	58.8%		11.9%	59.4%		29.4%	29.4%		29.4%	29.4%	11.3%
Maximum Green (s)	4.5	42.5		5.0	43.0		19.0	19.0		19.0	19.0	4.5
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		4.5			4.5		4.5	4.5		4.5	4.5	4.5
Lead/Lag	Lead	Lead		Lag	Lag							Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	None
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)		40.2			31.2		30.8	30.8		30.8	30.8	35.3
Actuated g/C Ratio		0.50			0.39		0.38	0.38		0.38	0.38	0.44
v/c Ratio		0.89			0.66		0.07	0.28		0.06	0.11	0.28
Control Delay		27.3			11.4		17.6	17.0		17.6	17.6	4.8
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Delay		27.3			11.4		17.6	17.0		17.6	17.6	4.8
LOS		С			В		В	В		В	В	Α
Approach Delay		27.3			11.4			17.1			9.0	
Approach LOS		С			В			В			Α	
Queue Length 50th (m)		53.6			13.0		3.8	19.1		2.7	8.5	4.2
Queue Length 95th (m)		#74.3			31.8		10.3	35.3		8.1	17.9	16.0
Internal Link Dist (m)		142.0			113.0			164.2			134.7	
Turn Bay Length (m)							20.0			20.0		25.0
Base Capacity (vph)		1223			1636		495	701		407	730	772
Starvation Cap Reductn		0			0		0	0		0	0	0
Spillback Cap Reductn		0			0		0	0		0	0	0
Storage Cap Reductn		0			0		0	0		0	0	0
Reduced v/c Ratio		0.85			0.48		0.07	0.28		0.06	0.11	0.28

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80

Offset: 2 (3%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 70

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.89

Intersection Signal Delay: 18.5 Intersection LOS: B

Intersection Capacity Utilization 78.8%

Analysis Period (min) 15

95th percentile volume exceeds capacity, queue may be longer.

Queue shown is maximum after two cycles.

Splits and Phases: 1: 2nd Avenue East & Highway 6

7 s

9.5 s

9.5 s

47.5 s

47.5 s

	۶	→	*	•	←	•	1	1	~	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			414		7	1			4	7
Traffic Volume (vph)	51	732	62	29	588	33	39	94	66	29	95	102
Future Volume (vph)	51	732	62	29	588	33	39	94	66	29	95	102
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	0.0		35.0
Storage Lanes	0		0.0	0.0		0.0	1		0.0	0.0		1
Taper Length (m)	7.5		, and the second	7.5			7.5			7.5		•
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.00	1.00	0.00	0.00	1.00	0.00	0.98	0.99	1.00	1.00	1.00	0.96
Frt		0.989			0.992		0.00	0.938			1.00	0.850
Flt Protected		0.997			0.998		0.950	0.000			0.989	0.000
Satd. Flow (prot)	0	3536	0	0	3542	0	1805	1718	0	0	1811	1553
Flt Permitted	U	0.856	0	U	0.869	U	0.677	17 10	0	U	0.925	1000
Satd. Flow (perm)	0	3034	0	0	3084	0	1260	1718	0	0	1687	1498
Right Turn on Red	U	JUJ4	Yes	U	J004	Yes	1200	17 10	Yes	U	1007	Yes
Satd. Flow (RTOR)		12	163		8	163		43	163			143
Link Speed (k/h)		50			50			50			50	140
Link Distance (m)		137.0			165.6			160.8			431.4	
Travel Time (s)		9.9			11.9			11.6			31.1	
Confl. Peds. (#/hr)	12	9.9	17	17	11.9	12	18	11.0	16	16	31.1	18
\	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Peak Hour Factor												
Heavy Vehicles (%)	4%	0%	0% 63	0%	0%	13%	0%	4%	0% 67	3% 29	4% 96	4%
Adj. Flow (vph)	52	739	03	29	594	33	39	95	07	29	90	103
Shared Lane Traffic (%)	0	054	^	0	050	^	20	400	^	0	405	400
Lane Group Flow (vph)	0	854	0	0	656	0	39	162	0	0	125	103
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25	0	15	25	0	15	25	0	15	25	0	15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	۶	-	•	1	•	•	1	†	1	1	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	Perm
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.5	22.5		9.5	22.5		22.5	22.5		9.5	22.5	22.5
Total Split (s)	9.5	35.0		9.5	35.0		26.0	26.0		9.5	35.5	35.5
Total Split (%)	11.9%	43.8%		11.9%	43.8%		32.5%	32.5%		11.9%	44.4%	44.4%
Maximum Green (s)	5.0	30.5		5.0	30.5		21.5	21.5		5.0	31.0	31.0
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)		4.5			4.5		4.5	4.5			4.5	4.5
Lead/Lag	Lag	Lag		Lead	Lead		Lead	Lead		Lag		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		None	C-Max	C-Max
Walk Time (s)		7.0			7.0		7.0	7.0			7.0	7.0
Flash Dont Walk (s)		11.0			11.0		11.0	11.0			11.0	11.0
Pedestrian Calls (#/hr)		0			0		0	0			0	0
Act Effct Green (s)		29.2			29.2		41.8	41.8			41.8	41.8
Actuated g/C Ratio		0.36			0.36		0.52	0.52			0.52	0.52
v/c Ratio		0.77			0.58		0.06	0.18			0.14	0.12
Control Delay		18.6			9.3		12.0	9.3			12.1	1.5
Queue Delay		0.0			0.0		0.0	0.0			0.0	0.0
Total Delay		18.6			9.3		12.0	9.3			12.1	1.5
LOS		В			Α		В	Α			В	Α
Approach Delay		18.6			9.3			9.8			7.3	
Approach LOS		В			Α			Α			Α	
Queue Length 50th (m)		29.6			8.5		2.9	9.2			9.7	0.0
Queue Length 95th (m)		m30.8			11.2		9.2	23.1			22.5	4.6
Internal Link Dist (m)		113.0			141.6			136.8			407.4	
Turn Bay Length (m)							15.0					35.0
Base Capacity (vph)		1224			1242		658	918			881	851
Starvation Cap Reductn		0			0		0	0			0	0
Spillback Cap Reductn		0			0		0	0			0	0
Storage Cap Reductn		0			0		0	0			0	0
Reduced v/c Ratio		0.70			0.53		0.06	0.18			0.14	0.12

Area Type: Other

Cycle Length: 80

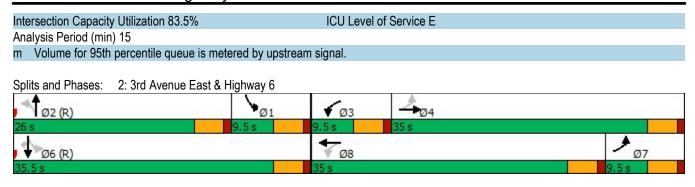
Actuated Cycle Length: 80

Offset: 74 (93%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 65

D.B.

Control Type: Actuated-Coordinated


Maximum v/c Ratio: 0.77

Intersection Signal Delay: 13.2

C.F. Crozier & Associates

Intersection LOS: B

Synchro 11 Report Page 5

Synchro 11 Report C.F. Crozier & Associates D.B. Page 6

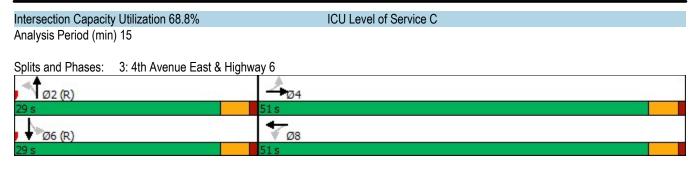
Lane Corolly Lane Configurations		۶	→	*	•	+	•	1	†	~	-	↓	4
Traffic Volume (vph)	Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Traffic Volume (vph)	Lane Configurations		413			413		*	T _a		*	T _a	
Future Volume (vph)		20		7	39		29			61			12
Ideal Flow (yphp I)				7									
Storage Langth (m)	· · ·												
Storage Lanes	,								,,,,,				
Taper Length (m)													
Lane Unit Factor							•			•	7.5		•
Ped Bike Factor			0.95	0.95		0.95	0.95		1 00	1 00		1 00	1 00
Firth		0.00		0.00	0.00		0.00			1.00			1.00
Fit Protected								0.00			0.00		
Satd. Flow (prot)								0.950	0.002		0.950	0.012	
Fit Permitted 0.929		0		0	0		0		1646	0		1774	0
Satd. Flow (perm) 0 3349 0 0 2836 0 1386 1646 0 1329 1774 0		0		U	U		U		10-10	0		1117	O
Right Turn on Red		0		n	0		0		1646	n		1774	0
Satd. Flow (RTOR)		U	0040		U	2000		1300	1040		1023	1117	
Link Speed (k/h)			2	163		٥	163		62	163		12	163
Link Distance (m)													
Travel Time (s)													
Confil Peds. (#/hr)	` ,												
Peak Hour Factor		0	11.9	12	12	21.0	0	0	11.1	0	0	24.1	0
Heavy Vehicles (%)	\ /		0.00			0.00			0.00			0.00	
Adj. Flow (vph) 20 816 7 40 646 30 6 17 62 20 19 12													
Shared Lane Traffic (%) Lane Group Flow (vph) 0 843 0 0 0 716 0 6 79 0 20 31 0 0 20 20 31 0 0 20 20 31 0 0 20 20 31 0 0 20 20 31 0 0 20 20 31 0 0 20 20 20 20 20 20													
Lane Group Flow (vph)		20	816		40	646	30	б	17	62	20	19	12
Enter Blocked Intersection No No No No No No No			0.40	_	0	740	0	0	70		00	0.4	0
Left Left Left Right Left Right Left Right Left Right Left Left Right Left Right Left Right Left Right Median Width(m) 0.0 0													
Median Width(m) 0.0 0.0 3.6 3.6 Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.00 1													
Link Offset(m) 0.0 0.0 0.0 0.0 Crosswalk Width(m) 4.8 4.8 4.8 4.8 Two way Left Turn Lane Headway Factor 1.00<		Left		Right	Left		Right	Left		Right	Left		Right
Crosswalk Width(m)													
Two way Left Turn Lane Headway Factor 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.0													
Headway Factor 1.00	()		4.8			4.8			4.8			4.8	
Turning Speed (k/h) 25 15 25 15 25 15 25 15 Number of Detectors 1 2 1 2 1 2 1 2 Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0		4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Number of Detectors 1 2 1 2 1 2 1 2 Detector Template Left Thru Left Thru Left Thru Left Thru Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 Detector 1 Size(m) 2.0 0.6 2.0 0.0 0.0 <td></td> <td></td> <td>1.00</td> <td></td> <td></td> <td>1.00</td> <td></td> <td></td> <td>1.00</td> <td></td> <td></td> <td>1.00</td> <td></td>			1.00			1.00			1.00			1.00	
Detector Template			_	15			15			15		_	15
Leading Detector (m) 2.0 10.0 2.0 10.0 2.0 10.0 Trailing Detector (m) 0.0													
Trailing Detector (m) 0.0													
Detector 1 Position(m) 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.6 2.0 0.0	. ,												
Detector 1 Size(m) 2.0 0.6 2.0 0.6 2.0 0.6 Detector 1 Type CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex CI+Ex Detector 1 Channel Detector 1 Extend (s) 0.0													
Detector 1 Type CI+Ex													
Detector 1 Channel Detector 1 Extend (s) 0.0 <													
Detector 1 Extend (s) 0.0	• •	Cl+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	Cl+Ex	
Detector 1 Queue (s) 0.0													
Detector 1 Delay (s) 0.0	Detector 1 Extend (s)				0.0			0.0				0.0	
Detector 2 Position(m) 9.4 9.4 9.4 Detector 2 Size(m) 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex Detector 2 Channel CI+Ex CI+Ex CI+Ex	Detector 1 Queue (s)										0.0	0.0	
Detector 2 Size(m) 0.6 0.6 0.6 0.6 Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel CI+Ex CI+Ex CI+Ex	Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel	Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Type CI+Ex CI+Ex CI+Ex CI+Ex Detector 2 Channel	Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Channel													
	Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	•	-	*	1	•	*	1	†	1	-	ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	51.0	51.0		51.0	51.0		29.0	29.0		29.0	29.0	
Total Split (%)	63.8%	63.8%		63.8%	63.8%		36.3%	36.3%		36.3%	36.3%	
Maximum Green (s)	46.5	46.5		46.5	46.5		24.5	24.5		24.5	24.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.5			4.5		4.5	4.5		4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		27.9			27.9		43.1	43.1		43.1	43.1	
Actuated g/C Ratio		0.35			0.35		0.54	0.54		0.54	0.54	
v/c Ratio		0.72			0.72		0.01	0.09		0.03	0.03	
Control Delay		20.6			26.2		11.3	4.9		11.2	8.3	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		20.6			26.2		11.3	4.9		11.2	8.3	
LOS		С			С		В	Α		В	Α	
Approach Delay		20.6			26.2			5.3			9.5	
Approach LOS		С			С			Α			Α	
Queue Length 50th (m)		31.4			51.1		0.4	1.2		1.4	1.3	
Queue Length 95th (m)		34.2			60.1		2.6	8.8		5.5	6.3	
Internal Link Dist (m)		141.6			267.5			129.7			318.7	
Turn Bay Length (m)							10.0			5.0		
Base Capacity (vph)		1947			1652		746	914		715	960	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.43			0.43		0.01	0.09		0.03	0.03	

Area Type: Other

Cycle Length: 80

Actuated Cycle Length: 80


Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 45

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.72

Intersection Signal Delay: 21.8 Intersection LOS: C

	٠	→	•	1	•	•	4	1	-	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	34	4	6	6	8	6	3	169	6	8	214	7
Future Volume (vph)	34	4	6	6	8	6	3	169	6	8	214	7
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.982			0.959			0.996			0.996	
Flt Protected		0.962			0.985			0.999			0.998	
Satd. Flow (prot)	0	1795	0	0	1795	0	0	1838	0	0	1889	0
Flt Permitted		0.962			0.985			0.999			0.998	
Satd. Flow (perm)	0	1795	0	0	1795	0	0	1838	0	0	1889	0
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		190.3			131.6			431.4			0.0	
Travel Time (s)		13.7			9.5			31.1			0.0	
Confl. Peds. (#/hr)	5					5	8		6	6		8
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	3%	0%	0%	0%	0%
Adj. Flow (vph)	36	4	6	6	8	6	3	178	6	8	225	7
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	46	0	0	20	0	0	187	0	0	240	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Free			Free	
l-t												

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 28.3%

Analysis Period (min) 15

ICU Level of Service A

	٠	→	*	1	+	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	34	4	6	6	8	6	3	169	6	8	214	7
Future Volume (Veh/h)	34	4	6	6	8	6	3	169	6	8	214	7
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	36	4	6	6	8	6	3	178	6	8	225	7
Pedestrians		8			8			5			5	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	454	450	242	452	451	194	240			192		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	454	450	242	452	451	194	240			192		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	93	99	99	99	98	99	100			99		
cM capacity (veh/h)	496	496	794	500	496	843	1330			1384		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	46	20	187	240								
Volume Left	36	6	3	8								
Volume Right	6	6	6	7								
cSH	521	568	1330	1384								
Volume to Capacity	0.09	0.04	0.00	0.01								
Queue Length 95th (m)	2.3	0.9	0.1	0.1								
Control Delay (s)	12.6	11.6	0.1	0.3								
Lane LOS	В	В	Α	Α								
Approach Delay (s)	12.6	11.6	0.1	0.3								
Approach LOS	В	В										
Intersection Summary												
Average Delay			1.8									
Intersection Capacity Utiliza	ation		28.3%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	-	•	•	•	•	1	†	~	-	ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	11	0	7	6	4	4	6	55	4	9	40	9
Future Volume (vph)	11	0	7	6	4	4	6	55	4	9	40	9
ldeal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.946			0.964			0.993			0.979	
Flt Protected		0.971			0.977			0.995			0.992	
Satd. Flow (prot)	0	1745	0	0	1678	0	0	1842	0	0	1787	0
FIt Permitted		0.971			0.977			0.995			0.992	
Satd. Flow (perm)	0	1745	0	0	1678	0	0	1842	0	0	1787	0
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		131.6			83.8			342.7			197.4	
Travel Time (s)		9.5			6.0			24.7			14.2	
Confl. Peds. (#/hr)	1		5	5		1	1					1
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Heavy Vehicles (%)	0%	0%	0%	0%	25%	0%	20%	0%	0%	0%	2%	12%
Adj. Flow (vph)	12	0	8	7	4	4	7	62	4	10	45	10
Shared Lane Traffic (%)			_			_			_			
Lane Group Flow (vph)	0	20	0	0	15	0	0	73	0	0	65	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25	Chair	15	100	Ctar	100	25	Гиал	100	100	Гиле	15
Sign Control		Stop			Stop			Free			Free	

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 16.8%

Analysis Period (min) 15

ICU Level of Service A

	•	→	*	1	←	•	1	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	11	0	7	6	4	4	6	55	4	9	40	9
Future Volume (Veh/h)	11	0	7	6	4	4	6	55	4	9	40	9
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	12	0	8	7	4	4	7	62	4	10	45	10
Pedestrians		1			1			5			5	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		0			0			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)								343				
pX, platoon unblocked												
vC, conflicting volume	160	152	56	162	155	70	56			67		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	160	152	56	162	155	70	56			67		
tC, single (s)	7.1	6.5	6.2	7.1	6.8	6.2	4.3			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.2	3.3	2.4			2.2		
p0 queue free %	98	100	99	99	99	100	100			99		
cM capacity (veh/h)	791	734	1011	789	688	993	1440			1546		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	20	15	73	65								
Volume Left	12	7	7	10								
Volume Right	8	4	4	10								
cSH	867	802	1440	1546								
Volume to Capacity	0.02	0.02	0.00	0.01								
Queue Length 95th (m)	0.6	0.5	0.1	0.2								
Control Delay (s)	9.3	9.6	0.8	1.2								
Lane LOS	A	A	A	Α								
Approach Delay (s)	9.3	9.6	0.8	1.2								
Approach LOS	A	А	V. V	· · · -								
Intersection Summary												
Average Delay			2.7									
Intersection Capacity Utiliza	ition		16.8%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	٠	→	*	•	-	•	4	1	~	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (vph)	34	2	7	3	2	6	3	203	2	1	219	36
Future Volume (vph)	34	2	7	3	2	6	3	203	2	1	219	36
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Lane Util. Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor												
Frt		0.979			0.926			0.999			0.981	
Flt Protected		0.962			0.987			0.999				
Satd. Flow (prot)	0	1789	0	0	1737	0	0	1860	0	0	1864	0
FIt Permitted		0.962			0.987			0.999				
Satd. Flow (perm)	0	1789	0	0	1737	0	0	1860	0	0	1864	0
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		99.4			102.3			218.3			144.2	
Travel Time (s)		7.2			7.4			15.7			10.4	
Confl. Peds. (#/hr)			3	3			5		8	8		5
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Heavy Vehicles (%)	0%	0%	0%	0%	0%	0%	0%	2%	0%	0%	0%	0%
Adj. Flow (vph)	36	2	7	3	2	6	3	216	2	1	233	38
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	45	0	0	11	0	0	221	0	0	272	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			0.0			0.0	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Sign Control		Stop			Stop			Free			Free	
Intersection Cummery												

Area Type: Other Control Type: Unsignalized

Intersection Capacity Utilization 27.7%

Analysis Period (min) 15

ICU Level of Service A

	٠	→	*	1	+	•	1	†	~	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	34	2	7	3	2	6	3	203	2	1	219	36
Future Volume (Veh/h)	34	2	7	3	2	6	3	203	2	1	219	36
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	36	2	7	3	2	6	3	216	2	1	233	38
Pedestrians		8			8			3			3	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	495	494	263	496	512	228	279			226		
vC1, stage 1 conf vol					<u> </u>		~					
vC2, stage 2 conf vol												
vCu, unblocked vol	495	494	263	496	512	228	279			226		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)		0.0	0.2		0.0	0.2						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	92	100	99	99	100	99	100			100		
cM capacity (veh/h)	473	471	773	471	461	809	1287			1345		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	45	11	221	272								
Volume Left	36	3	3	1								
Volume Right	7	6	2	38								
cSH	503	607	1287	1345								
	0.09	0.02	0.00	0.00								
Volume to Capacity	2.3	0.02	0.00	0.00								
Queue Length 95th (m)	12.9		0.1	0.0								
Control Delay (s)		11.0										
Lane LOS	12.0	11 O	A	Α								
Approach LOS	12.9	11.0	0.1	0.0								
Approach LOS	В	В										
Intersection Summary			4.0									
Average Delay			1.3	, ,								
Intersection Capacity Utiliza	ation		27.7%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	*	•	+	•	1	1	~	/	ļ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		413			4ि		7	ĵ.		¥	^	7
Traffic Volume (vph)	149	868	36	44	786	21	45	113	33	23	131	285
Future Volume (vph)	149	868	36	44	786	21	45	113	33	23	131	285
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	20.0		0.0	20.0		25.0
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (m)	7.5		•	7.5		•	7.5		•	10.0		•
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.00	1.00	0.00	0.00	1.00	0.00	0.97	0.99	1.00	0.97	1.00	0.96
Frt		0.995			0.996		0.01	0.966		0.07		0.850
Flt Protected		0.993			0.997		0.950	0.000		0.950		0.000
Satd. Flow (prot)	0	3492	0	0	3548	0	1805	1816	0	1805	1900	1615
Flt Permitted	U	0.581	0	U	0.834	U	0.660	1010	0	0.636	1500	1010
Satd. Flow (perm)	0	2042	0	0	2967	0	1223	1816	0	1175	1900	1546
Right Turn on Red	U	2072	Yes	U	2301	Yes	1220	1010	Yes	1170	1300	Yes
Satd. Flow (RTOR)		7	163		4	163		14	163			143
Link Speed (k/h)		50			50			50			50	140
Link Distance (m)		166.0			137.0			188.2			158.7	
Travel Time (s)		12.0			9.9			13.6			11.4	
Confl. Peds. (#/hr)	11	12.0	15	15	9.9	11	21	13.0	24	24	11.4	21
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
		2%	0.96	0.96	1%		0.96	0.96	0.96		0.96	
Heavy Vehicles (%)	2%	904	38	46		0% 22	47	118	34	0% 24		0%
Adj. Flow (vph)	155	904	30	40	819	22	47	110	34	24	136	297
Shared Lane Traffic (%)	0	4007	^		007	^	47	450	^	0.4	400	007
Lane Group Flow (vph)	0	1097	0	0	887	0	47	152	0	24	136	297
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00	4.00
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25	0	15	25	0	15	25	0	15	25	0	15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex		Cl+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	٠	-	7	1	•	*	1	1	1	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	pm+ov
Protected Phases	7	4		3	8			2			6	7
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		6	6	7
Switch Phase												
Minimum Initial (s)	3.5	5.0		5.0	5.0		5.0	5.0		5.0	5.0	3.5
Minimum Split (s)	8.0	22.5		9.5	22.5		22.5	22.5		22.5	22.5	8.0
Total Split (s)	14.0	58.0		9.5	53.5		22.5	22.5		22.5	22.5	14.0
Total Split (%)	15.6%	64.4%		10.6%	59.4%		25.0%	25.0%		25.0%	25.0%	15.6%
Maximum Green (s)	9.5	53.5		5.0	49.0		18.0	18.0		18.0	18.0	9.5
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		4.5			4.5		4.5	4.5		4.5	4.5	4.5
Lead/Lag	Lead	Lead		Lag	Lag							Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	None
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)		51.7			41.1		29.3	29.3		29.3	29.3	35.4
Actuated g/C Ratio		0.57			0.46		0.33	0.33		0.33	0.33	0.39
v/c Ratio		0.86			0.65		0.12	0.25		0.06	0.22	0.43
Control Delay		22.6			21.3		23.6	22.4		22.9	24.2	11.0
Queue Delay		0.0			0.2		0.0	0.0		0.0	0.0	0.0
Total Delay		22.6			21.5		23.6	22.4		22.9	24.2	11.0
LOS		С			С		С	С		С	С	В
Approach Delay		22.6			21.5			22.7			15.5	
Approach LOS		С			С			С			В	
Queue Length 50th (m)		56.7			60.4		6.2	18.8		3.1	18.4	17.4
Queue Length 95th (m)		73.2			82.0		14.6	34.5		9.1	33.1	36.6
Internal Link Dist (m)		142.0			113.0			164.2			134.7	
Turn Bay Length (m)							20.0			20.0		25.0
Base Capacity (vph)		1313			1617		398	601		383	619	755
Starvation Cap Reductn		0			196		0	0		0	0	0
Spillback Cap Reductn		0			0		0	0		0	0	0
Storage Cap Reductn		0			0		0	0		0	0	0
Reduced v/c Ratio		0.84			0.62		0.12	0.25		0.06	0.22	0.39

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 88 (98%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 21.0

Intersection LOS: C

Intersection Capacity Utilization 87.4% ICU Level of Service E

Analysis Period (min) 15

Splits and Phases: 1: 2nd Avenue East & Highway 6

October 1: 2nd Avenue East & Highway 6

October 2: 2nd Avenue East & Highway 6

October 3: 2nd Avenue Eas

	ᄼ	-	•	•	•	•	1	1	~	1	Ţ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4T>			414		7	ĵ.			4	7
Traffic Volume (vph)	157	717	51	35	652	95	53	164	52	46	111	161
Future Volume (vph)	157	717	51	35	652	95	53	164	52	46	111	161
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	0.0		35.0
Storage Lanes	0		0	0		0	1		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			0.99		0.98	0.99			1.00	0.97
Frt		0.992			0.982			0.964				0.850
Flt Protected		0.992			0.998		0.950				0.986	
Satd. Flow (prot)	0	3471	0	0	3478	0	1805	1747	0	0	1822	1583
FIt Permitted		0.613			0.871		0.624				0.864	
Satd. Flow (perm)	0	2142	0	0	3036	0	1163	1747	0	0	1594	1528
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		8			22			14				168
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		137.0			165.6			160.8			431.4	
Travel Time (s)		9.9			11.9			11.6			31.1	
Confl. Peds. (#/hr)	10		17	17		10	14		6	6		14
Peak Hour Factor	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96	0.96
Heavy Vehicles (%)	7%	1%	0%	9%	0%	6%	0%	5%	2%	0%	4%	2%
Adj. Flow (vph)	164	747	53	36	679	99	55	171	54	48	116	168
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	964	0	0	814	0	55	225	0	0	164	168
Enter Blocked Intersection	No											
Lane Alignment	Left	Left	Right									
Median Width(m)		0.0			0.0			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		Cl+Ex			CI+Ex			Cl+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	٠	-	7	1	•	*	1	1	1	-	↓	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	Perm
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.5	22.5		9.5	22.5		22.5	22.5		9.5	22.5	22.5
Total Split (s)	9.5	55.0		9.5	55.0		26.0	26.0		9.5	35.5	35.5
Total Split (%)	9.5%	55.0%		9.5%	55.0%		26.0%	26.0%		9.5%	35.5%	35.5%
Maximum Green (s)	5.0	50.5		5.0	50.5		21.5	21.5		5.0	31.0	31.0
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)		4.5			4.5		4.5	4.5			4.5	4.5
Lead/Lag	Lag	Lag		Lead	Lead		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		None	C-Max	C-Max
Walk Time (s)		7.0			7.0		7.0	7.0			7.0	7.0
Flash Dont Walk (s)		11.0			11.0		11.0	11.0			11.0	11.0
Pedestrian Calls (#/hr)		0			0		0	0			0	0
Act Effct Green (s)		52.9			52.9		38.1	38.1			38.1	38.1
Actuated g/C Ratio		0.53			0.53		0.38	0.38			0.38	0.38
v/c Ratio		0.85			0.50		0.12	0.33			0.27	0.25
Control Delay		27.4			15.2		24.4	24.3			25.2	5.1
Queue Delay		1.8			0.0		0.0	0.0			0.0	0.0
Total Delay		29.2			15.2		24.4	24.3			25.2	5.1
LOS		С			В		С	С			С	Α
Approach Delay		29.2			15.2			24.3			15.0	
Approach LOS		С			В			С			В	
Queue Length 50th (m)		80.0			49.6		7.4	30.8			23.4	0.0
Queue Length 95th (m)		96.7			56.6		17.9	55.6			43.7	14.7
Internal Link Dist (m)		113.0			141.6			136.8			407.4	
Turn Bay Length (m)							15.0					35.0
Base Capacity (vph)		1180			1678		442	673			607	685
Starvation Cap Reductn		99			0		0	0			0	0
Spillback Cap Reductn		0			0		0	0			0	0
Storage Cap Reductn		0			0		0	0			0	0
Reduced v/c Ratio		0.89			0.49		0.12	0.33			0.27	0.25

Area Type: Other

Cycle Length: 100

Actuated Cycle Length: 100

Offset: 0 (0%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 80

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.85

Intersection Signal Delay: 21.9

Intersection LOS: C

	۶	→	•	•	←	*	4	1	~	1	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		€Î}			4 14		*	7		*	7>	
Traffic Volume (vph)	48	757	10	54	738	69	15	58	79	27	47	29
Future Volume (vph)	48	757	10	54	738	69	15	58	79	27	47	29
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	10.0		0.0	5.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00		0.99	0.99		0.99	0.99	
Frt		0.998			0.988			0.914			0.942	
Flt Protected		0.997			0.997		0.950			0.950		
Satd. Flow (prot)	0	3485	0	0	3510	0	1805	1716	0	1805	1751	0
Flt Permitted		0.783			0.777		0.706			0.667		
Satd. Flow (perm)	0	2736	0	0	2735	0	1325	1716	0	1258	1751	0
Right Turn on Red			Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			19			75			30	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		165.6			291.5			153.7			342.7	
Travel Time (s)		11.9			21.0			11.1			24.7	
Confl. Peds. (#/hr)	8		10	10		8	9		6	6		9
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Heavy Vehicles (%)	4%	3%	0%	2%	1%	0%	0%	0%	0%	0%	2%	0%
Adj. Flow (vph)	49	780	10	56	761	71	15	60	81	28	48	30
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	839	0	0	888	0	15	141	0	28	78	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0	<u> </u>		0.0			3.6			3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		- .			J. _						J	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
= 5.00.0. = E.Moria (0)		0.0			0.0			0.0			0.0	

	•	→	•	•	←	*	1	†	~	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	60.0	60.0		60.0	60.0		30.0	30.0		30.0	30.0	
Total Split (%)	66.7%	66.7%		66.7%	66.7%		33.3%	33.3%		33.3%	33.3%	
Maximum Green (s)	55.5	55.5		55.5	55.5		25.5	25.5		25.5	25.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.5			4.5		4.5	4.5		4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max		
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		36.0			36.0		45.0	45.0		45.0	45.0	
Actuated g/C Ratio		0.40			0.40		0.50	0.50		0.50	0.50	
v/c Ratio		0.77			0.80		0.02	0.16		0.04	0.09	
Control Delay		27.8			28.9		14.9	8.1		14.9	10.3	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		27.8			28.9		14.9	8.1		14.9	10.3	
LOS		С			С		В	Α		В	В	
Approach Delay		27.8			28.9			8.8			11.5	
Approach LOS		С			С			Α			В	
Queue Length 50th (m)		67.9			72.2		1.3	5.9		2.5	4.3	
Queue Length 95th (m)		74.2			78.8		5.6	19.5		8.6	14.2	
Internal Link Dist (m)		141.6			267.5			129.7			318.7	
Turn Bay Length (m)							10.0			5.0		
Base Capacity (vph)		1687			1693		662	895		629	890	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.50			0.52		0.02	0.16		0.04	0.09	

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 88 (98%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 45

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.80

Intersection Signal Delay: 25.9

Intersection LOS: C

Intersection Capacity Utilization 80.6%

Analysis Period (min) 15

Splits and Phases: 3: 4th Avenue East & Highway 6

\$\int_{\infty} 2 (R)\$

\$\int_{\infty} 2 (R)\$

\$\int_{\infty} 8 (R)\$

\$\infty} 8 (R)\$

	٠	→	*	1	←	1	4	1	-	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	23	9	13	3	13	7	9	403	4	2	302	25
Future Volume (Veh/h)	23	9	13	3	13	7	9	403	4	2	302	25
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97	0.97
Hourly flow rate (vph)	24	9	13	3	13	7	9	415	4	2	311	26
Pedestrians		8			8			5			5	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	790	781	337	794	792	430	345			427		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	790	781	337	794	792	430	345			427		
tC, single (s)	7.1	6.6	6.2	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.1	3.3	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	92	97	98	99	96	99	99			100		
cM capacity (veh/h)	289	306	702	288	317	623	1153			1136		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	46	23	428	339								
Volume Left	24	3	9	2								
Volume Right	13	7	4	26								
cSH	351	367	1153	1136								
Volume to Capacity	0.13	0.06	0.01	0.00								
Queue Length 95th (m)	3.6	1.6	0.2	0.0								
Control Delay (s)	16.8	15.5	0.3	0.1								
Lane LOS	С	С	Α	Α								
Approach Delay (s)	16.8	15.5	0.3	0.1								
Approach LOS	С	С										
Intersection Summary												
Average Delay			1.5									
Intersection Capacity Utiliza	ition		42.5%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	۶	→	•	•	←	•	1	1	~	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	7	0	9	1	6	3	10	164	0	7	88	8
Future Volume (Veh/h)	7	0	9	1	6	3	10	164	0	7	88	8
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82	0.82
Hourly flow rate (vph)	9	0	11	1	7	4	12	200	0	9	107	10
Pedestrians		10			12			3			3	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)								343				
pX, platoon unblocked												
vC, conflicting volume	374	376	125	380	381	215	127			212		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	374	376	125	380	381	215	127			212		
tC, single (s)	7.4	6.5	6.2	7.1	6.5	6.2	4.2			4.1		
tC, 2 stage (s)												
tF (s)	3.8	4.0	3.3	3.5	4.0	3.3	2.3			2.2		
p0 queue free %	98	100	99	100	99	100	99			99		
cM capacity (veh/h)	503	540	921	553	536	820	1394			1357		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	20	12	212	126								
Volume Left	9	1	12	9								
Volume Right	11	4	0	10								
cSH	671	608	1394	1357								
Volume to Capacity	0.03	0.02	0.01	0.01								
Queue Length 95th (m)	0.7	0.5	0.2	0.2								
Control Delay (s)	10.5	11.0	0.5	0.6								
Lane LOS	В	В	A	A								
Approach Delay (s)	10.5	11.0	0.5	0.6								
Approach LOS	В	В	0.0	0.0								
Intersection Summary												
Average Delay			1.4									
Intersection Capacity Utiliza	ation		23.0%	IC	U Level	of Service			Α			
Analysis Period (min)			15	10	.5 25701	J. 001 VIOC			, , , , , , , , , , , , , , , , , , ,			
raidiyolo i ollou (IIIII)			10									

	۶	→	•	•	+	•	1	†	~	1	↓	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	35	7	8	2	12	7	9	264	3	1	284	29
Future Volume (Veh/h)	35	7	8	2	12	7	9	264	3	1	284	29
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	37	7	8	2	13	7	9	278	3	1	299	31
Pedestrians		10			10			6			6	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			1			1	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	644	636	330	642	650	296	340			291		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	644	636	330	642	650	296	340			291		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	90	98	99	99	97	99	99			100		
cM capacity (veh/h)	359	389	706	368	381	739	1220			1272		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	52	22	290	331								
Volume Left	37	2	9	1								
Volume Right	8	7	3	31								
cSH	393	449	1220	1272								
Volume to Capacity	0.13	0.05	0.01	0.00								
Queue Length 95th (m)	3.6	1.2	0.2	0.0								
Control Delay (s)	15.6	13.4	0.3	0.0								
Lane LOS	С	В	А	Α								
Approach Delay (s)	15.6	13.4	0.3	0.0								
Approach LOS	С	В										
Intersection Summary												
Average Delay			1.7									
Intersection Capacity Utiliza	tion		37.3%	IC	U Level	of Service			Α			
Analysis Period (min)			15		2 23.01							
			.,,									

	1	•	†	~	1	 	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		₽			र्स	
Traffic Volume (veh/h)	54	6	270	162	18	276	
Future Volume (Veh/h)	54	6	270	162	18	276	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	59	7	293	176	20	300	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	721	381			469		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	721	381			469		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	85	99			98		
cM capacity (veh/h)	387	666			1093		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	66	469	320				
Volume Left	59	0	20				
Volume Right	7	176	0				
cSH	405	1700	1093				
Volume to Capacity	0.16	0.28	0.02				
Queue Length 95th (m)	4.6	0.0	0.4				
Control Delay (s)	15.6	0.0	0.7				
Lane LOS	C	0.0	Α				
Approach Delay (s)	15.6	0.0	0.7				
Approach LOS	C	0.0	0.1				
Intersection Summary							
Average Delay			1.5				
Intersection Capacity Utiliza	tion		39.3%	IC	U Level c	f Service	
Analysis Period (min)			15				

	۶	*	1	1	Ţ	4	
Movement	EBL	EBR	NBL	NBT	SBT	SBR	
Lane Configurations	¥			र्स	f.		
Traffic Volume (veh/h)	23	2	70	102	79	7	
Future Volume (Veh/h)	23	2	70	102	79	7	
Sign Control	Stop			Free	Free		
Grade	0%			0%	0%		
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	25	2	76	111	86	8	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type				None	None		
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	353	90	94				
vC1, stage 1 conf vol			<u> </u>				
vC2, stage 2 conf vol							
vCu, unblocked vol	353	90	94				
tC, single (s)	6.4	6.2	4.1				
tC, 2 stage (s)		V. <u>–</u>					
tF (s)	3.5	3.3	2.2				
p0 queue free %	96	100	95				
cM capacity (veh/h)	612	968	1500				
Direction, Lane #	EB 1	NB 1	SB 1				
Volume Total	27	187	94				
Volume Left	25	76	0				
Volume Right	2	0	8				
cSH	629	1500	1700				
Volume to Capacity	0.04	0.05	0.06				
Queue Length 95th (m)	1.1	1.3	0.0				
Control Delay (s)	11.0	3.3	0.0				
Lane LOS	В	Α					
Approach Delay (s)	11.0	3.3	0.0				
Approach LOS	В						
Intersection Summary							
Average Delay			3.0				
Intersection Capacity Utiliza	ition		25.9%	IC	U Level o	f Service	
Analysis Period (min)			15	10	.5 201010	. 55, 1100	
Analysis i Gilou (IIIIII)			10				

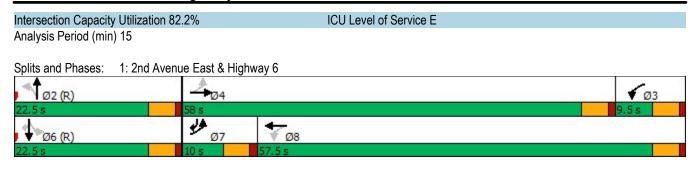
	۶	→	*	•	+	•	1	†	~	-	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414		*	f.		*	↑	7
Traffic Volume (vph)	131	860	62	38	694	30	34	130	52	24	75	204
Future Volume (vph)	131	860	62	38	694	30	34	130	52	24	75	204
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	20.0		0.0	20.0		25.0
Storage Lanes	0		0	0		0	1		0	1		1
Taper Length (m)	7.5			7.5		•	7.5		•	10.0		•
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor	0.00	0.99	0.00	0.00	1.00	0.00	0.96	0.98	1.00	0.96	1.00	0.94
Frt		0.991			0.994		0.00	0.957		0.00		0.850
Flt Protected		0.994			0.998		0.950	0.001		0.950		0.000
Satd. Flow (prot)	0	3539	0	0	3569	0	1805	1782	0	1736	1900	1615
Flt Permitted	•	0.620	J	•	0.840	•	0.704	1702	J	0.576	1000	1010
Satd. Flow (perm)	0	2203	0	0	3002	0	1280	1782	0	1010	1900	1520
Right Turn on Red	0	2200	Yes	0	0002	Yes	1200	1702	Yes	1010	1500	Yes
Satd. Flow (RTOR)		12	100		8	100		20	100			184
Link Speed (k/h)		50			50			50			50	104
Link Distance (m)		166.0			137.0			188.2			158.7	
Travel Time (s)		12.0			9.9			13.6			11.4	
Confl. Peds. (#/hr)	27	12.0	25	25	5.5	27	32	10.0	40	40	11.7	32
Peak Hour Factor	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93	0.93
Heavy Vehicles (%)	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	0.33	4%	0.33	0.33
Adj. Flow (vph)	141	925	67	41	746	32	37	140	56	26	81	219
Shared Lane Traffic (%)	171	323	01	71	740	0Z	- 01	170	30	20	01	213
Lane Group Flow (vph)	0	1133	0	0	819	0	37	196	0	26	81	219
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)	Loit	0.0	rtigit	Loit	0.0	rtigitt	Loit	3.6	rugiit	Loit	3.6	rugiit
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane		4.0			4.0			4.0			4.0	
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25	1.00	15	25	1.00	15	25	1.00	15	25	1.00	15
Number of Detectors	1	2	10	1	2	10	1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel	OI · LX	OI · LX		OI · LX	OI · LX		OI LX	OI LX		OI · LX	OI · LX	OI LX
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4		0.0	9.4	0.0
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		OFFEX			OLITEX			OLITEX			OFFLA	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
Detector 2 Externa (8)		0.0			0.0			0.0			0.0	

	٠	-	7	1	•	*	1	†	1	1	Ţ	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		Perm	NA	pm+ov
Protected Phases	7	4		3	8			2			6	7
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		6	6	7
Switch Phase												
Minimum Initial (s)	3.5	5.0		5.0	5.0		5.0	5.0		5.0	5.0	3.5
Minimum Split (s)	8.0	22.5		9.5	22.5		22.5	22.5		22.5	22.5	8.0
Total Split (s)	10.0	58.0		9.5	57.5		22.5	22.5		22.5	22.5	10.0
Total Split (%)	11.1%	64.4%		10.6%	63.9%		25.0%	25.0%		25.0%	25.0%	11.1%
Maximum Green (s)	5.5	53.5		5.0	53.0		18.0	18.0		18.0	18.0	5.5
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Lost Time (s)		4.5			4.5		4.5	4.5		4.5	4.5	4.5
Lead/Lag	Lead	Lead		Lag	Lag							Lead
Lead-Lag Optimize?	Yes	Yes		Yes	Yes							Yes
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	None
Walk Time (s)		7.0			7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)		11.0			11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)		0			0		0	0		0	0	
Act Effct Green (s)		50.6			40.6		30.4	30.4		30.4	30.4	35.9
Actuated g/C Ratio		0.56			0.45		0.34	0.34		0.34	0.34	0.40
v/c Ratio		0.86			0.60		0.09	0.32		0.08	0.13	0.30
Control Delay		22.3			10.8		22.9	22.7		23.0	22.9	5.3
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	0.0
Total Delay		22.3			10.9		22.9	22.7		23.0	22.9	5.3
LOS		С			В		С	С		С	С	Α
Approach Delay		22.3			10.9			22.7			11.1	
Approach LOS		С			В			С			В	
Queue Length 50th (m)		59.8			17.7		4.7	24.3		3.3	10.5	3.7
Queue Length 95th (m)		75.7			35.4		12.2	43.5		9.6	21.7	17.4
Internal Link Dist (m)		142.0			113.0			164.2			134.7	
Turn Bay Length (m)							20.0			20.0		25.0
Base Capacity (vph)		1396			1771		432	615		341	641	722
Starvation Cap Reductn		0			57		0	0		0	0	0
Spillback Cap Reductn		0			0		0	0		0	0	0
Storage Cap Reductn		0			0		0	0		0	0	0
Reduced v/c Ratio		0.81			0.48		0.09	0.32		0.08	0.13	0.30

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90


Offset: 88 (98%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.86

Intersection Signal Delay: 17.2 Intersection LOS: B

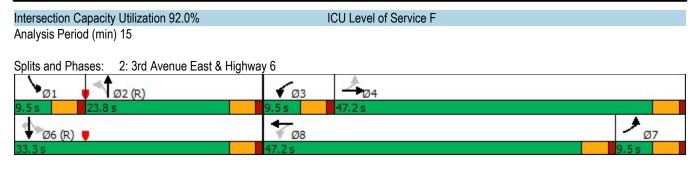
	۶	→	*	•	←	•	1	1	~	/	Ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		414			414		7	1			ર્લ	7
Traffic Volume (vph)	117	758	62	29	597	96	39	130	66	51	108	126
Future Volume (vph)	117	758	62	29	597	96	39	130	66	51	108	126
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	15.0		0.0	0.0		35.0
Storage Lanes	0		0	0		0	1		0	0		1
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		0.99			0.99		0.98	0.99			1.00	0.96
Frt		0.990			0.980			0.949				0.850
Flt Protected		0.994			0.998		0.950				0.984	
Satd. Flow (prot)	0	3520	0	0	3448	0	1805	1735	0	0	1803	1553
Flt Permitted		0.691			0.889		0.646				0.862	
Satd. Flow (perm)	0	2444	0	0	3071	0	1201	1735	0	0	1573	1493
Right Turn on Red			Yes	•		Yes	1_01		Yes			Yes
Satd. Flow (RTOR)		11			26			26				127
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		137.0			165.6			160.8			431.4	
Travel Time (s)		9.9			11.9			11.6			31.1	
Confl. Peds. (#/hr)	12		17	17		12	18		16	16		18
Peak Hour Factor	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99	0.99
Heavy Vehicles (%)	4%	0%	0%	0%	0%	13%	0%	4%	0%	3%	4%	4%
Adj. Flow (vph)	118	766	63	29	603	97	39	131	67	52	109	127
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	947	0	0	729	0	39	198	0	0	161	127
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0			3.6	, i		3.6	, in the second
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	1
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	Right
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	2.0
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	2.0
Detector 1 Type	CI+Ex	Cl+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	CI+Ex
Detector 1 Channel												
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	0.0
Detector 2 Position(m)		9.4			9.4			9.4			9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel												
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	

	٠	-	7	1	•	*	1	†	1	-	↓	4
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	pm+pt	NA		pm+pt	NA		Perm	NA		pm+pt	NA	Perm
Protected Phases	7	4		3	8			2		1	6	
Permitted Phases	4			8			2			6		6
Detector Phase	7	4		3	8		2	2		1	6	6
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	5.0
Minimum Split (s)	9.5	22.5		9.5	22.5		22.5	22.5		9.5	22.5	22.5
Total Split (s)	9.5	47.2		9.5	47.2		23.8	23.8		9.5	33.3	33.3
Total Split (%)	10.6%	52.4%		10.6%	52.4%		26.4%	26.4%		10.6%	37.0%	37.0%
Maximum Green (s)	5.0	42.7		5.0	42.7		19.3	19.3		5.0	28.8	28.8
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	3.5
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	1.0
Lost Time Adjust (s)		0.0			0.0		0.0	0.0			0.0	0.0
Total Lost Time (s)		4.5			4.5		4.5	4.5			4.5	4.5
Lead/Lag	Lag	Lag		Lead	Lead		Lag	Lag		Lead		
Lead-Lag Optimize?	Yes	Yes		Yes	Yes		Yes	Yes		Yes		
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	3.0
Recall Mode	None	None		None	None		C-Max	C-Max		None	C-Max	C-Max
Walk Time (s)		7.0			7.0		7.0	7.0			7.0	7.0
Flash Dont Walk (s)		11.0			11.0		11.0	11.0			11.0	11.0
Pedestrian Calls (#/hr)		0			0		0	0			0	0
Act Effct Green (s)		42.2			42.2		38.8	38.8			38.8	38.8
Actuated g/C Ratio		0.47			0.47		0.43	0.43			0.43	0.43
v/c Ratio		0.82			0.50		0.08	0.26			0.24	0.18
Control Delay		13.3			4.7		19.1	17.4			19.8	4.7
Queue Delay		0.2			0.0		0.0	0.0			0.0	0.0
Total Delay		13.5			4.7		19.1	17.4			19.8	4.7
LOS		В			Α		В	В			В	Α
Approach Delay		13.5			4.7			17.7			13.2	
Approach LOS		В			Α			В			В	
Queue Length 50th (m)		22.7			6.2		4.1	19.4			18.2	0.0
Queue Length 95th (m)		21.5			8.0		12.4	41.7			38.6	12.1
Internal Link Dist (m)		113.0			141.6			136.8			407.4	
Turn Bay Length (m)							15.0					35.0
Base Capacity (vph)		1235			1558		517	762			678	716
Starvation Cap Reductn		36			0		0	0			0	0
Spillback Cap Reductn		0			0		0	0			0	0
Storage Cap Reductn		0			0		0	0			0	0
Reduced v/c Ratio		0.79			0.47		0.08	0.26			0.24	0.18

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90


Offset: 2 (2%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 75

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.82

Intersection Signal Delay: 11.0 Intersection LOS: B

	۶	→	*	•	+	•	1	†	~	1	Ţ	✓
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4T>			414		×	f)		7	f)	
Traffic Volume (vph)	46	822	7	39	696	58	6	33	61	30	25	21
Future Volume (vph)	46	822	7	39	696	58	6	33	61	30	25	21
Ideal Flow (vphpl)	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900	1900
Storage Length (m)	0.0		0.0	0.0		0.0	10.0		0.0	5.0		0.0
Storage Lanes	0		0	0		0	1		0	1		0
Taper Length (m)	7.5			7.5			7.5			7.5		
Lane Util. Factor	0.95	0.95	0.95	0.95	0.95	0.95	1.00	1.00	1.00	1.00	1.00	1.00
Ped Bike Factor		1.00			1.00		0.99	0.98		0.99	0.99	
Frt		0.999			0.989			0.903			0.933	
Flt Protected		0.997			0.998		0.950			0.950		
Satd. Flow (prot)	0	3594	0	0	3514	0	1805	1689	0	1805	1754	0
Flt Permitted		0.817			0.810		0.726			0.695		
Satd. Flow (perm)	0	2944	0	0	2851	0	1364	1689	0	1307	1754	0
Right Turn on Red	•		Yes			Yes			Yes			Yes
Satd. Flow (RTOR)		2			17			62			21	
Link Speed (k/h)		50			50			50			50	
Link Distance (m)		165.6			291.5			153.7			342.7	
Travel Time (s)		11.9			21.0			11.1			24.7	
Confl. Peds. (#/hr)	8		13	13		8	8		8	8		8
Peak Hour Factor	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98	0.98
Heavy Vehicles (%)	0%	0%	0%	0%	1%	3%	0%	0%	0%	0%	0%	0%
Adj. Flow (vph)	47	839	7	40	710	59	6	34	62	31	26	21
Shared Lane Traffic (%)												
Lane Group Flow (vph)	0	893	0	0	809	0	6	96	0	31	47	0
Enter Blocked Intersection	No	No	No	No	No	No	No	No	No	No	No	No
Lane Alignment	Left	Left	Right	Left	Left	Right	Left	Left	Right	Left	Left	Right
Median Width(m)		0.0			0.0	J		3.6	Ŭ		3.6	
Link Offset(m)		0.0			0.0			0.0			0.0	
Crosswalk Width(m)		4.8			4.8			4.8			4.8	
Two way Left Turn Lane												
Headway Factor	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00	1.00
Turning Speed (k/h)	25		15	25		15	25		15	25		15
Number of Detectors	1	2		1	2		1	2		1	2	
Detector Template	Left	Thru		Left	Thru		Left	Thru		Left	Thru	
Leading Detector (m)	2.0	10.0		2.0	10.0		2.0	10.0		2.0	10.0	
Trailing Detector (m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Position(m)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Size(m)	2.0	0.6		2.0	0.6		2.0	0.6		2.0	0.6	
Detector 1 Type	CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex		CI+Ex	CI+Ex	
Detector 1 Channel	· ·			· ·	· ·					· ·		
Detector 1 Extend (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Queue (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 1 Delay (s)	0.0	0.0		0.0	0.0		0.0	0.0		0.0	0.0	
Detector 2 Position(m)	0.0	9.4		0.0	9.4		0.0	9.4		0.0	9.4	
Detector 2 Size(m)		0.6			0.6			0.6			0.6	
Detector 2 Type		CI+Ex			CI+Ex			CI+Ex			CI+Ex	
Detector 2 Channel		0 <u>-</u> A			J /			\$1 · LX			J. LA	
Detector 2 Extend (s)		0.0			0.0			0.0			0.0	
= 5.00001 E EXIOTIO (0)		0.0			0.0			0.0			0.0	

	•	→	•	•	+	*	1	†	-	1	ļ	1
Lane Group	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Turn Type	Perm	NA		Perm	NA		Perm	NA		Perm	NA	
Protected Phases		4			8			2			6	
Permitted Phases	4			8			2			6		
Detector Phase	4	4		8	8		2	2		6	6	
Switch Phase												
Minimum Initial (s)	5.0	5.0		5.0	5.0		5.0	5.0		5.0	5.0	
Minimum Split (s)	22.5	22.5		22.5	22.5		22.5	22.5		22.5	22.5	
Total Split (s)	60.0	60.0		60.0	60.0		30.0	30.0		30.0	30.0	
Total Split (%)	66.7%	66.7%		66.7%	66.7%		33.3%	33.3%		33.3%	33.3%	
Maximum Green (s)	55.5	55.5		55.5	55.5		25.5	25.5		25.5	25.5	
Yellow Time (s)	3.5	3.5		3.5	3.5		3.5	3.5		3.5	3.5	
All-Red Time (s)	1.0	1.0		1.0	1.0		1.0	1.0		1.0	1.0	
Lost Time Adjust (s)		0.0			0.0		0.0	0.0		0.0	0.0	
Total Lost Time (s)		4.5			4.5		4.5	4.5		4.5	4.5	
Lead/Lag												
Lead-Lag Optimize?												
Vehicle Extension (s)	3.0	3.0		3.0	3.0		3.0	3.0		3.0	3.0	
Recall Mode	None	None		None	None		C-Max	C-Max		C-Max	C-Max	
Walk Time (s)	7.0	7.0		7.0	7.0		7.0	7.0		7.0	7.0	
Flash Dont Walk (s)	11.0	11.0		11.0	11.0		11.0	11.0		11.0	11.0	
Pedestrian Calls (#/hr)	0	0		0	0		0	0		0	0	
Act Effct Green (s)		34.9			34.9		46.1	46.1		46.1	46.1	
Actuated g/C Ratio		0.39			0.39		0.51	0.51		0.51	0.51	
v/c Ratio		0.78			0.73		0.01	0.11		0.05	0.05	
Control Delay		21.4			26.4		14.2	6.8		14.0	9.5	
Queue Delay		0.0			0.0		0.0	0.0		0.0	0.0	
Total Delay		21.4			26.4		14.2	6.8		14.0	9.5	
LOS		С			С		В	Α		В	Α	
Approach Delay		21.4			26.4			7.2			11.3	
Approach LOS		С			С			Α			В	
Queue Length 50th (m)		36.6			63.5		0.5	2.9		2.7	2.2	
Queue Length 95th (m)		43.8			70.4		3.0	13.0		8.9	9.3	
Internal Link Dist (m)		141.6			267.5			129.7			318.7	
Turn Bay Length (m)							10.0			5.0		
Base Capacity (vph)		1816			1764		698	895		669	908	
Starvation Cap Reductn		0			0		0	0		0	0	
Spillback Cap Reductn		0			0		0	0		0	0	
Storage Cap Reductn		0			0		0	0		0	0	
Reduced v/c Ratio		0.49			0.46		0.01	0.11		0.05	0.05	
Intersection Summary												

Area Type: Other

Cycle Length: 90

Actuated Cycle Length: 90

Offset: 88 (98%), Referenced to phase 2:NBTL and 6:SBTL, Start of Green

Natural Cycle: 45

Control Type: Actuated-Coordinated

Maximum v/c Ratio: 0.78

Intersection Signal Delay: 22.4

C.F. Crozier & Associates

D.B.

Synchro 11 Report
Page 8

Intersection LOS: C

Intersection Capacity Utilization 72.8% ICU Level of Service C Analysis Period (min) 15 Splits and Phases: 3: 4th Avenue East & Highway 6 Ø2 (R) **₩**Ø8

Synchro 11 Report C.F. Crozier & Associates

D.B. Page 9

	•	→	•	1	•	•	1	†	1	-	ļ	4
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	34	4	6	6	8	6	3	335	6	8	273	7
Future Volume (Veh/h)	34	4	6	6	8	6	3	335	6	8	273	7
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95	0.95
Hourly flow rate (vph)	36	4	6	6	8	6	3	353	6	8	287	7
Pedestrians		8			8			5			5	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	692	688	304	690	688	369	302			367		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	692	688	304	690	688	369	302			367		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)		0.0	0.2		0.0	0.2						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	89	99	99	98	98	99	100			99		
cM capacity (veh/h)	342	364	733	347	363	674	1262			1195		
,					000	014	1202			1100		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	46	20	362	302								
Volume Left	36	6	3	8								
Volume Right	6	6	6	7								
cSH	370	415	1262	1195								
Volume to Capacity	0.12	0.05	0.00	0.01								
Queue Length 95th (m)	3.4	1.2	0.1	0.2								
Control Delay (s)	16.1	14.1	0.1	0.3								
Lane LOS	С	В	Α	Α								
Approach Delay (s)	16.1	14.1	0.1	0.3								
Approach LOS	С	В										
Intersection Summary												
Average Delay			1.6									
Intersection Capacity Utiliza	tion		32.2%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	•	→	*	1	—		4	†	-	-	ļ	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	11	0	7	6	4	4	6	126	4	9	65	9
Future Volume (Veh/h)	11	0	7	6	4	4	6	126	4	9	65	9
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89	0.89
Hourly flow rate (vph)	12	0	8	7	4	4	7	142	4	10	73	10
Pedestrians		1			1			5			5	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		0			0			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)								343				
pX, platoon unblocked												
vC, conflicting volume	268	260	84	270	263	150	84			147		
vC1, stage 1 conf vol												
vC2, stage 2 conf vol												
vCu, unblocked vol	268	260	84	270	263	150	84			147		
tC, single (s)	7.1	6.5	6.2	7.1	6.8	6.2	4.3			4.1		
tC, 2 stage (s)												
tF (s)	3.5	4.0	3.3	3.5	4.2	3.3	2.4			2.2		
p0 queue free %	98	100	99	99	99	100	100			99		
cM capacity (veh/h)	672	639	976	671	597	897	1405			1446		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1								
Volume Total	20	15	153	93								
Volume Left	12	7	7	10								
Volume Right	8	4	4	10								
cSH	767	694	1405	1446								
Volume to Capacity	0.03	0.02	0.00	0.01								
Queue Length 95th (m)	0.6	0.5	0.1	0.2								
Control Delay (s)	9.8	10.3	0.4	0.9								
Lane LOS	Α	В	Α	Α								
Approach Delay (s)	9.8	10.3	0.4	0.9								
Approach LOS	Α	В										
Intersection Summary												
Average Delay			1.7									
Intersection Capacity Utiliza	ition		19.6%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	٠	→	*	1	—	•	1	1	~	-	↓	1
Movement	EBL	EBT	EBR	WBL	WBT	WBR	NBL	NBT	NBR	SBL	SBT	SBR
Lane Configurations		4			4			4			4	
Traffic Volume (veh/h)	34	2	7	3	2	6	3	210	2	1	237	36
Future Volume (Veh/h)	34	2	7	3	2	6	3	210	2	1	237	36
Sign Control		Stop			Stop			Free			Free	
Grade		0%			0%			0%			0%	
Peak Hour Factor	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94	0.94
Hourly flow rate (vph)	36	2	7	3	2	6	3	223	2	1	252	38
Pedestrians		8			8			3			3	
Lane Width (m)		3.6			3.6			3.6			3.6	
Walking Speed (m/s)		1.2			1.2			1.2			1.2	
Percent Blockage		1			1			0			0	
Right turn flare (veh)												
Median type								None			None	
Median storage veh)												
Upstream signal (m)												
pX, platoon unblocked												
vC, conflicting volume	521	520	282	522	538	235	298			233		
vC1, stage 1 conf vol	V = .	0_0		<u> </u>								
vC2, stage 2 conf vol												
vCu, unblocked vol	521	520	282	522	538	235	298			233		
tC, single (s)	7.1	6.5	6.2	7.1	6.5	6.2	4.1			4.1		
tC, 2 stage (s)		0.0	0.2		0.0	V.2						
tF (s)	3.5	4.0	3.3	3.5	4.0	3.3	2.2			2.2		
p0 queue free %	92	100	99	99	100	99	100			100		
cM capacity (veh/h)	454	456	755	453	445	802	1266			1337		
Direction, Lane #	EB 1	WB 1	NB 1	SB 1		002	1200			1001		
Volume Total	45	11	228	291								
Volume Left	36	3	3	1								
Volume Right	7	6	2	38								
cSH	484	591	1266	1337								
Volume to Capacity	0.09	0.02	0.00	0.00								
Queue Length 95th (m)	2.4	0.5	0.1	0.0								
Control Delay (s)	13.2	11.2	0.1	0.0								
Lane LOS	В	В	A	Α								
Approach Delay (s)	13.2	11.2	0.1	0.0								
Approach LOS	В	В										
Intersection Summary												
Average Delay			1.3									
Intersection Capacity Utiliza	ation		28.7%	IC	U Level o	of Service			Α			
Analysis Period (min)			15									

	•	•	†	~	/	ļ	
Movement	WBL	WBR	NBT	NBR	SBL	SBT	
Lane Configurations	Y		1>			र्स	
Traffic Volume (veh/h)	59	7	209	166	18	229	
Future Volume (Veh/h)	59	7	209	166	18	229	
Sign Control	Stop		Free			Free	
Grade	0%		0%			0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92	
Hourly flow rate (vph)	64	8	227	180	20	249	
Pedestrians							
Lane Width (m)							
Walking Speed (m/s)							
Percent Blockage							
Right turn flare (veh)							
Median type			None			None	
Median storage veh)							
Upstream signal (m)							
pX, platoon unblocked							
vC, conflicting volume	606	317			407		
vC1, stage 1 conf vol							
vC2, stage 2 conf vol							
vCu, unblocked vol	606	317			407		
tC, single (s)	6.4	6.2			4.1		
tC, 2 stage (s)							
tF (s)	3.5	3.3			2.2		
p0 queue free %	86	99			98		
cM capacity (veh/h)	452	724			1152		
Direction, Lane #	WB 1	NB 1	SB 1				
Volume Total	72	407	269				
Volume Left	64	0	20				
Volume Right	8	180	0				
cSH	472	1700	1152				
Volume to Capacity	0.15	0.24	0.02				
Queue Length 95th (m)	4.3	0.24	0.02				
	14.0	0.0	0.4				
Control Delay (s) Lane LOS	14.0 B	0.0	Α				
Approach Delay (s)	14.0	0.0	0.8				
Approach LOS	14.0 B	0.0	0.0				
Approach LOS	D						
Intersection Summary							
Average Delay			1.6				
Intersection Capacity Utiliza	ation		37.3%	IC	U Level c	of Service	
Analysis Period (min)			15				

C.F. Crozier & Associates Synchro 11 Report Page 17 D.B.

	٠	•	1	†	Ţ	4
Movement	EBL	EBR	NBL	NBT	SBT	SBR
Lane Configurations	W			4	1>	
Traffic Volume (veh/h)	3	25	71	72	57	7
Future Volume (Veh/h)	3	25	71	72	57	7
Sign Control	Stop			Free	Free	
Grade	0%			0%	0%	
Peak Hour Factor	0.92	0.92	0.92	0.92	0.92	0.92
Hourly flow rate (vph)	3	27	77	78	62	8
Pedestrians					<u> </u>	
Lane Width (m)						
Walking Speed (m/s)						
Percent Blockage						
Right turn flare (veh)						
Median type				None	None	
Median storage veh)				INOHE	INOHE	
Upstream signal (m)						
pX, platoon unblocked						
vC, conflicting volume	298	66	70			
vC1, stage 1 conf vol	290	00	70			
vC2, stage 2 conf vol						
vCu, unblocked vol	298	66	70			
The state of the s	6.4	6.2	4.1			
tC, single (s)	0.4	0.2	4.1			
tC, 2 stage (s)	2.5	2.2	2.2			
tF (s)	3.5	3.3	2.2			
p0 queue free %	100	97	95			
cM capacity (veh/h)	658	998	1531			
Direction, Lane #	EB 1	NB 1	SB 1			
Volume Total	30	155	70			
Volume Left	3	77	0			
Volume Right	27	0	8			
cSH	949	1531	1700			
Volume to Capacity	0.03	0.05	0.04			
Queue Length 95th (m)	0.8	1.3	0.0			
Control Delay (s)	8.9	3.9	0.0			
Lane LOS	Α	Α				
Approach Delay (s)	8.9	3.9	0.0			
Approach LOS	А					
Intersection Summary						
Average Delay			3.4			
Intersection Capacity Utilization	ation		24.4%	IC	CU Level o	of Service
Analysis Period (min)			15		2 2 20 7 01 0	
naiysis Feliou (IIIII)			15			

APPENDIX F

City of Owen Sound TMP Excerpts

September 2010

City of Owen Sound

Transportation Master Plan

Table 4.15: 9th Avenue East at 8th Street East Operations with Northbound Right Turn Lane

Intersection & Movement	Weekday AM Peak Hour		Weekda day Pea	ay Mid- ık Hour	Weekd Peak	
	LOS	v / c	LOS	v / c	LOS	v / c
9 th Avenue East at 8 th Street East						
Overall	C		C		D	
Eastbound left	В	0.15	C	0.21	C	0.35
Eastbound through and right	E	0.95	D	0.78	D	0.67
Westbound left	D	0.77	E	0.90	F	1.02
Westbound through and right	C	0.65	D	0.65	D	0.83
Northbound left	В	0.08	В	0.08	В	0.08
Northbound through	D	0.74	C	0.43	C	0.61
Northbound right	A	0.50	A	0.31	A	0.32
Southbound left	В	0.59	A	0.22	В	0.28
Southbound through and right	В	0.25	В	0.23	В	0.31

With the inclusion of an exclusive northbound right turn lane, the overall intersection operations will improve to a level of service 'C' from a level of service 'D' during the weekday AM peak hour. There are no changes to the overall intersection operations during the weekday mid-peak and PM peak hours. The re-designation of the northbound curb side lane from a shared through-right movement to an exclusive right turn movement will reduce the northbound through capacity resulting in a higher volume to capacity ratio for the northbound through movement during all weekday peak periods. The southbound left turn movement results show a lower volume to capacity ratio for all peak periods as well. Volumes to capacity ratios at all remaining turning movements are unchanged. It is recommended that a northbound right turn lane be provided as it will enhance the overall intersection operation. Optimizing the signal timing plans for this intersection will further improve operations and is reported in more detail in **Section 4.7.2**.

4.7 <u>Signal Timing and Level of Service Issues</u>

In the spirit of creating a sustainable transportation master plan an analyses of three key arterial road sections were assessed in detail to determine if greater efficiencies could be achieved making use of the existing infrastructure. The goal of this section is to review the signal timing and level of service at intersections along three main corridors in the City of Owen Sound. The intent of the review is to identify a number of improvements to the signal timing plans at each signalized intersection along each of the respective corridors to optimize the signal timing plans and facilitate the movement of through traffic by reducing the overall delay to motorists. The three corridors are: 10th Street between 3rd Avenue West and 4th Avenue East, 9th Avenue East between 6th Street East and 16th Street East, and 16th Street East from 9th Avenue East to 18th Street East. These three corridors in effect constitute the prime corridor for localized and through traffic in the City of Owen Sound.

4.7.1 10th Street Corridor

The existing signal timing plans along the 10th Street corridor have a cycle length of 120 seconds and are coordinated. The Synchro analyses show that during the PM peak hour, there are no through bands, and during the AM peak hour, only the eastbound traffic has a through band of 37 seconds. The existing traffic operations on the 10th Street Corridor using the current signal timing plans are summarized in **Table 4.16.**

Table 4.16: 10th Street Corridor Existing Signal Timing Operations

Intersection & Movement	Weekday AM Peak Hour		Weekda day Pea		Weekd Peak	
	LOS	v/c	LOS	v / c	LOS	v / c
10 th Street West at 3 rd Avenue West						
Overall	В		A		В	
Eastbound left, through, and right	A	0.34	A	0.31	A	0.34
Westbound left, through, and right	A	0.23	A	0.31	A	0.37
Northbound left, through, and right	E	0.57	Е	0.50	E	0.63
Southbound left, through, and right	D	0.48	D	0.26	D	0.29
10 th Street West at 2 nd Avenue West						
Overall	\mathbf{C}		В		C	
Eastbound left, through, and right	C	0.38	A	0.38	A	0.34
Westbound left, through, and right	В	0.30	A	0.42	A	0.50
Northbound left	C	0.24	D	0.43	D	0.57
Northbound through and right	D	0.32	D	0.60	E	0.78
Southbound left	C	0.38	D	0.39	D	0.58
Southbound through and right	E	0.78	E	0.73	E	0.72
10 th Street West at 1 st Avenue West						
Overall	\mathbf{C}		В		В	
Eastbound left, through, and right	A	0.37	A	0.34	A	0.33
Westbound left and through	В	0.23	A	0.31	В	0.38
Westbound right	A	0.21	A	0.33	A	0.49
Northbound left	D	0.11	D	0.15	D	0.13
Northbound through	E	0.46	E	0.57	E	0.65
Northbound right	В	0.16	С	0.24	C	0.20
Southbound left	F	1.01	F	0.92	E	0.83
Southbound through and right	С	0.21	С	0.15	C	0.17
10 th Street West at 2 nd Avenue East						
Overall	\mathbf{C}		D		D	
Eastbound left, through, and right	В	0.50	C	0.48	В	0.55
Westbound left, through, and right	D	0.71	D	0.77	E	0.80
Northbound left	D	0.24	Е	0.48	D	0.39
Northbound through and right	E	0.66	Е	0.70	E	0.71
Southbound left	D	0.11	D	0.14	D	0.29
Southbound through	D	0.21	D	0.50	D	0.45
Southbound right	В	0.43	В	0.51	В	0.67
10 th Street West at 3 rd Avenue East						

Intersection & Movement	Weekday AM			ay Mid-	Weekday PM	
	Peak	Peak Hour		ık Hour	Peak	Hour
	LOS	v / c	LOS	v/c	LOS	v / c
Overall			В		C	
Eastbound left, through, and right	A	0.38	A	0.42	В	0.44
Westbound left, through, and right	A	0.19	В	0.26	В	0.31
Northbound left	D	0.20	C	0.35	C	0.32
Northbound through and right	D	0.51	D	0.52	D	0.57
Southbound left	E	0.64	E	0.71	Е	0.73
Southbound through and right	В	0.29	В	0.30	В	0.33
10 th Street West at 4 th Avenue East						
Overall	A		A		В	
Eastbound left, through, and right	A	0.23	C	0.26	A	0.28
Westbound left, through, and right	A	0.19	D	0.20	A	0.26
Northbound left	D	0.07	В	0.06	D	0.07
Northbound through and right	D	0.39	В	0.56	D	0.65
Southbound left	D	0.09	A	0.19	Е	0.33
Southbound through and right	D	0.32	В	0.34	D	0.46

To improve traffic operations, a set of updated traffic signal timing plans were created. The updated signal timing plans have a cycle length of 80 seconds for all peak periods and are coordinated. The updated signal timing details are provided in **Appendix F4.**

The existing 10th Street corridor operations with the proposed updated signal timing plans are summarized in **Table 4.17**. It is evident comparing **Table 4.16** and **Table 4.17** that the operations for all intersections are improved.

Table 4.17: 10th Street Corridor Updated Signal Timing Operations

Intersection & Movement	Weekday AM Peak Hour				Weekday Pl Peak Hour	
	LOS	v/c	LOS	v / c	LOS	v / c
10 th Street West at 3 rd Avenue West						
Overall	A		A		A	
Eastbound left, through, and right	A	0.35	Α	0.34	A	0.35
Westbound left, through, and right	A	0.24	Α	0.34	A	0.39
Northbound left, through, and right	D	0.45	С	0.37	D	0.51
Southbound left, through, and right	C	0.39	С	0.20	C	0.24
10 th Street West at 2 nd Avenue West						
Overall	В		В		В	
Eastbound left, through, and right	В	0.44	A	0.44	A	0.41
Westbound left, through, and right	A	0.35	A	0.48	A	0.60
Northbound left	В	0.18	C	0.33	C	0.44
Northbound through and right	C	0.31	C	0.51	D	0.69
Southbound left	В	0.38	C	0.33	C	0.44
Southbound through and right	D	0.71	D	0.62	D	0.64
10 th Street West at 1 st Avenue West						

6. TRANSPORTATION NEEDS

6.1 Road Capacity Needs

6.1.1 Existing Conditions

Under existing conditions, no major road capacity improvements are seen as necessary. However, signal timing improvements can be implemented to address intersection needs at the following locations:

Location	Improvement Opportunity
16th Street at Heritage Place Driveway	Signal Timing Optimization
9th Avenue East at 8th Street East	Signal Timing Optimization
3rd Avenue East at 15th Street East	Traffic Signal Installation
9th Avenue East at 10th Street East	Signal Modification (Split)
3rd Avenue East at 15th Street East	Signal Installation

6.1.2 2016 Conditions

By the year 2016, there are a number of intersections that are expected to have volumes that will meet the warrants for traffic control signals. Traffic volumes and traffic conditions on 10th Street indicate that vehicle queues may exceed available storage capacity for turning movements. Potential improvements that may address these needs require capital investment and may be constrained by property requirements. Improvements that may be considered further to address these needs are summarized below:

Location	Improvement Opportunity
10th Street at 2nd Avenue West	Add a 15m WBR lane
10th Street at 2nd Avenue East	Add a 63m EBL lane
10th Street at 7th Avenue East	Traffic Signal Installation
10th Street at 9th Avenue East	Modify EB lanes from a left turn lane, a shared through / left turn lane, and a right turn lane to a left turn lane, a separate through lane, and a through / right turn lane.
16th Street at 6th Avenue East	Traffic Signal Installation
9th Avenue East at 20th Street East	Traffic Signal Installation
3rd Avenue East at 15th Street East	Traffic Signal Installation

Notes: the italicized texts indicate that the improvements required are constrained by the available spaces

6.1.3 2026 Conditions

By 2026, it is anticipated that volumes will exceed capacity on 9th Avenue, 10th Street and on 16th Street at a number of intersections. Improvements that could address these needs during a typical weekday and under peak summer conditions include either new road capacity (major widening or new corridor) or intersection improvements summarized below:

T 4 · - · ·	Improvement Opportunity						
Location	Typical Weekday	With Summer Factor					
10th Street at 9th Avenue West		Add a 20m WBR lane					
10th Street at 3rdAvenue West		Add a 15m EBR lane					
10th Street at 2nd Avenue West	Add a 40m WBR lane, add a northbound through lane and taper back to 1 lane	Add a WB through lane and an EB through lane, add a northbound through lane and taper back to 1 lane, add an additional SBL lane to make it a dual left					
10th Street at 1st Avenue West		Add an additional EB through lane					
10th Street at 1st Avenue East		Add an additional WB through lane					
10th Street at 2nd Avenue East	Add a 90m EBL lane and 15m WBL lane	Add a 90m EBL lane and 15m WBL lane, and one WB through lane					
10th Street at 3rd Avenue East	Add a 20m EBL lane and 20m WBL lane	Add a 30m EBL lane and 20m WBL lane					
10th Street at 9th Avenue East	Modify EB Lane from left, left and through shared, and right to Left, through, and through and right shared.	Add a 15m SBL lane, a 20m WBL lane, one EB through lane and two WB through lanes, an additional EBL to make a dual left					
16th Street at 6th Avenue East	Traffic Signal Installation	Traffic Signal Installation					
16th Street at 9th Avenue East	Add a 50m NBR lane	Add a 50m NBR lane, change WBR to WB through lane, add an additional EB through lane					
16th Street at Heritage Place Driveway	Add a 75m EBL lane	Add a 75m EBL lane					
16th Street at 16th Avenue East	N/A	Add a 30m EBR lane					
9th Avenue East at 20th Street East	Traffic signal installation, add a 55m WBL lane, a 45m NBL lane	Traffic signal installation, add a 55m WBL lane, a 45m NBL lane					
9th Avenue East at 8th Street East	Add a 30m NBR lane	Add a 30m NBR lane and an additional EB through lane					

Notes: the italicized texts indicate that the improvements required are constrained by the available spaces

If traffic patterns were to divert to better utilize reserve capacity on streets parallel to 10^{th} Street (eg. 8^{th} Street and 9^{th} Street), then the operational needs on 10^{th} Street would be less significant. If traffic were rerouted to 8^{th} Street and 9^{th} Street, intersection improvement opportunities to address needs on a typical weekday with traffic worth considering further are noted below:

2026 Total Traffic Improvement Requirements with Downtown Area traffic transferred from 10th St to 9th and 8th St.

T	Improvements						
Location	With Traffic Diversion	Without Traffic Diversion					
10th Street at 9th Avenue West							
10th Street at 3rdAvenue West							
10th Street at 2nd Avenue West	Add a 70m WBR lane	Add a 40m WBR lane, add a northbound through lane and taper back to 1 lane					
10th Street at 1st Avenue West							
10th Street at 1st Avenue East							
10th Street at 2nd Avenue East	*Prohibit EBL traffic during peak hours	Add a 90m EBL lane and 15m WBL lane					
10th Street at 3rd Avenue East		Add a 20m EBL lane and 20m WBL lane					
10th Street at 4th Avenue East	Add a 40m NBR and 52m WBL						
10th Street at 7th Avenue East	Traffic Signal Installation	Traffic Signal Installation					
10th Street at 9th Avenue East	Modify EB Lane from left, left and through shared, and right to Left, through, and through and right shared.	Modify EB Lane from left, left and through shared, and right to Left, through, and through and right shared.					
16th Street at 9th Avenue East	Add a 50m NBR lane	Add a 50m NBR lane					
16th Street at Heritage Place Driveway	Add a 75m EBL lane	Add a 75m EBL lane					
16th Street at 16th Avenue East		N/A					
9th Avenue East at 20th Street East	Traffic signal installation, add a 55m WBL lane, a 45m NBL lane	Traffic signal installation, add a 55m WBL lane, a 45m NBL lane					
9th Avenue East at 8th Street East	Add a 30m NBR lane	Add a 30m NBR lane					
3rd Avenue East at 15th Street East	Traffic Signal Installation	Traffic Signal Installation					

Notes: 1. *EBL traffic can be redistributed to 1st Avenue E eastbound right turn, 2nd Avenue E eastbound right turn, 2nd Avenue E northbound through, 3rd Avenue E northbound through, 4th Avenue E northbound through 2. The italicized texts indicate that the improvements required are constrained by the available spaces

6.2 <u>Active Transportation Modes</u>

The bicycle and pedestrian networks as identified in City of Owen Sound Official Plan have not been fully developed and implemented. Opportunities for implementation need to be developed.

6.3 Problem Statement

Based on traffic forecasts and a detailed analysis of existing and future conditions, the key transportation challenges for Owen Sound are summarized below:

- Owen Sound functions as a regional centre for Grey and Bruce Counties, and is therefore affected by overall growth in the Region. The majority of traffic in the study area has origins and destinations to Owen Sound. This reliance on the Owen Sound transportation network will continue to increase as the City and adjacent municipalities in Grey and Bruce Counties experience modest growth.
- Approximately 15% to 25% of traffic (depending on the route and principal direction) in Owen Sound is through traffic originating and/or destined to other municipalities in the County and Province. As the general population in Ontario and abroad grows, and tourist and recreational pursuits continue to grow, through traffic will further increase pressures on the City road network.
- As with the arterial road network, the collector road network lacks mid-block, continuous east-west and north-south connections due to the natural environmental and cultural environment heritage of the area. This lack of connectivity puts pressures on the few through connections present in the City to facilitate longer distance travel. It also increases the propensity for traffic to find alternative routes on roadways that are not designed or intended to accommodate modest to heavy volumes of traffic.
- Transportation requirements are closely related to economic activity. In economic terms, however, transportation is a "diseconomy" factor, meaning that the increase in cost of the transport of goods and services is directly related to increases in the cost of purchasing goods and services, and is subsequently passed on the consumers. Increases in traffic congestion and delays will negatively affect the City' economic well-being and competitiveness.

Considering all the above, the assessment of existing and future conditions concludes that the provision of additional intersection capacity at select intersections is required in addition to the need for additional capacity on 10th Street through the Downtown.

There also needs to be a greater emphasis or reliance on other modes of travel. Enhanced public transit, improved walking and cycling facilities, and transportation substitutes such as communication technologies, will be required to meet the accessibility and mobility needs of the City's residents and businesses.

7. TRANSPORTATION ALTERNATIVES

7.1 <u>Identification of Transportation Planning</u> Alternatives

Following the requirements of Phases 1 and 2 of the Environmental Assessment process, the project team identified and evaluated three long-term, alternative transportation planning strategies, plus a Do-Nothing scenario. The transportation planning alternatives were evaluated for 2026 travel demands, against a set of Evaluation Criteria to gauge their ability to address the challenges identified in the Problem Statement.

Do Nothing

The "Do Nothing" scenario reflects the current condition of the roadway network carried over to the 2026 horizon year without any capacity improvements. Except for the 10th Street extension, there are no planned expansions or additions to the arterial road network or Provincial highway system.

The 10th Street extension has been included in all alternatives as it was as already planned and programmed to be in service by 2011.

The alternative transportation strategies and Do-Nothing scenario are summarized in **Table 7.1**. The essential principles of the three alternative transportation planning strategies are summarized below.

Alternative 1 – Maximize Use of Existing Infrastructure

Alternative 1, illustrated in **Exhibit 7.1**, does not propose any significant infrastructure improvements, rather the intent of this alternative is to maximize the use of existing infrastructure and direct through traffic from routes that have capacity deficiencies onto alternative routes that have significant reserve capacity. The primary transportation issue that needs to be resolved to the extent possible is to reduce the amount of through traffic using 10th Street through the Downtown area across the Sydenham River.

Through traffic that normally travels along the corridors of 10th Street and 16th Street East will be redistributed onto the alternate routes by use of either static or dynamic signage. The alternate routes include an outer alternate route and inner alternate routes.

8.5 <u>Transportation Demand Management</u>

Transportation Demand Management (TDM) Programs are being developed in several progressive municipalities and are intended to encourage greater reductions in automobile travel through coordination of alternative modes. For example, transit improvements, pedestrian improvements, and parking policies can have far greater travel impacts and consumer benefits when implemented as a coordinated program.

TDM Programs are typically established by local governments and are spearheaded by the department responsible for transportation services to the community. The program should be ongoing so it provides continual support and encouragement, and responds to future opportunities and changes in individual's travel needs and preferences.

A well managed and properly supported TDM Program can affect a relatively significant portion of total travel. Most programs result in reductions between 10% and 30%. As the City of Owen Sound is a small and relatively isolated community the effects of TDM will be limited. The attainment of a 10% reduction in travel as a result of TDM measures should be considered a great success for Owen Sound.

A TDM program forms part of the overall TMP strategy. The following are the recommendations for TDM measures in Owen Sound.

- Reviewing and modifying transit, cycling and pedestrian-related Official Plan policies to acknowledge their important role in City wide travel demand management.
- Reviewing and modifying site design guidelines, traffic impact study requirements and site plan approval process to encourage applicants to adopt TDM initiatives.
- Development of TDM supportive parking policy such as paid parking, shared parking and other parking management strategies.
- Development of Park and Ride lots located at the edges of the City to encourage transit usages as well as carpooling initiatives.
- Reviewing alternative work schedules at larger employment centres to encourage flexitime, compressed work week, and staggered shifts to encourage peak travel to/from these employment areas to occur at different times of the days instead of one set time in the morning and one set time in the afternoon.
- Encourage the use of tele-commuting as a substitute of physical travel.
- Encourage the citizens of Owen Sound to be active and have a positive attitude toward reducing car use and relying on alternative forms transportation through promotional efforts.
- A staff position be created to support and manage all pedestrian, cycling, transit and TDM initiatives undertaken by the City to ensure compliance with the various polices and measures being recommended as part of the Transportation Master Plan.

8.4.1 Pedestrian Network

We recommend that the City of Owen Sound should focus their efforts and funding towards the construction of missing links and providing connectivity for the sidewalk network. The feasibility of establishing pedestrian levels of service related to standards for the requirement of sidewalks on one or both sides of the street needs further assessment of the feasibility and cost implications. The ultimate plan for the development of the pedestrian environment will be the gradual completion of the planned pedestrian network shown in **Exhibit 4.8.**

8.4.2 Pedestrian Crossings

The implementation and operation of pedestrian crossings in the City of Owen Sound will need to comply with the legislative context of the Ontario Traffic Act, have regard for best practices in pedestrian accommodation and meet the needs of the City of Owen Sound.

The Highway Traffic Act indicates that when a pedestrian is about to step from the boulevard onto the roadway there are fundamentally two different forms of pedestrian crossing. The crossing may be either / or:

- A controlled crossing where vehicles must yield to pedestrians.
- An uncontrolled crossing where pedestrians must yield to vehicles.

Either form of crossing may be appropriate given the range of pedestrian demand. There is generally a higher degree of concern for pedestrian safety at unprotected crossing points. However, both forms of crossing must be designed to maximize safety. The standard practice for traffic control in Ontario is defined by the *Ontario Traffic Manuals (OTM)*, Book 12 for traffic signals and Book 5 for regulatory signs (including stop signs); and is defined by the *2006 School Crossing Guard Guide* document for school crossing guards. The manuals are designed to be used as a guideline by traffic practitioners.

The manuals incorporate current best practices in the Province of Ontario and have recommended thresholds for the implementation of the following protected crossings:

- Traffic control signals at intersections and mid-block
- Pedestrian crossovers (PXOs)
- Intersection pedestrian signals (IPS)
- All-way stop signs
- School crossing guards and school patrollers

A non-protected crossing is a location where there is measurable pedestrian crossing activity, but has no designation or traffic control measures to protect the movement. An unprotected crossing may or may not have warning signage. Some jurisdictions supplement non-protected crossings to improve safety. These additional roadway features either increase driver or pedestrian awareness, or simplify the crossing process.

These features may include:

- Refuge islands and centre medians
- Bulb Outs (Curb Extensions)
- Textured pavement or high-visibility markings

- Standard warning signage or specialize pedestrian signage (e.g. Wait for Gap)
- Above ground Flashing Beacons or in-pavement flashers
- Special Message Signs

The Ontario Traffic Manual Book 15 – Pedestrian Crossings is currently under development. It will provide the framework for implementation of crossing features from which each municipality can develop local policies for features it chooses to implement and the thresholds under which they are warranted.

The City of Owen Sound can proactively monitor the safety of operations at pedestrian crossings to identify hazards and plan mitigation, establish policies that are consistent with accepted engineering practice and sensitive to the local environment, and implement improvements that are consistent with the policies / practices or their underlying principles. Practices should avoid ambiguity that may lead to confusion and misinterpretation of traffic control devices.

From the review of current practices, risk and research into operational characteristics of crossings, the following points have been considered in the development of the pedestrian crossing policy:

- There are operational concerns with PXOs related to the dilemma zone and clearance requirements and there is a trend toward the use of IPS' and a trend away from PXOs amongst Ontario municipalities surveyed. PXO's are not recommended for Owen Sound.
- The implementation of controlled pedestrian crossings (traffic control signals, intersection pedestrian signals and midblock signals) based on OTM warrants and prioritized and implemented through an on-going capital program is a proactive and defensible method of addressing pedestrian needs.
- Given that there is limited statistical research into the operations of IPS', the City of Owen Sound should consider driver workload turning from side streets and potential for vehicle-pedestrian conflicts at any new IPS locations.
- The marking of mid-block uncontrolled crossings with pavement markings are not recommended as they may lead unaware pedestrians or drivers to believe that the crossing is a controlled for pedestrians or lead to inconsistent driver or pedestrian behaviour.
- At mid-block locations, where the adjacent land uses such as high pedestrian generators and trails create high mid-block crossing demand, signage can contribute to driver awareness and pedestrian caution without making the rules of right of way ambiguous for drivers and pedestrians.
- If implementing protected crossing features (IPS') to supplement traffic control signals, they should be done in sufficient quantity such that pedestrians and drivers are familiar with their operation (They may be set up as a pilot project at several (3) potential locations that are in close proximity within a unique localized area.)

It is recommended that the City of Owen Sound proactively address pedestrian safety needs and establish a program of reviews of pedestrian crossings either through on-going traffic operations studies or annual corridor reviews. It is recommended that pedestrian crossing features be implemented where warranted, where environmental conditions are consistent

with other geometric and design requirements, and when funds are available within the City's capital programming process.

It is recommended that the City of Owen Sound reassess its pedestrian crossing policy with regard to recommended pedestrian features upon completion of OTM Book 15. Compliance with pedestrian crossing practices is recommended for review regular review including identifying and programming the necessary roadway and traffic control modifications for implementation.

8.4.3 Bicycle Network

The benefits of cycling as an activity and mode of travel are well documented. The development of an active transportation strategy for the City of Owen Sound provides focus and direction in increasing bicycle use and realizing benefits that include:

- Integrating healthy, physical activity into everyday travel, fostering active lifestyles;
- Reducing transportation costs;
- Reducing traffic congestion and carbon dioxide emissions;
- Conserving energy resources; and
- Contributing to a more connected community.

The physical exercise gained from cycling is generally linked with increased health and well-being. Cycling and walking contribute to reduced obesity and can reduce the risk of coronary heart disease, strokes, diabetes and helps manage blood pressure and stress. Walking and cycling can contribute to lower health care costs in the order of \$100 to \$400 per person (Source: National Cooperative Highway Research Program Report 552).

Cycling is a cost effective mode of travel. The cost and maintenance of bicycle ownership is substantially less than a motor vehicle. The annual cost of operating a motor vehicle, including fuel, insurance, maintenance and parking, is between approximately \$8,000 and \$15,000 (Source: Canadian Automobile Association Driving Costs, 2008).

Cycling can be developed and promoted as a viable means of transportation in Owen Sound, helping to address traffic congestion. Opportunities exist through the development of a commuter cycling grid, allowing bicycling to compete with other modes for longer distance commuter travel.

It is broadly recognized that changes in world climate due to Greenhouse Gases (GHG) would influence the functioning of many ecosystems and their member species. Travel accomplished by biking and other active modes that do not generate GHG emissions can be encouraged through the establishment, design, and maintenance of trails and bicycle lanes.

Cycling friendly neighbourhoods can improve the liveability of streets, increasing public presence for safety and security and contributing to the sense of place and belonging. The development of a bicycle network including on-road routes is part of the transportation strategy of the Transportation Master Plan.

8.4.3.1 Network Strategy

In order to support cycling as a competitive mode of travel, there is a need to develop continuous and direct routes to cycling destinations (primary corridors) within the City and to neighbouring municipalities. The public has indicated that a key factor affecting their decision to consider cycling to work is the need for safe and direct routes. The public had indicated a need for well marked cycling "routes, paths, roads" and that there is a need for "more bike friendly designs of streets".

Primary corridors (trails or arterial and collector roads) provide connections to commercial and employment centres along corridors that are attractive to both recreational and commuter cyclists. Institutional uses, downtown commercial and open space represent key destination areas. Corridors that link these destinations are potential primary corridor, as are links to the industrial areas within the harbor and the eastern portion of the City.

Primary cycling routes are identified in the Official Plan Trail Master Plan. They provide opportunities for commuting along continuous corridors and provide connections key municipal destinations. Key destinations served by the planned routes are identified below.

- Downtown (eg. City Hall, Farmers' Market, Public Library, Tom Thomson Art Gallery)
- Shopping centres (eg. Heritage Place Shopping Centre)
- Offices such as Grey County
- Institutional uses (including Georgian College, Grey Bruce Regional Health Centre)
- Community uses (eg. Harry Lumley Bayshore Community Centre, Victoria Park)

Secondary cycling routes provide access to community or neighbourhood origins or destinations. The majority of cycling trips in most Ontario Municipalities are short distance trips, the majority of recorded trips are less than 2 kilometres. Typically, the majority of cycling trips are to destinations for leisure purposes within the neighbourhood. Increasing the frequency of shorter community based trips can be encouraged through the provision of new cycling routes within neighbourhoods. This component of the network represents a high potential for increasing cycling activity for all ages and contributes to creating a culture of cycling for future generations.

Secondary cycling routes supplement primary routes. They are the local and collector connections within the neighborhoods. Secondary connections can help to reduce traffic congestion and improve traffic safety around school zones and promote active, healthy living. It is recommended that additional routes be considered in conjunction with the school boards in developing cycle to school / walk to school programs. Objectives include:

- Safe connections to the primary and off-road multi-use trail routes;
- Opportunity to provide a parallel alternative routes to primary routes;
- Provide connections to neighbourhood destinations such as schools; and,
- Promote healthy and active living within communities by providing cycling opportunities.

Implementation of these routes is subject to further detailed assessment of feasibility and the determination of any local safety issues or impacts to operations such as street parking.

8.4.3.2 Parking and Amenities

The provision of bicycle parking and amenities is essential to support the development of cycling as a practical active transportation choice. The fear of bicycle vandalism and theft is common reason given for not riding a bicycle. Bicycle parking, storage and shower / changing rooms and rest areas with benches (collectively called end-of-trip facilities) are important ways to provide convenience and security for cyclists at cycling destinations.

It is recommended that the City of Owen Sound incorporate provisions for bicycle parking within the Zoning By-law. Bicycle parking definitions should also provide guidance on what is not considered as acceptable to qualify as bicycle parking (e.g. storage for an apartment not be within a dwelling unit, on a balcony or in a storage locker). In addition to quantity, minimum space dimensions, definitions of long term and short term parking and the requirement for shower / change facilities should be included within the Zoning By-law.

8.4.3.3 Cycling Network Implementation

An implementation strategy for cycling in Owen Sound is based on the recommendations of this Cycling Plan. To ensure that the Active Transportation Master Plan forms part of the Transportation Master Plan remains valid, a review and update of the plan will occur approximately every five years.

Implementation of these recommendations is projected over a 20 year planning horizon and will include timing, anticipated costing, and life-cycle opportunities of existing road infrastructure. It is recognized that the rate of implementation of the cycling network and the supporting policies and programs will be dependant upon the degree and rate of funding allocated through the City capital programs and external funding sources.

Short, medium and long-range targets for implementation of bicycle routes will be established. The first priorities will include routes that meet one or more of the following criteria:

- Develop a spine network of major north / south and east / west routes;
- Recognize the Downtown as the primary activity centre and destination;
- Connect to other key City destinations;
- Provide cycling route connectivity in cycling routes; and
- Achieve feasible low cost "early wins" to demonstrate successes.

Cycling functional reviews are recommended for each corridor to develop a design consistent with the design guidelines in this document, confirm that traffic and parking impacts are acceptable and ensure that the public is informed and have an opportunity to provide input. Prior to the reconstruction of any roadway identified in the cycling plan noted below, it is recommended that a cycling functional review be implemented.

North-South Route
6 th Avenue West (1 st Street W. to 7 th Street W to Alpha Street)
2 nd Avenue West (6 th Street to 8 th Street)
1 st Avenue West – Eddie Sargent Pkwy (8 th Street W to 22 nd Street W)
West Waterfront (10 th Street W to 22 nd Street W)
East Waterfront – 3 rd Avenue East (10 th Street E to 36 th Street E)
2 nd Avenue East (Harrison Park to 7 th Street E)
4 th Avenue East –15 th Street East- 5 th Avenue East (Harrison Park to 28 th Street E)
5 th Avenue East (7 th Street East to 10 th Street East)
7 th Avenue East (City Boundary to 10 th Street)
8 th Avenue East (15 th Street East to 23 rd Street East)
16 th Avenue East (8 th Street E to 17 th Street E)
Former CP Railway (8 th Street E to 28 th Street E)
28 th Avenue East (Superior Street to 20 th Street E)
East-West Route
6 th Street – Superior Street (Sydenham River to 28 th Avenue E)
8 th Street West (2 nd Avenue W to 28 th Avenue E)
11 th Street West (Alpha Street to 1 st Avenue W)
Alpha Street (West boundary to 4 th Street West)
16 th Street West (3 rd Street W to 8 th Street W)
15 th Street East – 10 th Street East (4 th Avenue E to Georgian College)
20 th Street East – 17 th Street East (Heritage Place to 28 th Avenue)

To support the network development, it is recommended that the City implement the following:

- Establish a signage (wayfinding) for corridors as the cycling network as route development
- Incorporate bicycle parking requirements for major developments within the zoning bylaw
- Establish bicycle parking including covered bicycle parking a key multimodal transfer points and bicycle racks at key community destinations and throughout the downtown

An Active Transportation Plan that the City can implement is attached to the TMP Report in **Appendix H**.

APPENDIX G

Proxy Sites Traffic Data and Peak Hour Calculation

Saturday May 28	8, 2016
-----------------	---------

Le Jardin	SI	BR NBL	_	EBL	EBF	₹	SUM		
	16:00:00	0	0		0	0	0		
	16:15:00	2	3		1	2	8		
	16:30:00	4	8		2	6	20		
	16:45:00	7	20		2	3	32		
	17:00:00	9	35		3	3	50		
	17:15:00	9	24		4	2	39	141	29.0
	17:30:00	3	9		2	4	18		
	17:45:00	5	9		1	5	20		
	18:00:00	2	23		1	3	29		
	18:15:00	6	17		0	1	24		
	18:30:00	9	28		1	6	44		
	18:45:00	9	18		1	2	30		
	19:00:00	7	12		2	3	24		
	19:00:24	0	0		0	0	0		
		0	0		0	0	0		
	19:30:00	0	2		0	0	2		
	19:45:00	5	6		2	2	15		
	20:00:00	2	4		1	1	8		
	20:15:00	0	7		0	3	10		
	20:30:00	1	3		1	2	7		
	20:45:00	1	2		1	3	7		
	21:00:00	1	4		3	2	10		
	21:15:00	2	0		2	3	7		
	21:30:00	4	3		0	6	13		
	21:45:00	1	0		2	5	8		
	22:00:00	2	1		4	9	16		
	22:15:00	0	0		0	0	0		
	22:15:13	0	0		0	0	0		

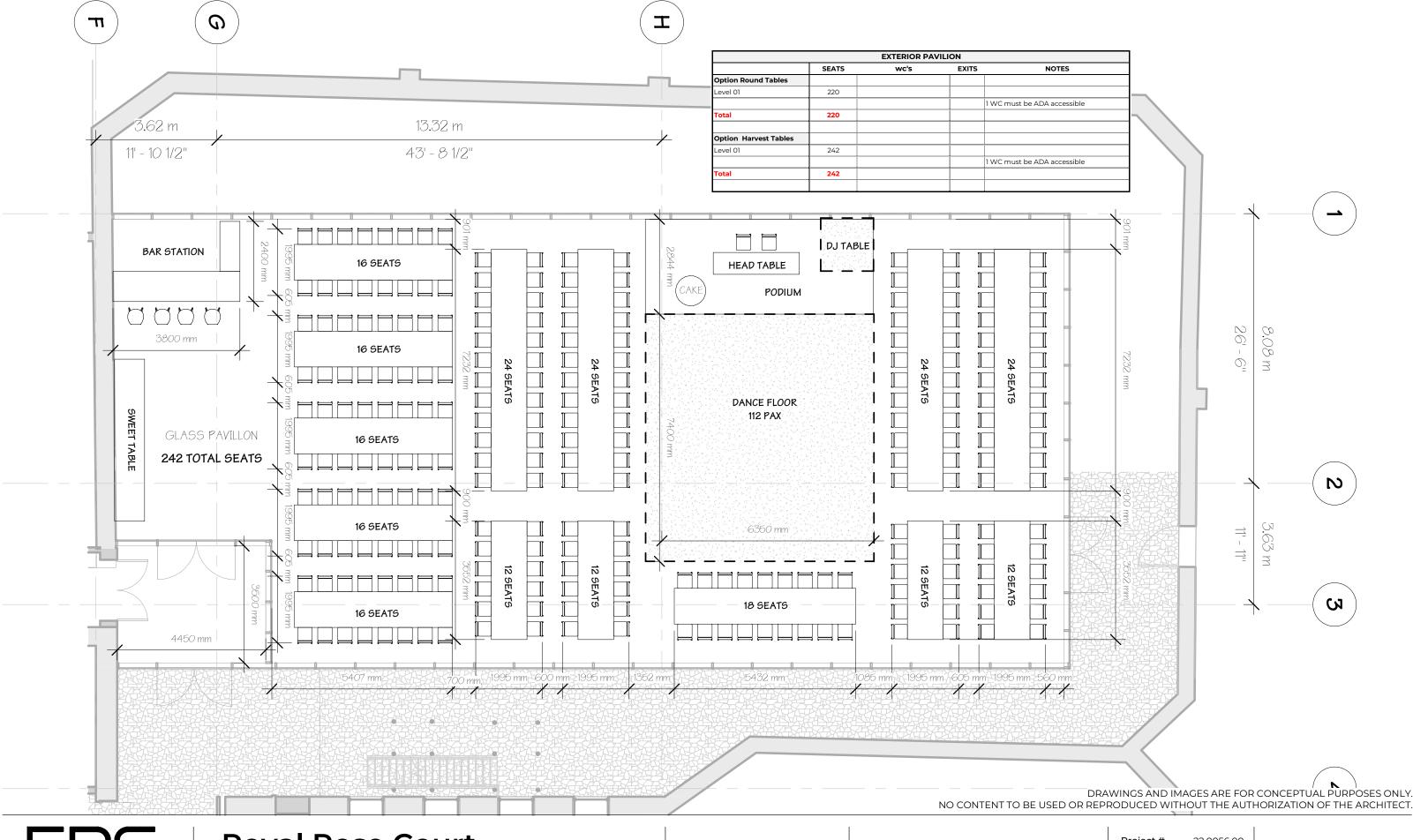
Thursday March 1, 2018		4855			
Le Jardin	IN	OUT	Total		
8:15-9:15		40	6	46	
15:30-16:30		32	51	83	17.1

Friday Aug 22, 2014	2,369m2	12.2					
Missisauga Convention Centre	SBL	NBR	WBL	WB	R	SUM	
6:45:00	0	0		0	0	0	
7:00:00	0	1		0	0	1	
7:15:00	0	0		0	0	0	
7:30:00	0	0		0	0	0	
7:45:00	0	0		0	0	0	
8:00:00	0	0		0	0	0	
8:15:00	1	0		0	0	1	
8:30:00	0	1		0	1	2	
8:45:00	0	1		0	1	2	
9:00:00	1	5		2	0	8	
9:15:00	0	13		0	0	13	
9:30:00	0	4		2	0	6	29
9:45:00	0	0		0	0	0	
10:00:00	0	3		2	0	5	
						0	
16:00:00	0	1		0	0	1	
16:15:00	0	0		0	0	0	
16:30:00	0	2		1	0	3	
16:45:00	0	1		7	0	8	
17:00:00	0	3		4	0	7	
17:15:00	0	0		3	1	4	
17:30:00	0	1		1	0	2	
17:45:00	0	3		1	0	4	
18:00:00		2		1	0	3	
18:15:00	0	1		1	0	2	
18:30:00	0	1		1	0	2	

18:45:00	0	2	3	0	5
19:00:00	0	6	5	1	12
19:15:00	0	0	0	0	0

APPENDIX H

Seating Plans

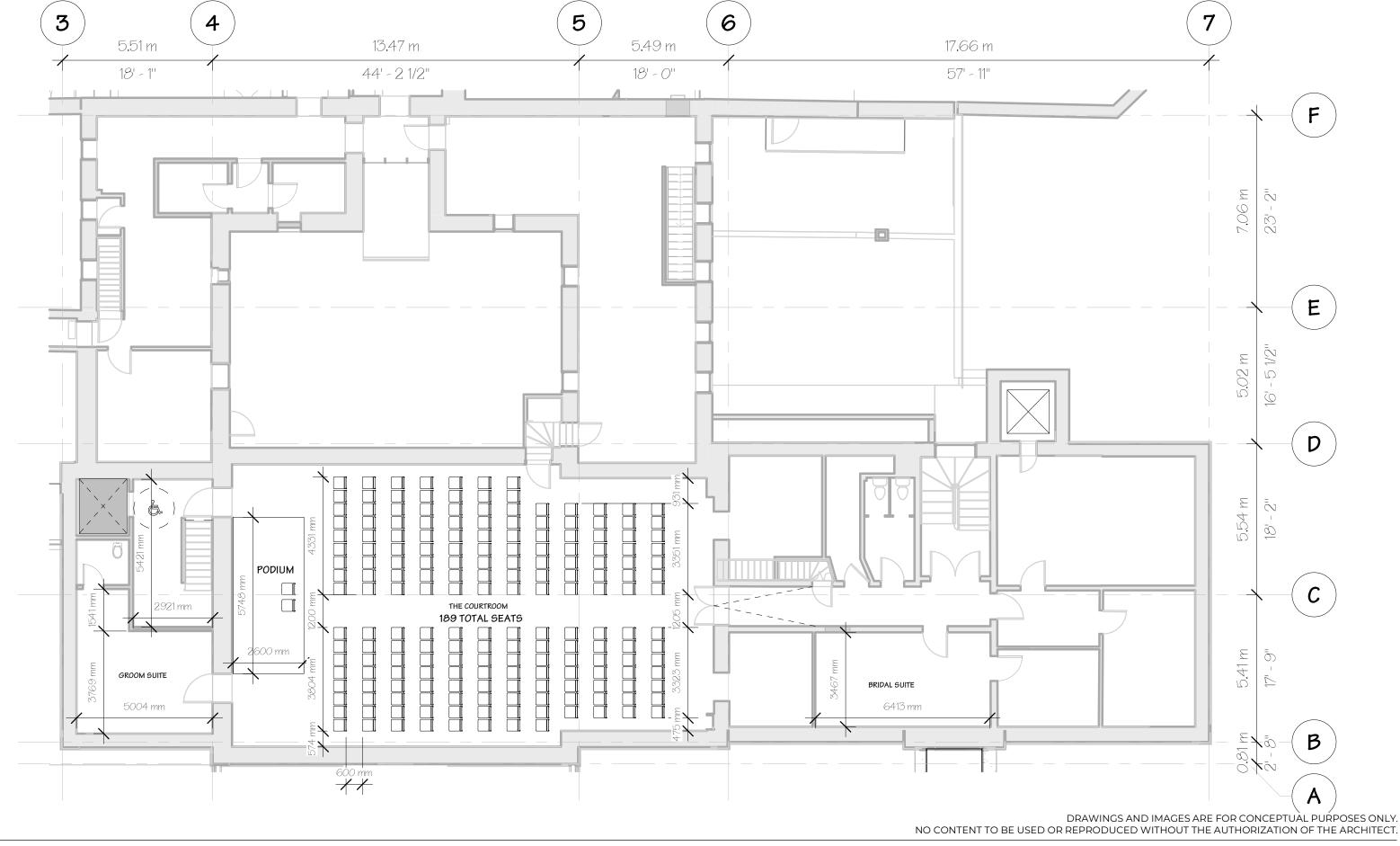

1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

LEVEL 01 - PROPOSED SEATING PLAN - EXT VENUE OPT 1

Project # 22.0056.00

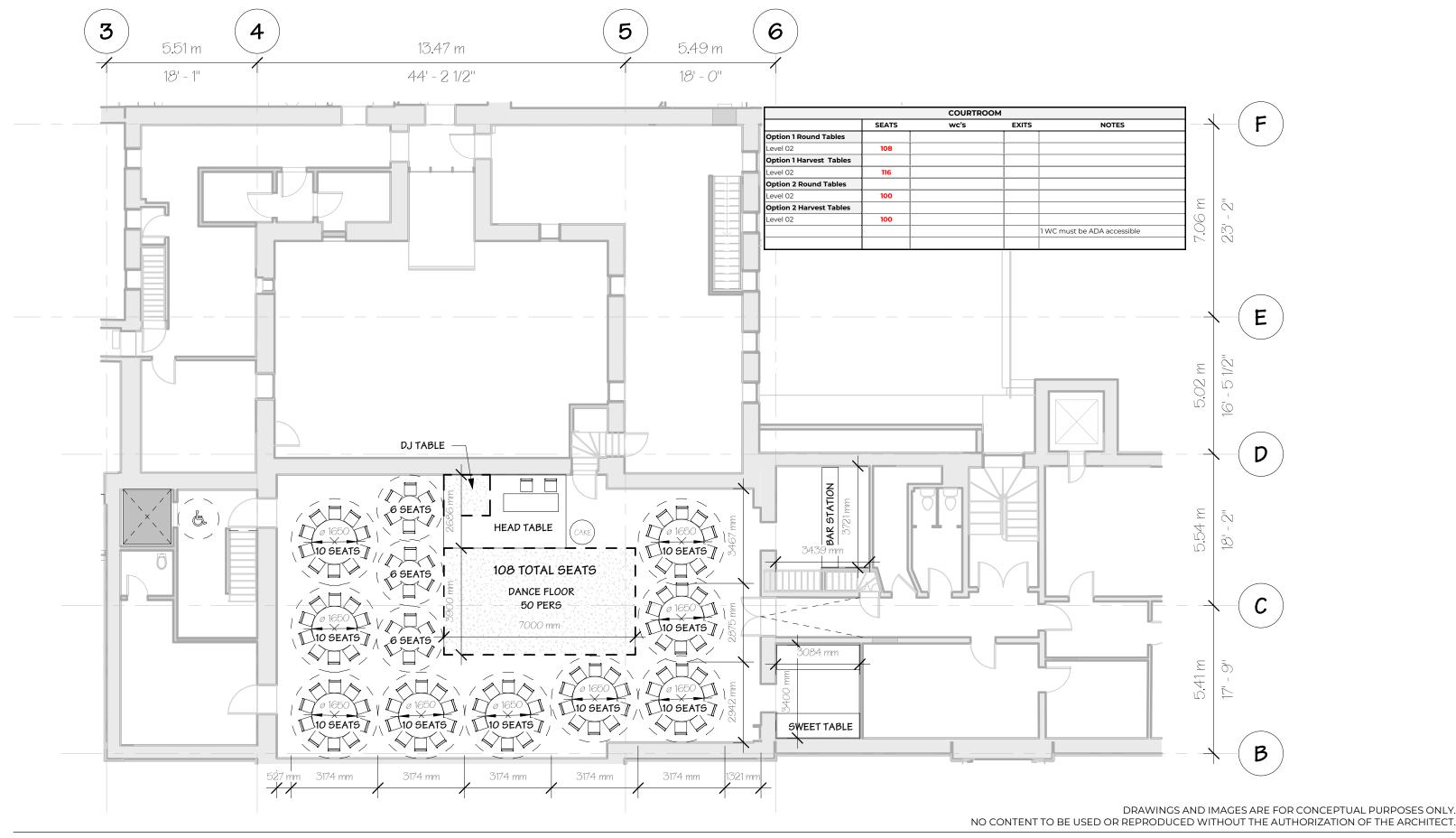
Scale 1:100

Date 12/12/22



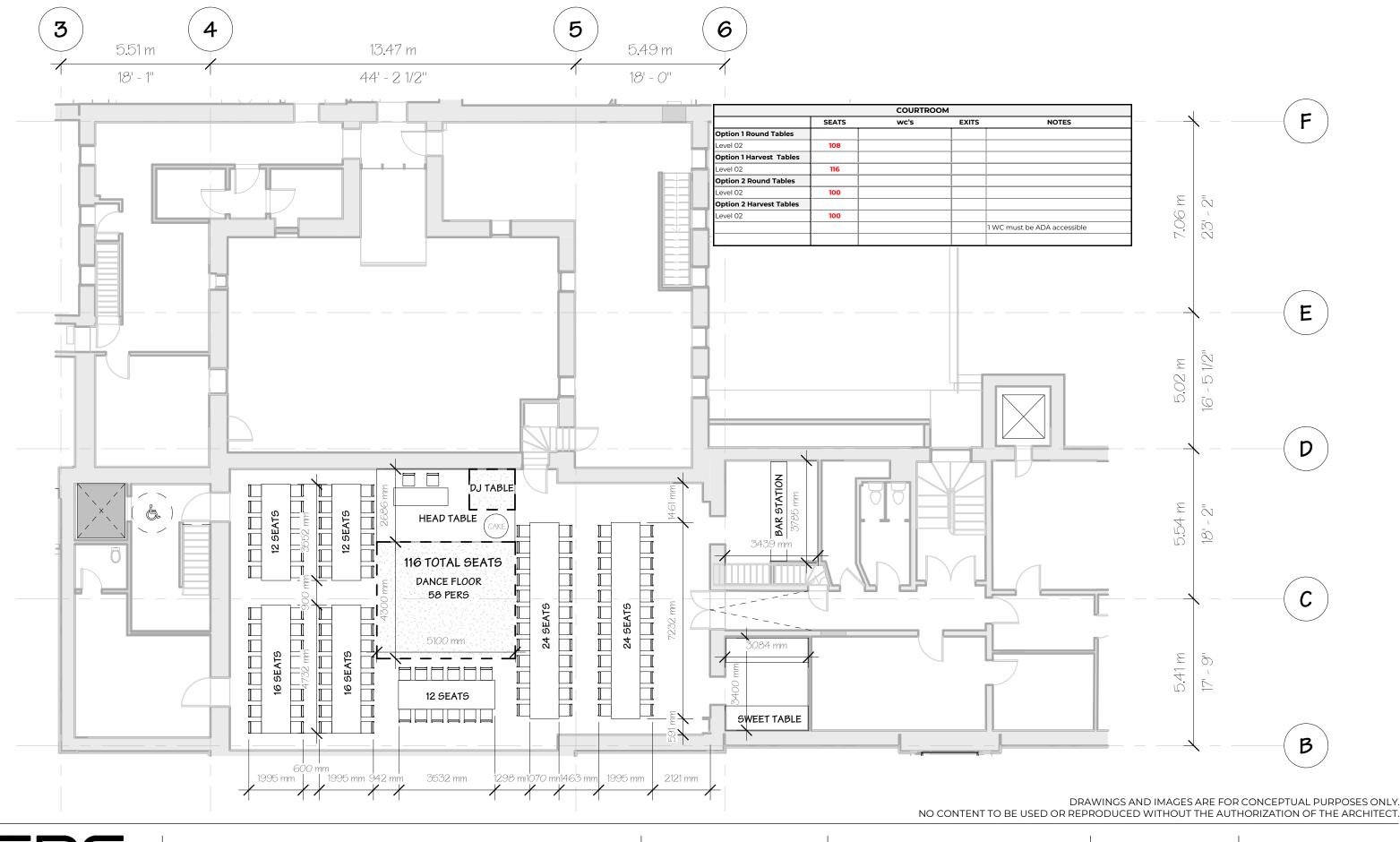
1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

LEVEL 01 - PROPOSED SEATING PLAN - EXT VENUE OPT 2 Project # 22.0056.00 Scale 1:100 Date 12/12/22


SK-005B

1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

LEVEL 01 - PROPOSED SEATING PLAN - COURTROOM CEREMONY ARRANGEMENT Project # 22.0056.00 Scale 1:125 Date 12/12/22

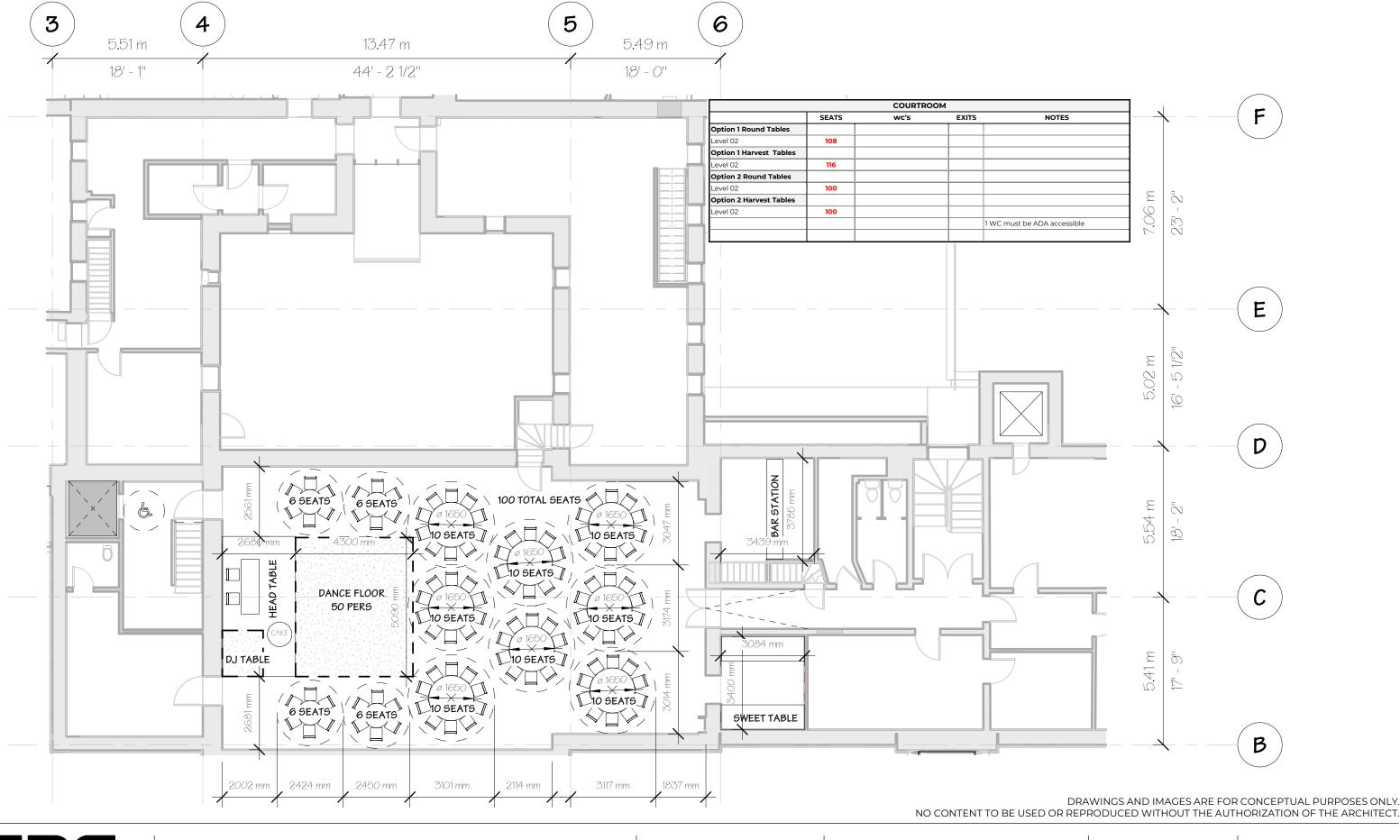

ARCHITECTS

Royal Rose Court

1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

LEVEL 01 - PROPOSED SEATING
PLAN - COURTROOM OPT 1
Copy 1

Project # 22.0056.00 Scale 1:125 Date 12/12/22

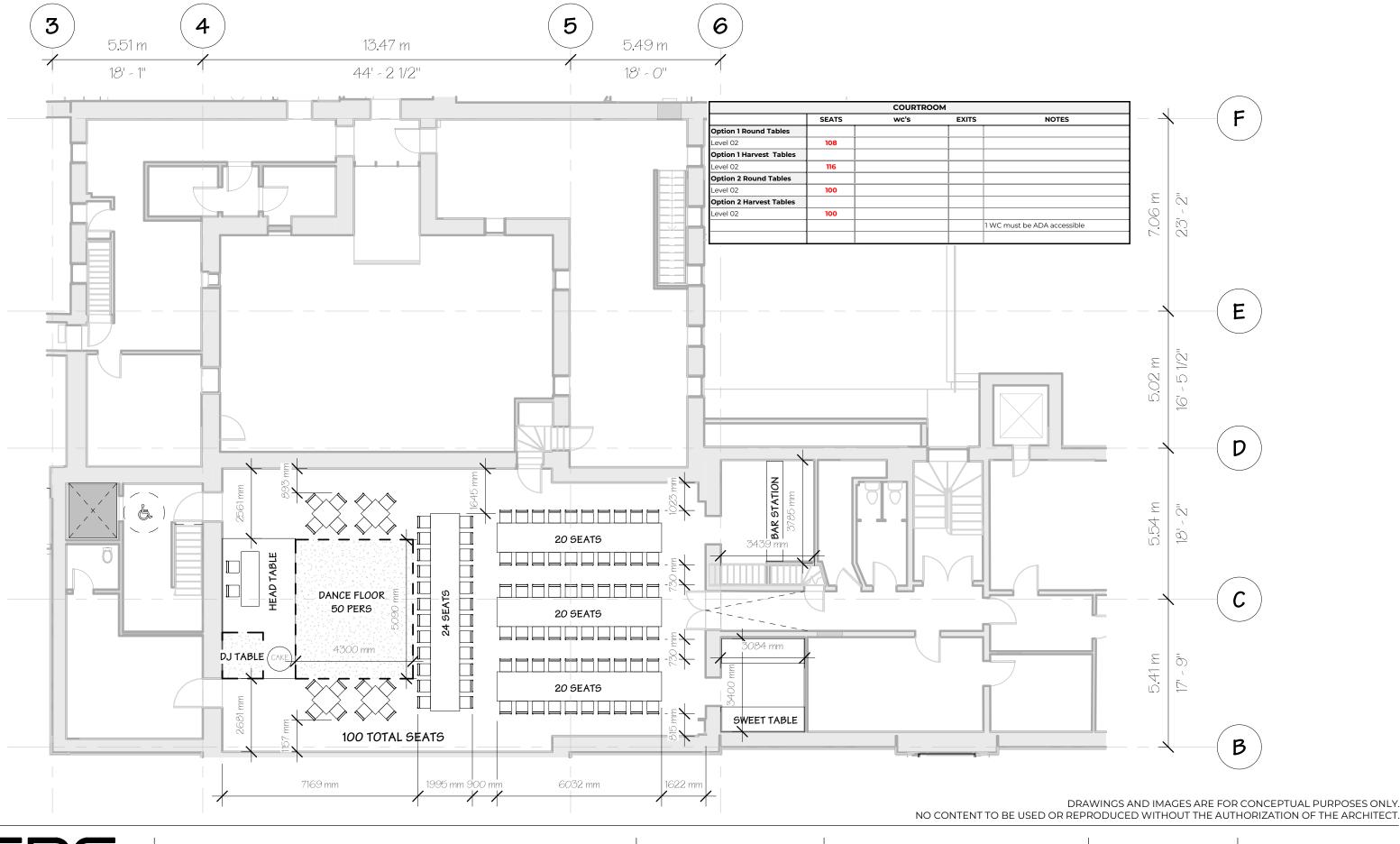


1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

LEVEL 01 - PROPOSED SEATING PLAN - COURTROOM OPT 2

Project # 22.0056.00 Scale 1:125 Date 12/12/22

SK-007B



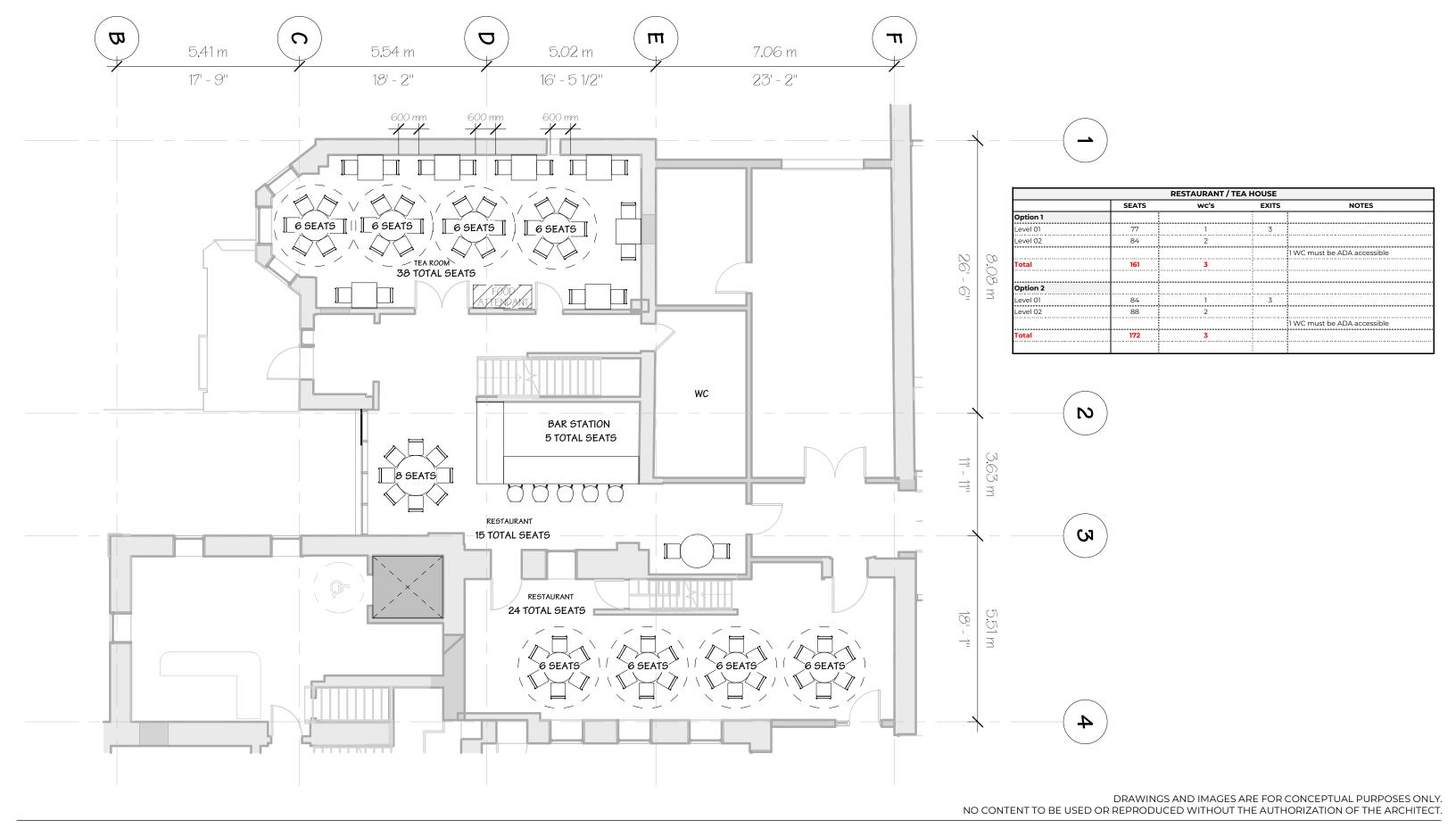
1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

LEVEL 01 - PROPOSED SEATING PLAN - COURTROOM OPT 1

Project # 22.0056.00 Scale 1:125 Date 12/12/22

SK-007C

1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

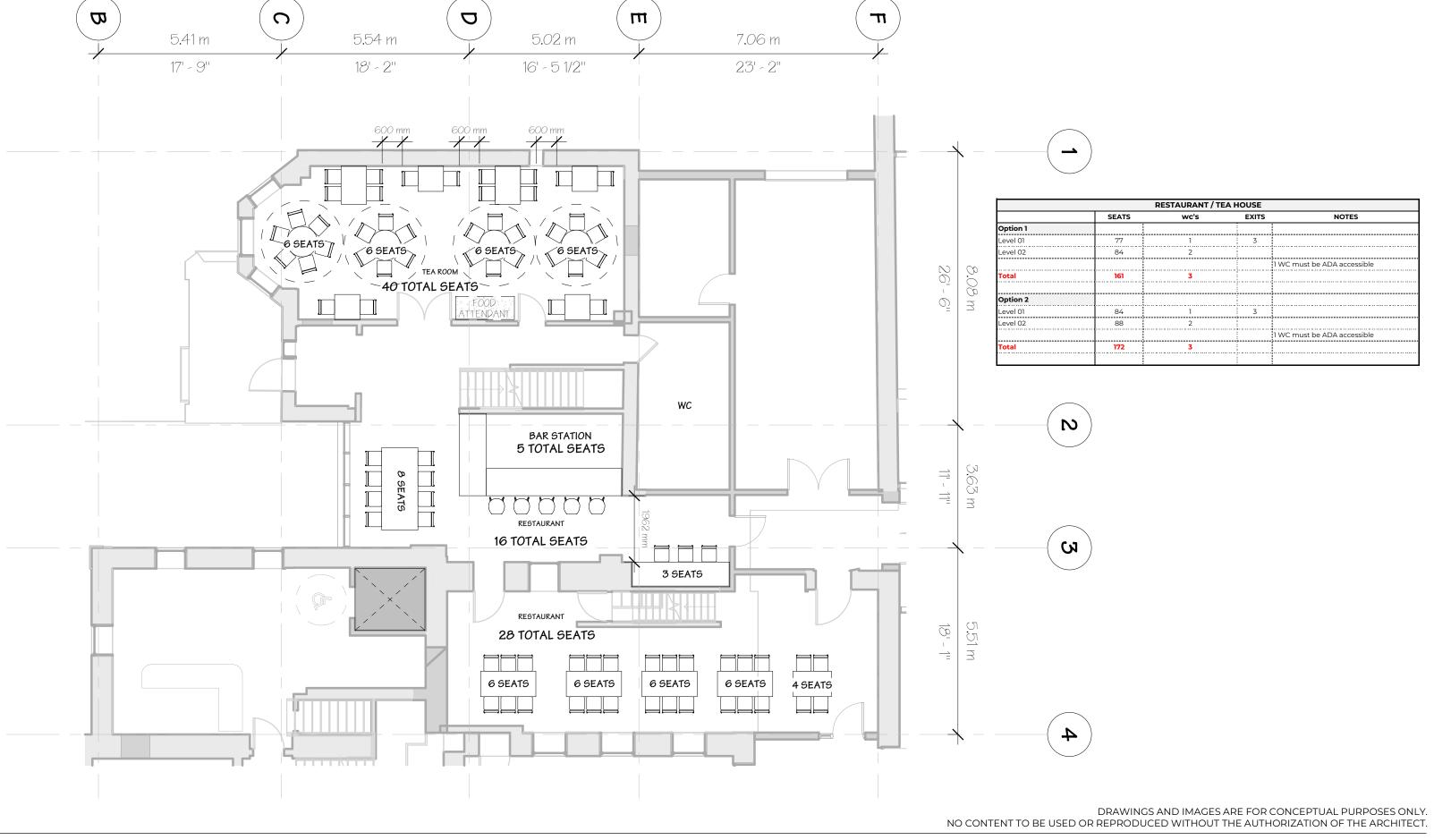

LEVEL 01 - PROPOSED SEATING PLAN - COURTROOM OPT 1

Project # Scale

Date

22.0056.00 1:125 12/12/22

SK-007D

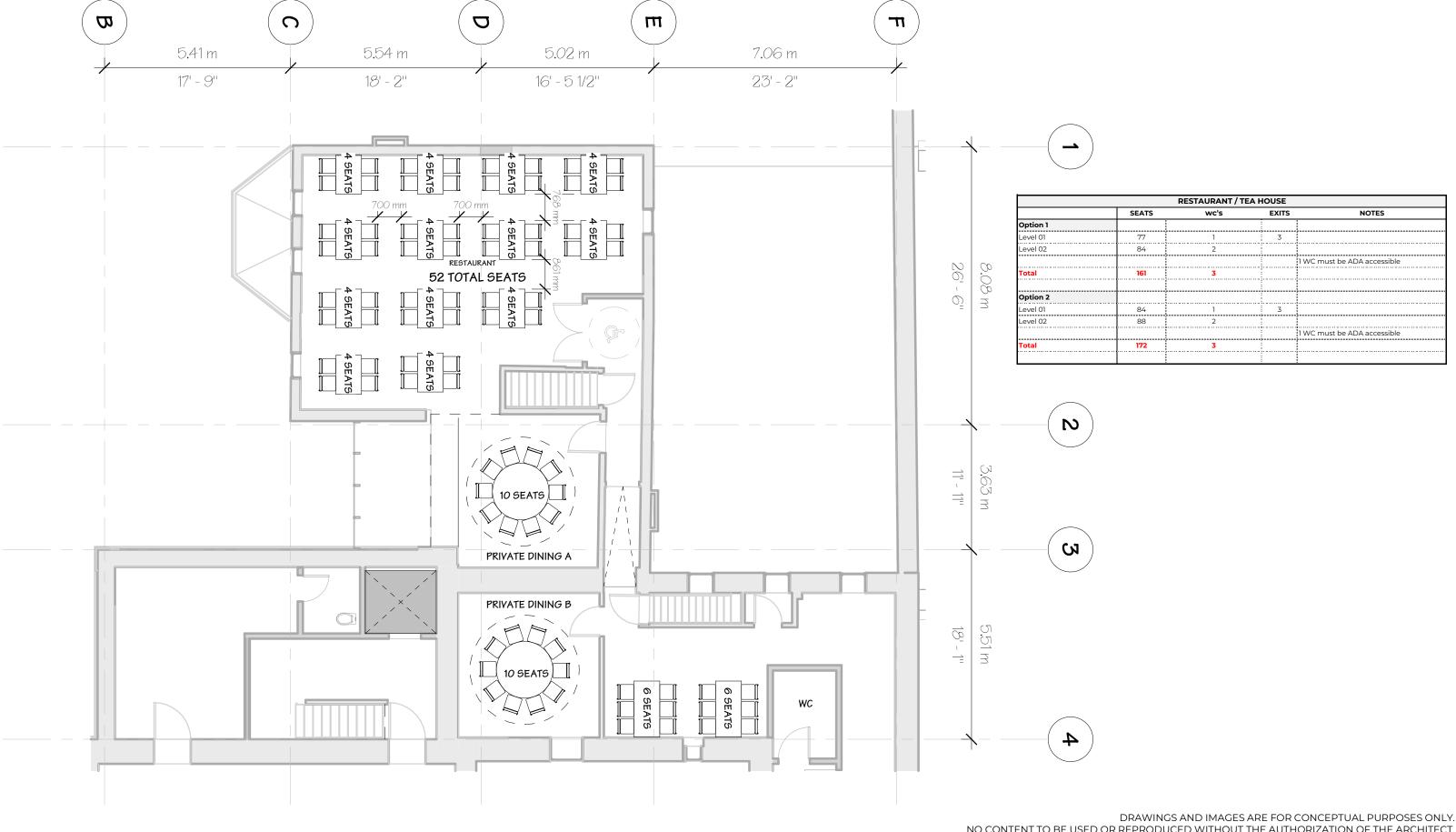


ERS ARCHITECTS

Royal Rose Court

1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

LEVEL 01 - PROPOSED SEATING PLAN - RESTAURANT OPTION 1 Project # 22.0056.00 Scale 1:100 Date 12/12/22



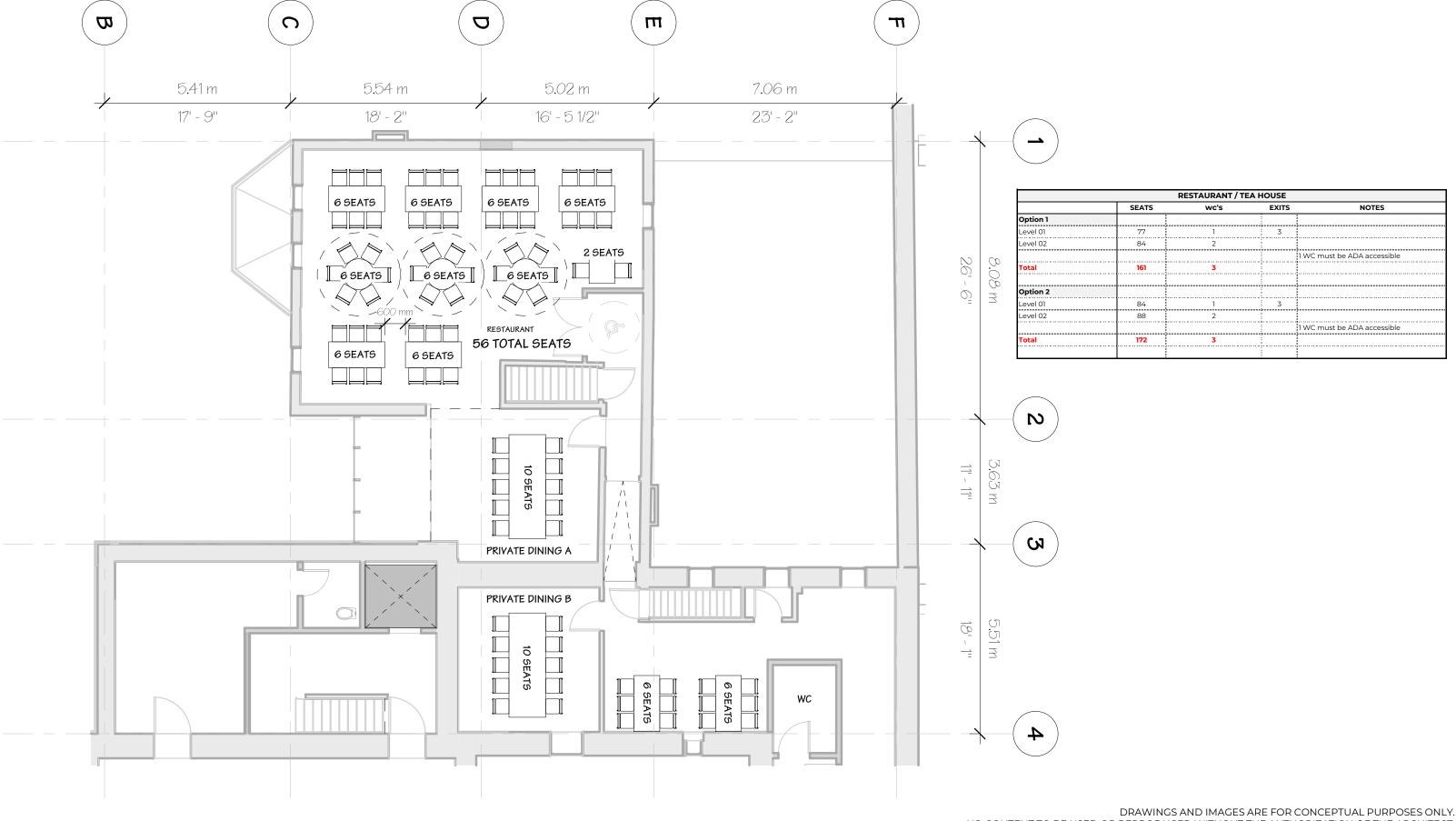
ARCHITECTS

Royal Rose Court

1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

LEVEL 01 - PROPOSED SEATING PLAN - RESTAURANT OPTION 2 Project # 22.0056.00 Scale 1:100 Date 12/12/22

NO CONTENT TO BE USED OR REPRODUCED WITHOUT THE AUTHORIZATION OF THE ARCHITECT.



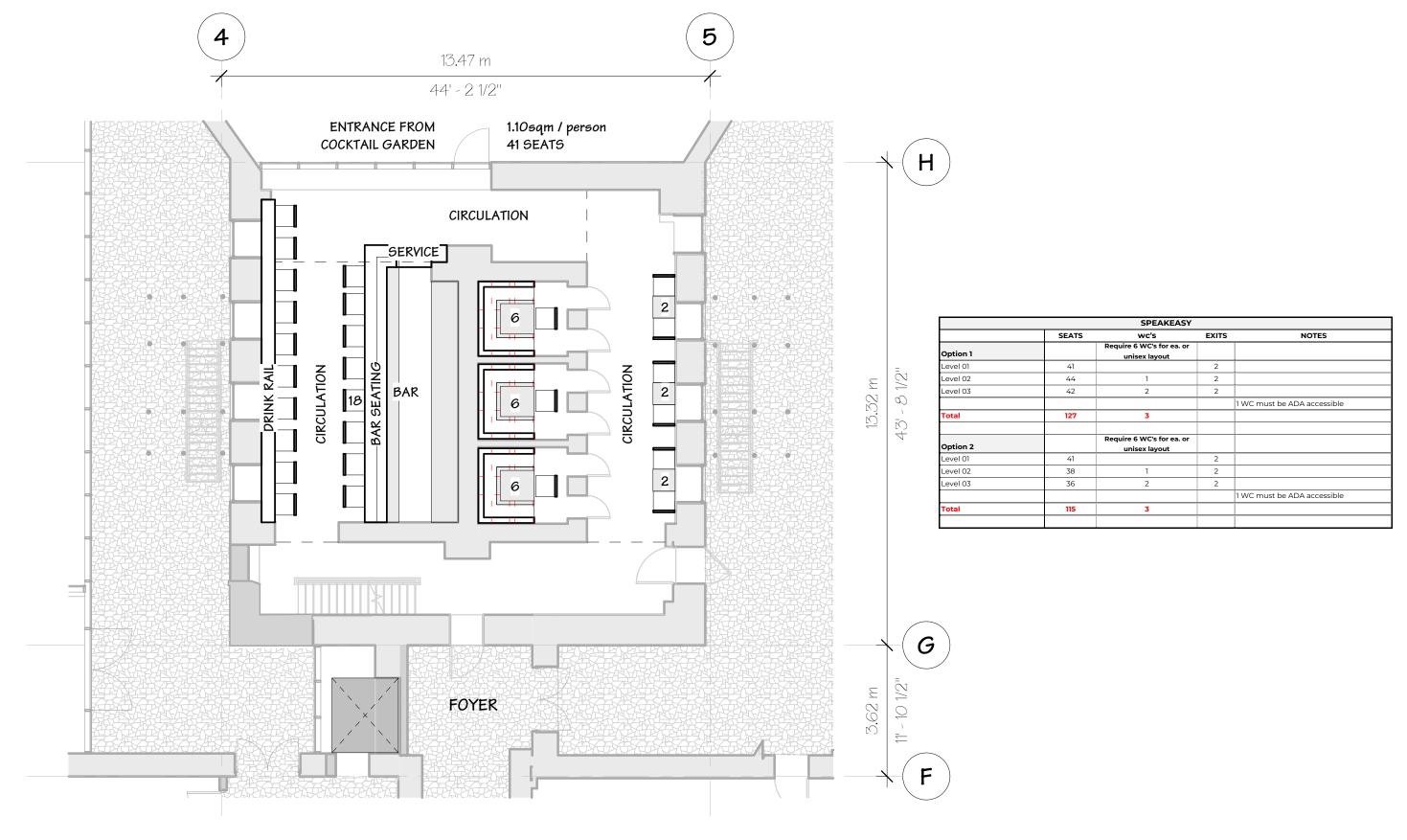
Royal Rose Court

1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality

LEVEL 02 - PROPOSED SEATING PLAN - RESTAURANT OPTION 1

22.0056.00 Project # 1:100 Scale Date 12/12/22

NO CONTENT TO BE USED OR REPRODUCED WITHOUT THE AUTHORIZATION OF THE ARCHITECT.

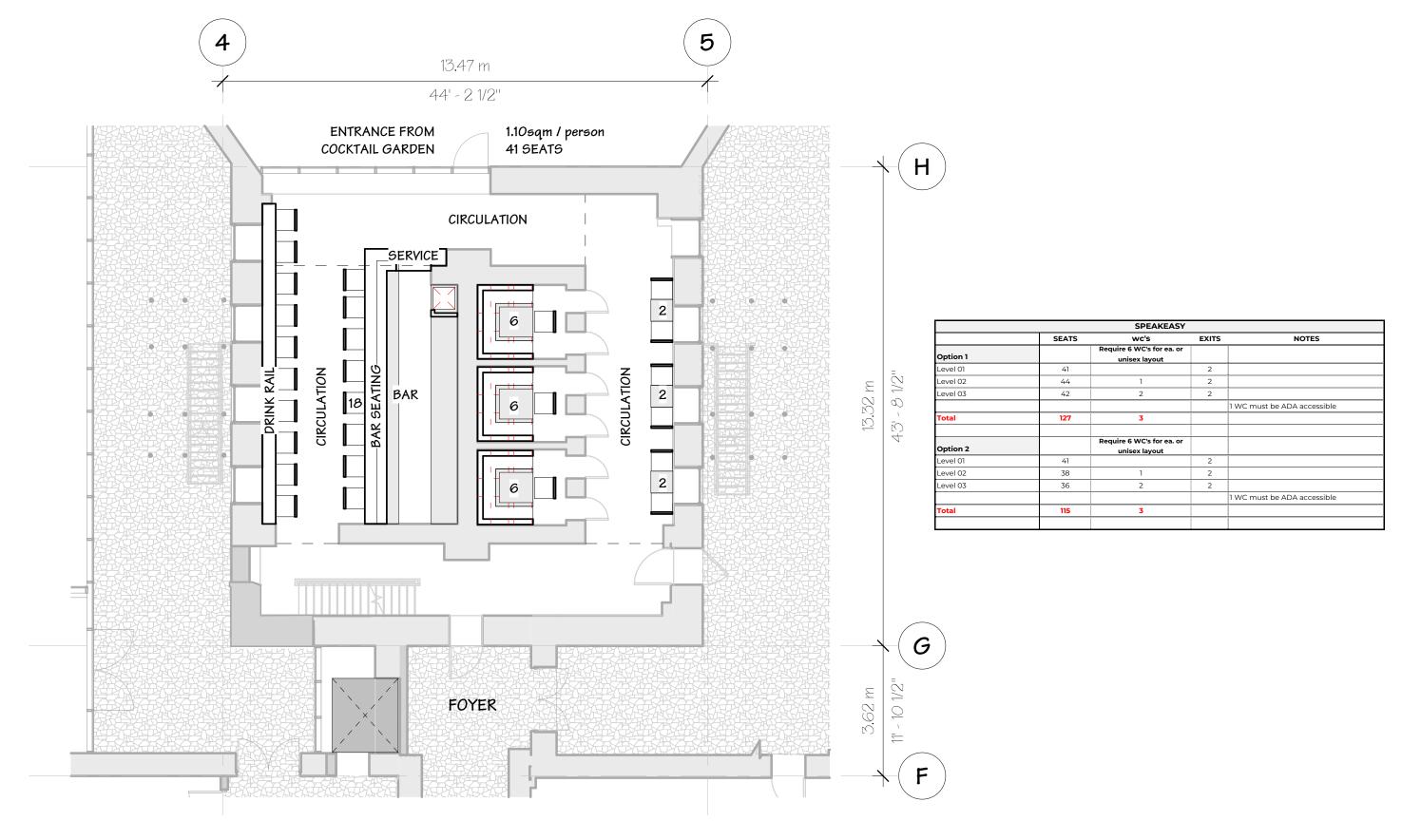

Royal Rose Court

1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality

LEVEL 02 - PROPOSED SEATING PLAN - RESTAURANT OPTION 2

22.0056.00 Project # 1:100 Scale Date 12/12/22

SK-010b



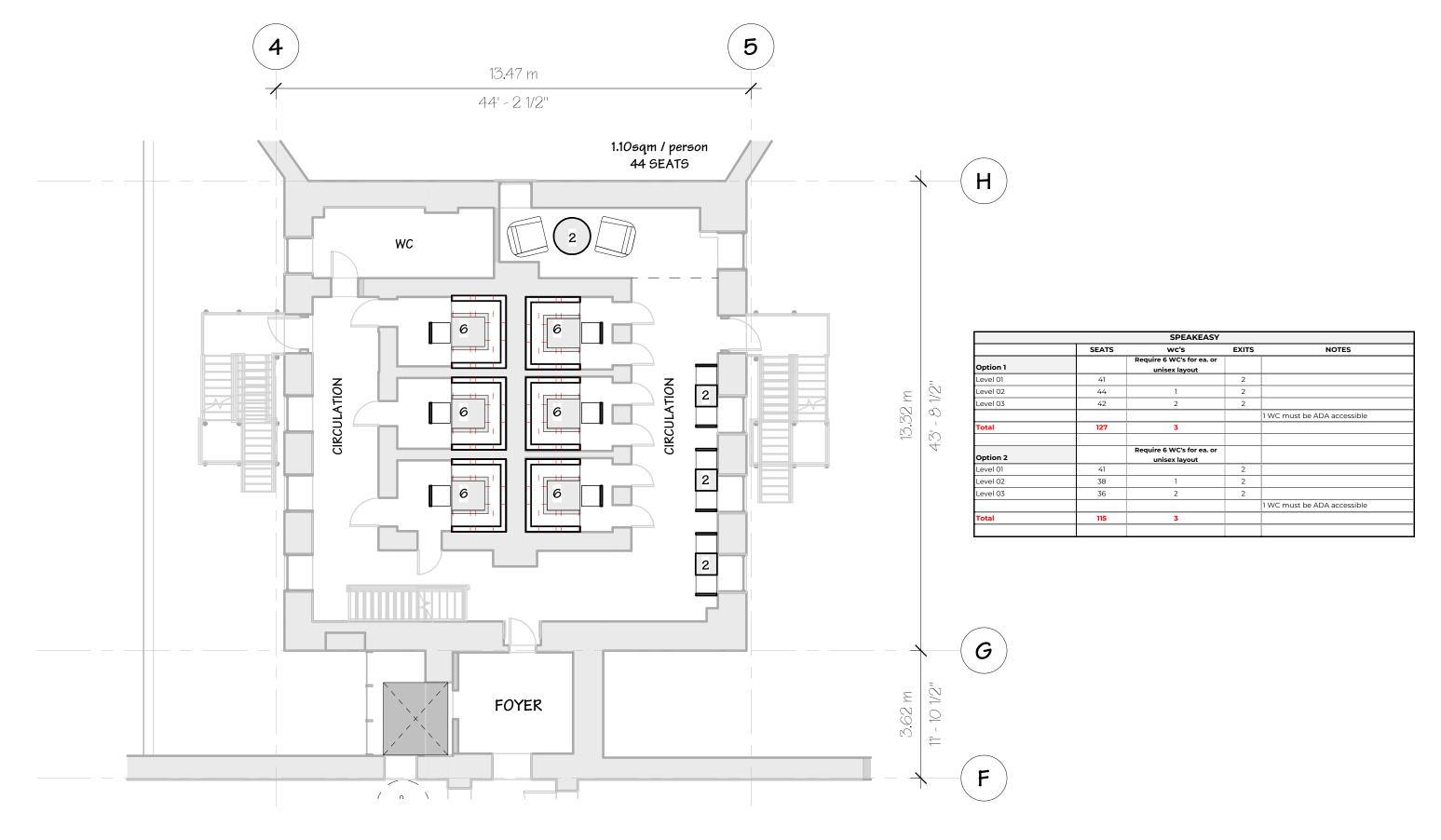
DRAWINGS AND IMAGES ARE FOR CONCEPTUAL PURPOSES ONLY.
NO CONTENT TO BE USED OR REPRODUCED WITHOUT THE AUTHORIZATION OF THE ARCHITECT.

Royal Rose Court

1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6

DRAWINGS AND IMAGES ARE FOR CONCEPTUAL PURPOSES ONLY.
NO CONTENT TO BE USED OR REPRODUCED WITHOUT THE AUTHORIZATION OF THE ARCHITECT.

Royal Rose Court


1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

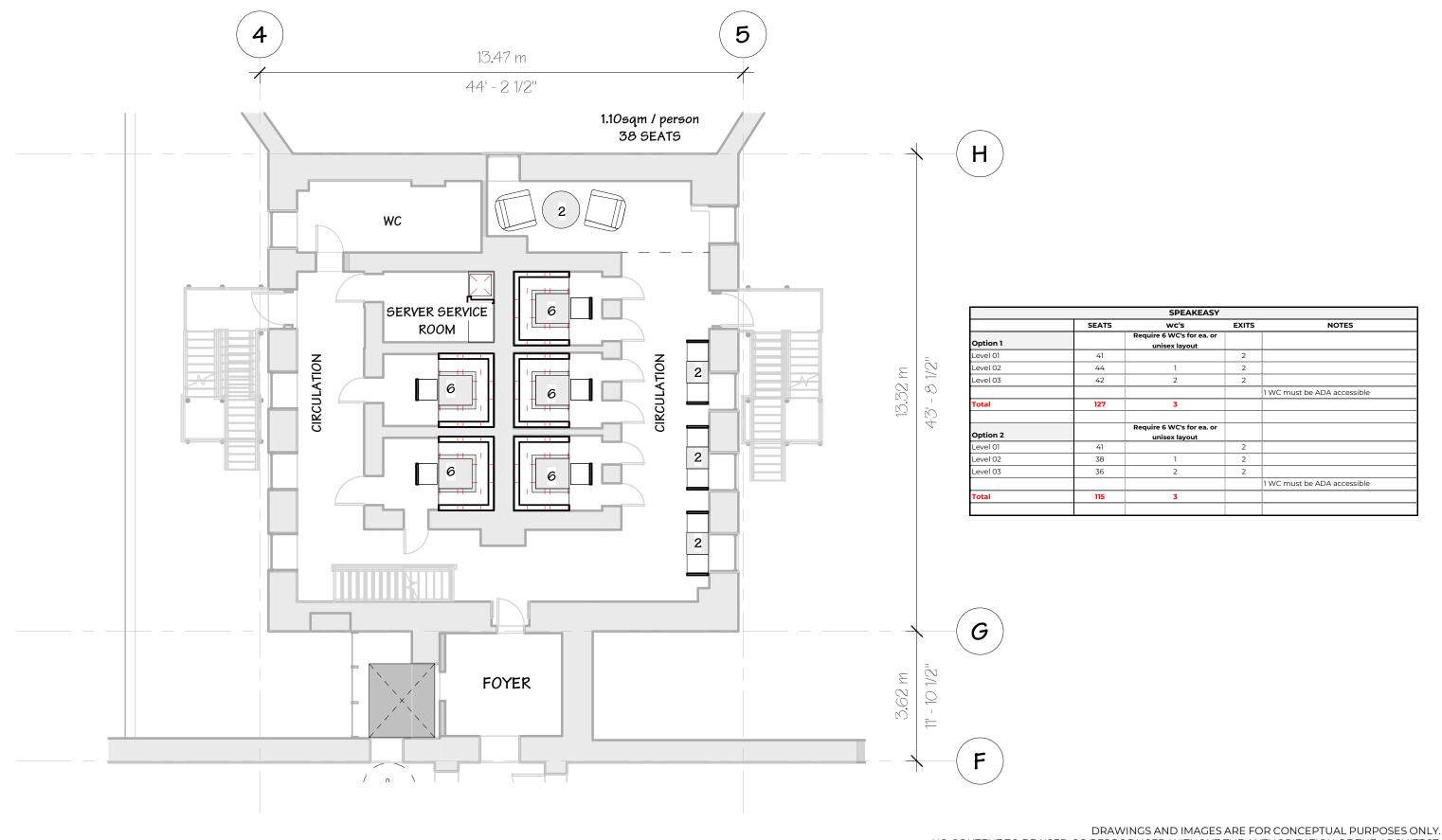
LEVEL 01 - PROPOSED SEATING PLAN - SPEAK EASY Project # 22.0056.00

Scale 1:100

Date 12/12/22

SK-011b

DRAWINGS AND IMAGES ARE FOR CONCEPTUAL PURPOSES ONLY.
NO CONTENT TO BE USED OR REPRODUCED WITHOUT THE AUTHORIZATION OF THE ARCHITECT.


Royal Rose Court

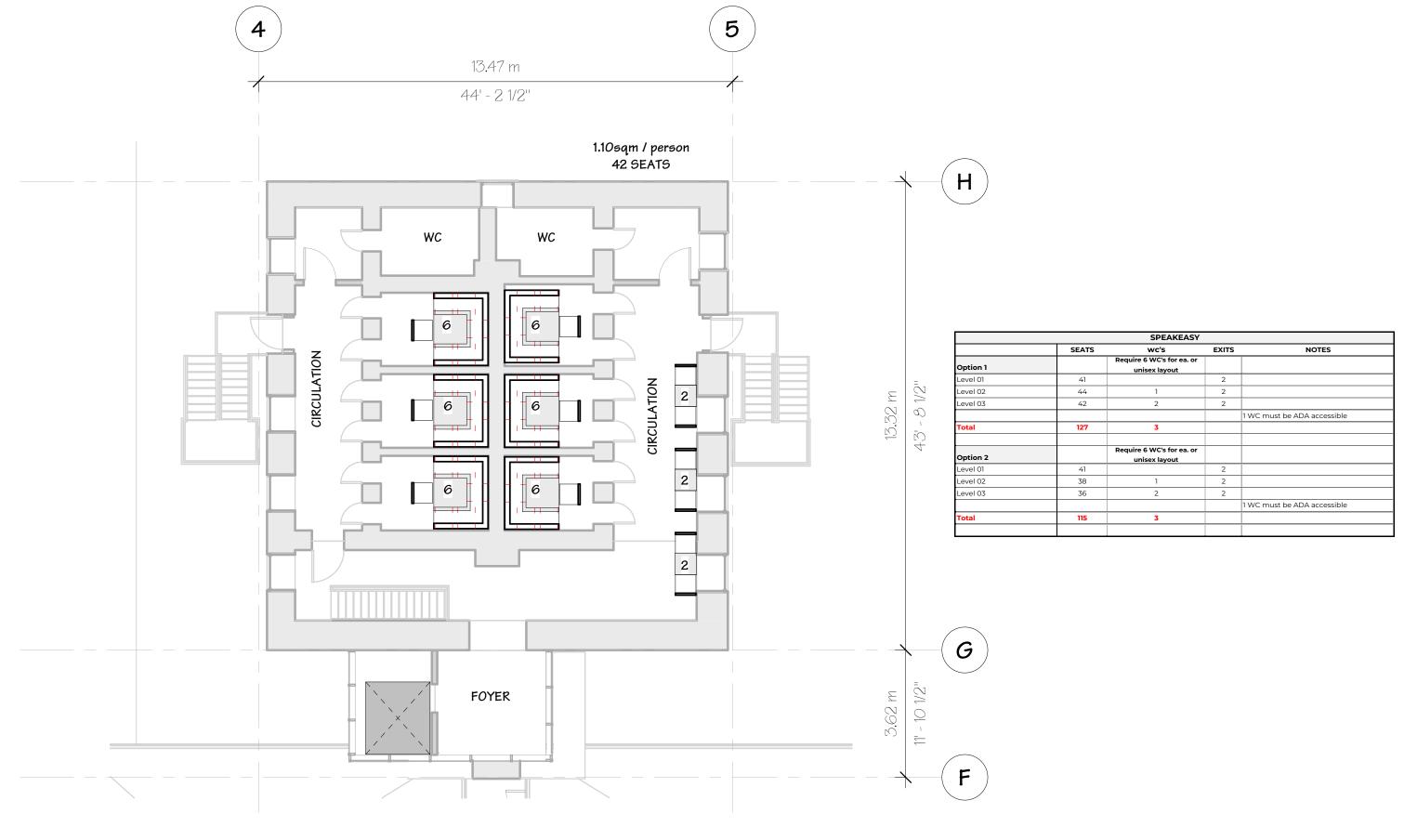
1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

LEVEL 02 - PROPOSED SEATING PLAN - SPEAK EASY Project # 22.0056.00

Scale 1:100

Date 12/12/22

NO CONTENT TO BE USED OR REPRODUCED WITHOUT THE AUTHORIZATION OF THE ARCHITECT.


Royal Rose Court

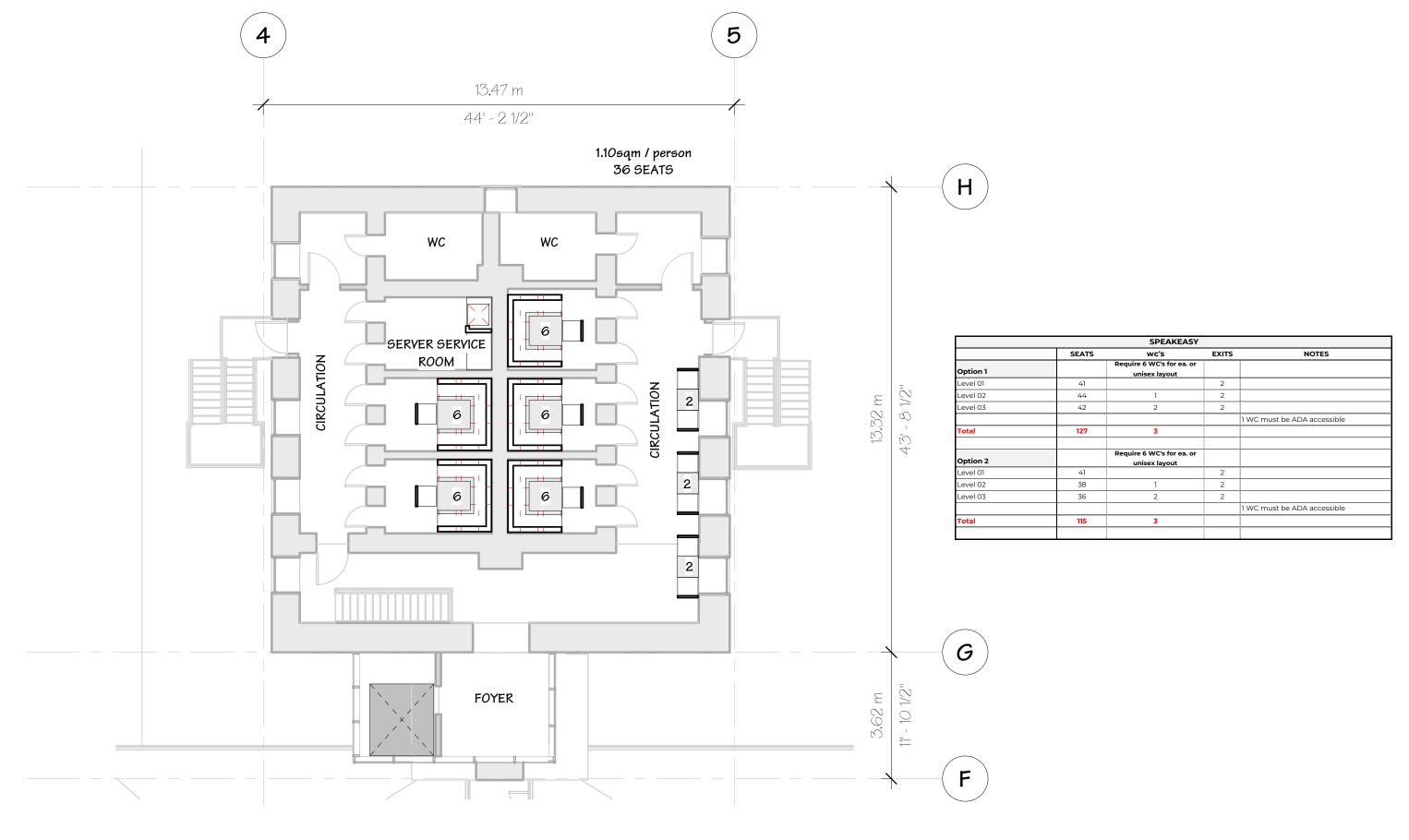
1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality

LEVEL 02 - PROPOSED SEATING PLAN - SPEAK EASY -Opt B

22.0056.00 Project # 1:100 Scale Date 12/12/22

SK-012b

DRAWINGS AND IMAGES ARE FOR CONCEPTUAL PURPOSES ONLY.
NO CONTENT TO BE USED OR REPRODUCED WITHOUT THE AUTHORIZATION OF THE ARCHITECT.



Royal Rose Court

1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

LEVEL 03 - PROPOSED SEATING PLAN - SPEAK EASY Project # 22.0056.00 Scale 1:100 Date 12/12/22

SK-013

DRAWINGS AND IMAGES ARE FOR CONCEPTUAL PURPOSES ONLY.
NO CONTENT TO BE USED OR REPRODUCED WITHOUT THE AUTHORIZATION OF THE ARCHITECT.

Royal Rose Court

1235-1259 3rd Avenue East Owen Sound, ON N4K 2L6 FC Entertainment & Hospitality Inc.

LEVEL 03 - PROPOSED SEATING PLAN - SPEAK EASY -Opt B Project # 22.0056.00

Scale 1:100

Date 12/12/22

SK-013b

APPENDIX I

ITE 11th Edition Trip Generation

Land Use: 712 **Small Office Building**

Description

A small office building is the same as a general office building (Land Use 710) but with less than or equal to 10,000 square feet of gross floor area. The building typically houses a single tenant. It is a location where affairs of a business, commercial or industrial organization, or professional person or firm are conducted. General office building (Land Use 710) is a related use.

Additional Data

Attorney office, mortgage company, financial advisor, insurance agency, home health care provider, and real estate company are examples of tenants included in the small office building database. The diversity of employer types results in a wide range in employee density in the database. Densities range from a high of 1,300 to a low of 240 square feet per employee with an overall average of nearly 600 square feet per employee (a value much larger than the average observed in a general office building study sites).

In addition to the significant difference in employee density, small office buildings tend to be dominated by a single tenant (or very few) that are more service-oriented than a typical general office building. The result is more frequent and regular visitors and higher trip generation rates.

The technical appendices provide supporting information on time-of-day distributions for this land use. The appendices can be accessed through either the ITETripGen web app or the trip generation resource page on the ITE website (https://www.ite.org/technical-resources/topics/tripand-parking-generation/).

The sites were surveyed in the 1980s and the 2010s in Alberta (CAN), California, Texas, and Wisconsin.

Source Numbers

418, 890, 891, 959, 976

Small Office Building (712)

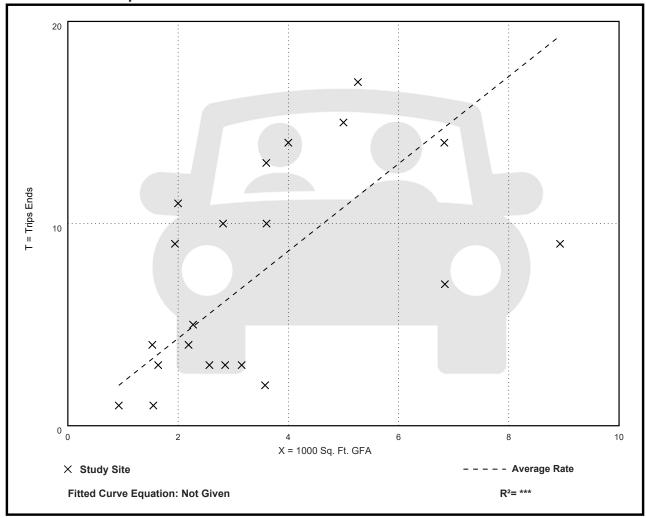
Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 21 Avg. 1000 Sq. Ft. GFA: 3

Directional Distribution: 34% entering, 66% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
2.16	0.56 - 5.50	1.26

Data Plot and Equation

Land Use: 931 **Fine Dining Restaurant**

Description

A fine dining restaurant is a full-service eating establishment with a typical duration of stay of at least 1 hour. A fine dining restaurant generally does not serve breakfast; some do not serve lunch; all serve dinner. This type of restaurant often requests and sometimes requires a reservation and is generally not part of a chain. A patron commonly waits to be seated, is served by wait staff, orders from a menu and pays after the meal. Some of the study sites have lounge or bar facilities (serving alcoholic beverages), but meal service is the primary draw to the restaurant. Fast casual restaurant (Land Use 930) and high-turnover (sit-down) restaurant (Land Use 932) are related uses.

Additional Data

If the fine dining restaurant has outdoor seating, its area is not included in the overall gross floor area. For a restaurant that has significant outdoor seating, the number of seats may be more reliable than GFA as an independent variable on which to establish a trip generation rate.

The sites were surveyed in the 1980s, the 1990s, and the 2010s in Alberta (CAN), California, Colorado, Florida, Indiana, Kentucky, New Jersey, and Utah.

Source Numbers

126, 260, 291, 301, 338, 339, 368, 437, 440, 976, 1053

Fine Dining Restaurant (931)

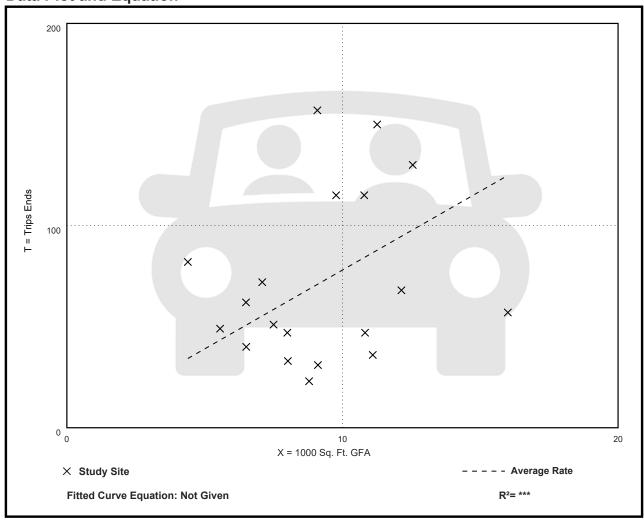
Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 19 Avg. 1000 Sq. Ft. GFA: 9

Directional Distribution: 67% entering, 33% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
7.80	2.62 - 18.68	4.49

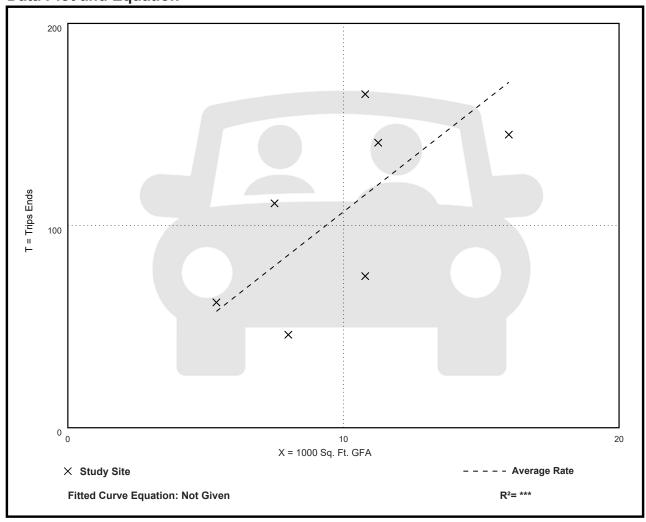
Data Plot and Equation

Fine Dining Restaurant (931)

Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Saturday, Peak Hour of Generator

Setting/Location: General Urban/Suburban


Number of Studies: 7 Avg. 1000 Sq. Ft. GFA: 10

Directional Distribution: 59% entering, 41% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
10.68	5.75 - 15.29	3.62

Data Plot and Equation

Land Use: 975 **Drinking Place**

Description

A drinking place contains a bar, where alcoholic beverages and food are sold, and possibly some type of entertainment, such as music, television screens, video games, or pool tables. Establishments that specialize in serving food but also have bars are not included in this land use.

Additional Data

All data for this land use were collected on Mondays through Thursdays.

The sites were surveyed in the 1980s, the 1990s, and the 2010s in Colorado, Florida, Oregon, Pennsylvania, and South Dakota.

Source Numbers

291, 358, 583, 1020, 1053

Drinking Place (975)

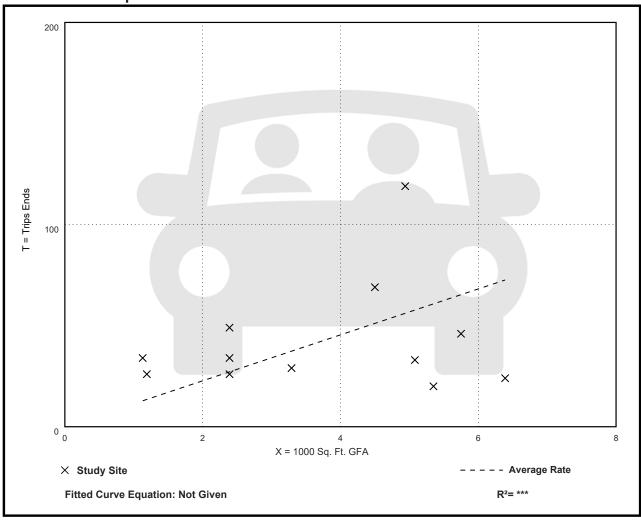
Vehicle Trip Ends vs: 1000 Sq. Ft. GFA

On a: Weekday,

Peak Hour of Adjacent Street Traffic,

One Hour Between 4 and 6 p.m.

Setting/Location: General Urban/Suburban


Number of Studies: 12 Avg. 1000 Sq. Ft. GFA: 4

Directional Distribution: 66% entering, 34% exiting

Vehicle Trip Generation per 1000 Sq. Ft. GFA

Average Rate	Range of Rates	Standard Deviation
11.36	3.74 - 30.09	7.81

Data Plot and Equation

APPENDIX J

TAC GDGCR Sight Distance

Stopping sight distance is the sum of the distance travelled during the perception and reaction time and the braking distance.

SSD =
$$0.278Vt + 0.039 \frac{V^2}{a}$$
 (2.5.2)

Where:

SSD = Stopping sight distance (m)

t = Brake reaction time, 2.5 s

V = Design speed (km/h)

a = Deceleration rate (m/s²)

Table 2.5.2 gives the minimum stopping sight distances on level grade, on wet pavement, for a range of design speeds. These values are used for vertical curve design, intersection geometry and the placement of traffic control devices. The stopping sight distances quoted in **Table 2.5.2** may need to be increased for a variety of reasons related to grade and vehicle type as noted below.

Table 2.5.2: Stopping Sight Distance on level roadways for Automobiles⁵⁴

Design speed	Brake reaction	Braking distance	Stopping sight distance	
(km/h)	distance (m)	on level (m)	Calculated (m)	Design (m)
20	13.9	4.6	18.5	20
30	20.9	10.3	31.2	35
40	27.8	18.4	46.2	50
50	34.8	28.7	63.5	65
60	41.7	41.3	83.0	85
70	48.7	56.2	104.9	105
80	55.6	73.4	129.0	130
90	62.6	92.9	155.5	160
100	69.5	114.7	184.2	185
110	76.5	138.8	215.3	220
120	83.4	165.2	248.6	250
130	90.4	193.8	284.2	285

Note: Brake reaction distance predicated on a time of 2.5 s; deceleration rate of 3.4 m/s² used to determine calculated sight distance.

Table 9.9.3: Time Gap for Case B1, Left Turn from Stop

Design Vehicle	Time Gap $(t_g)(s)$ at Design Speed of Major Road		
Passenger car	7.5		
Single-unit truck	9.5		
Combination truck (WB 19 and WB 20)	11.5		
Longer truck	To be established by road authority		

Notes: Time gaps are for a stopped vehicle to turn left onto a two-lane highway with no median and with grades of 3% or less. The table values should be adjusted as follows:

- For multi-lane highways: For left turns onto two-lane highways with more than two lanes, add 0.5 s for passenger cars and 0.7 s for trucks for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle.
- For minor approach grades: If the approach grade is an upgrade that exceeds 3%, add 0.2 s for each percent grade for left turns.
- Some road authorities use higher values for certain specialized vehicles (e.g., Alberta uses 22 s for very long log trucks).

The intersection sight distance along the major road (distance b in Figure 9.9.2) is determined by:

$$ISD = 0.278 \ V_{major} \ t_g \qquad (9.9.1)$$
 Where:
$$ISD = \begin{array}{ll} & \text{intersection sight distance (length of the leg of sight triangle along the major road) (m)} \\ V_{major} = & \text{design speed of the major road (km/h)} \\ t_g = & t_g = \\ &$$

For example, a passenger car turning left onto a two-lane major road should be provided sight distance equivalent to a time gap of 7.5 s in major-road traffic. If the design speed of the major road is 100 km/h, this corresponds to a sight distance of 0.278(100)(7.5) = 208.5 or 210 m, rounded for design.

A passenger car turning left onto a four-lane undivided roadway will need to cross two near lanes, rather than one. This increases the recommended gap in major-road traffic from 7.5 to 8.0 s. The corresponding value of sight distance for this example would be 223 m. If the minor-road approach to such an intersection is located on a 4% upgrade, then the time gap selected for intersection sight distance design for left turns should be increased from 8.0 to 8.8 s, equivalent to an increase of 0.2 s for each percent grade.

The design values for intersection sight distance for passenger cars are shown in **Table 9.9.4**. **Figure 9.9.4** includes design values, based on the time gaps for the design vehicles included in **Table 9.9.3**.

No adjustment of the recommended sight distance values for the major-road grade is generally needed because both the major- and minor-road vehicle will be on the same grade when departing from the intersection. However, if the minor-road design vehicle is a heavy truck and the intersection is located near a sag vertical curve with grades over 3%, then an adjustment to extend the recommended sight distance based on the major-road grade should be considered.

Table 9.9.4: Design Intersection Sight Distance – Case B1, Left Turn From Stop

Design Speed	Stopping Sight	Intersection Sight Distance for Passenger Car		
(km/h)	Distance (m)	Calculated (m)	Design (m)	
20	20	41.7	45	
30	35	62.6	65	
40	50	83.4	85	
50	65	104.3	105	
60	85	125.1	130	
70	105	146.0	150	
80	130	166.8	170	
90	160	187.7	190	
100	185	208.5	210	
110	220	229.4	230	
120	250	250.2	255	
130	285	271.1	275	

Note: Intersection sight distance shown is for a stopped passenger car to turn left onto a two-lane highway with no median and grades 3% or less. For other conditions, the time gap should be adjusted and the sight distance recalculated.

Sight distance design for left turns at divided-highway intersections should consider multiple design vehicles and median width. If the design vehicle used to determine sight distance for a divided-highway intersection is larger than a passenger car, then sight distance for left turns will need to be checked for that selected design vehicle and for smaller design vehicles as well. If the divided-highway median is wide enough to store the design vehicle with a clearance to the through lanes of approximately 1 m at both ends of the vehicle, no separate analysis for the departure sight triangle for left turns is needed on the minor-road approach for the near roadway to the left. In most cases, the departure sight triangle for right turns (case B2) will provide sufficient sight distance for a passenger car to cross the near roadway to reach the median. Possible exceptions are addressed in the discussion of case B3.

68 June 2017

The time gaps in **Table 9.9.3** can be decreased by 1.0 s for right-turn maneuvers without undue interference with major-road traffic. These adjusted time gaps for the right turn from the minor road are shown in **Table 9.9.5**. Design values based on these adjusted time gaps are shown in **Table 9.9.6** for passenger cars. **Figure 9.9.5** includes the design values for the design vehicles for each of the time gaps in **Table 9.9.5**.

Table 9.9.5: Time Gap for Case B2—Right Turn from Stop and Case B3—Crossing Maneuver

Design Vehicle	Time Gap $(t_g)(s)$ at Design Speed of Major Road		
Passenger car	6.5		
Single-unit truck	8.5		
Combination truck (WB 19 and WB 20)	10.5		

Note: Time gaps are for a stopped vehicle to turn left onto a two-lane highway with no median and with grades of 3% or less. The table values should be adjusted as follows:

- For multi-lane highways: For left turns onto two-lane highways with more than two lanes, add 0.5 s for passenger cars and 0.7 s for trucks for each additional lane, from the left, in excess of one, to be crossed by the turning vehicle.
- For minor approach grades: If the approach grade is an upgrade that exceeds 3%, add 0.1 s for each percent grade for left turns.

Table 9.9.6: Design Intersection Sight Distance – Case B2, Right Turn from Stop, and Case B3, Crossing Maneuver

Design Speed Stopping Sight		Intersection Sight Distance for Passenger Cars		
(km/h)	Distance (m)	Calculated (m)	Design (m)	
20	20	36.1	40	
30	35	54.2	55	
40	50	72.3	75	
50	65	90.4	95	
60	85	108.4	110	
70	105	126.5	130	
80	130	144.6	145	
90	160	162.6	165	
100	185	180.7	185	
110	220	198.8	200	
120	250	216.8	220	
130	285	234.9	235	

Note: Intersection sight distance shown is for a stopped passenger car to turn right onto or to cross a two-lane highway with no median and with grades of 3% or less. For other conditions, the time gap should be adjusted and the sight distance recalculated.

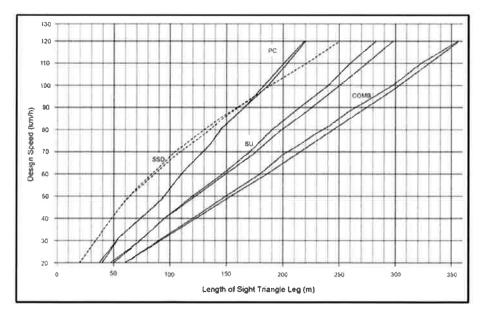


Figure 9.9.5: Intersection Sight Distance – Case B2, Right Turn from Stop, and Case B3, Crossing Maneuver (Calculated and Design Values Plotted)

June 2017 71

APPENDIX K

Owen Sound and Grey Transit Route Maps/Schedules

Grey Transit Route - Schedules

ROUTE 1 SOUTHBOUND

	Monday - Friday		
Owen Sound Transit Terminal 1020 3rd Ave E, Owen Sound	Departure 6:45 AM	Departure 10:44 AM	Departure 5:47 PM
Stone Tree 318085 Hwy 6-10, Owen Sound	6:54 AM	10:53 AM	5:56 PM
Chatsworth Arena 5Toronto St., Chatsworth	7:08 AM	11:07 AM	6:10 PM
King Edward Park 75 Walker St, Markdale	7:32 AM	11:31 AM	6:34 PM
Trail Parking Lot Main St West, @ Scotland St, Markdale	7:39 AM	11:38 AM	6:41 PM
Grey Gables 206 Toronto St S, Markdale	7:46 AM	11:45 AM	6:48 PM
Huron Bay Co-Operative 774794 ON-10, Flesherton	7:54 AM	11:53 AM	6:56 PM
Flesherton Arena 103 ON-10, Flesherton	8:05 AM	12:04 PM	7:07 PM
Dundalk Arena 550 Main St E, Dundalk	Arrival 8:19 AM	Arrival 12:18 PM	Arrival 7:21 PM

ROUTE 1 NORTHBOUND	
(Dundalk to Owen Sound)	

Monday - Friday

	wonday - Friday	/	
Dundalk Arena 550 Main St E, Dundalk	Departure 8:34 AM	Departure 12:22 PM	Departure 7:25 PM
Flesherton Arena 103 ON-10, Flesherton	8:52 AM	12:40 PM	7:43 PM
Huron Bay Co-Operative 774794 ON-10, Flesherton	9:03 AM	12:51 PM	7:54 PM
Grey Gables 206 Toronto St S, Markdale	9:11 AM	12:59 PM	8:02 PM
Trail Parking Lot Main St West, @ Scotland St, Markdale	9:18 AM	1:06 PM	8:09 PM
King Edward Park 75 Walker St, Markdale	9:25 AM	1:13 PM	8:16 PM
Chatsworth Arena 5 Toronto St., Chatsworth	9:49 AM	1:37 PM	8:40 PM
Stone Tree 318085 Hwy 6-10, Owen Sound	10:03 AM	1:51 PM	8:54 PM
Owen Sound Transit Terminal 1020 3rd Ave E, Owen Sound	Arrival 10:08 AM	Arrival 1:56 PM	Arrival 8:59 PM

Book your ride with GTR | Call 226-910-1001 to reserve your ticket or book online.

All rides must be booked in advance to ensure capacity and safety.

https://www.grey.ca/grey-transit-route | https://driverseatinc.com/greytransitroute/

ROUTE 2 SOUTHBOUND (Dundalk to Orangeville)

Monday - Friday

Dundalk Arena 550 Main St E, Dundalk	Departure 6:30 AM	Departure 8:34 AM	Departure 12:22 PM	Departure 5:21 PM
Fiddle Park Ln @ GreenwoodCrescent, Shelburne	6:49 AM	8:53 AM	12:41 PM	5:40 PM
Victoria St.@ Red Front Store Ln. Shelburne	6:56 AM	9:00 AM	12:48 PM	5:47 PM
Hansen Blvd. @ First St. (Orangeville Mall & GO Bus) Orangeville	7:22 AM	9:26 AM	1:14 PM	6:13 PM
Broadway & Fourth Street (TransitTransfer Station) Orangeville	Arrival 7:28 AM	Arrival 9:32 AM	Arrival 1:20 PM	Arrival 6:19 PM

ROUTE 2 SOUTHBOUND - WEEKEND SERVICE

(Dundalk to Orangeville)

Saturday & Sunday (July 10 to December 12, 2021)

	` •		•	
Owen Sound Transit Terminal 1020 3rd Ave. E., Owen Sound	Departure 7:00 AM			
Dundalk Arena 550 Main St E, Dundalk	7:56 AM	Departure 10:40 AM	Departure 2:02 PM	Departure 4:46 PM
Col Phillips Dr. & Armstrong Rd. Shelburne	8:13 AM	10:57 AM	2:19 PM	5:03 PM
Fiddle Park Ln @ Greenwood Crescent, Shelburne	8:20 AM	11:04 AM	2:26 PM	5:10 PM
Victoria St.@ Red Front Store Ln. Shelburne	8:25 AM	11:09 AM	2:31 PM	5:15 PM
Simon Street @ School Road Shelburne	8:32 AM	11:16 AM	2:38 PM	5:22 PM
Hansen Blvd. @ First St. (Orangeville Mall & GO Bus) Orangeville	8:54 AM	11:38 AM	3:00 PM	5:44 PM
Broadway & Fourth Street (TransitTransfer Station) Orangeville	Arrival 9:00 AM	Arrival 11:44 AM	Arrival 3:06 PM	Arrival 5:50 PM

ROUTE 2 NORTHBOUND (Orangeville to Dundalk)

Monday - Friday

		,		
Broadway & Fourth Street (TransitTransfer Station) Orangeville	Departure 7:32 AM	Departure 9:36 AM	Departure 1:24 PM	Departure 6:23 PM
Hansen Blvd. @ First St. (Orangeville Mall & GO Bus) Orangeville	7:42 AM	9:46 AM	1:34 PM	6:33 PM
Victoria St. @ Red Front Store Ln. Shelburne	8:08 AM	10:12 AM	2:00 PM	6:59 PM
Fiddle Park Ln @ Greenwood Crescent Shelburne	8:15 AM	10:19 AM	2:07 PM	7:06 PM
Dundalk Arena 550 Main St. E., Dundalk	Arrival 8:30 AM	Arrival 10:34 AM	Arrival 2:22 PM	Arrival 7:21 PM

ROUTE 2 NORTHBOUND - WEEKEND SERVICE

(Dundalk to Orangeville)

Saturday & Sunday (July 10 to December 12, 2021)

	` •	•	•	
Broadway & Fourth Street (TransitTransfer Station) Orangeville	Departure 9:02 AM	Departure 11:46 AM	Departure 3:08 PM	Departure 5:52 PM
Hansen Blvd. @ First St. (Orangeville Mall & GO Bus) Orangeville	9:10 AM	11:54 AM	3:16 PM	6:03 PM
Simon Street @ School Road Shelburne	9:32 AM	12:16 PM	3:38 PM	6:25 PM
Victoria St.@ Red Front Store Ln. Shelburne	9:39 AM	12:23 PM	3:45 PM	6:32 PM
Fiddle Park Ln @ Greenwood Crescent, Shelburne	9:44 AM	12:28 PM	3:50 PM	6:37 PM
Col Phillips Dr. & Armstrong Rd. Shelburne	9:51 AM	12:35 PM	3:57 PM	6:44 PM
Dundalk Arena 550 Main St E, Dundalk	Arrival 10:06 AM	Arrival 12:50 PM	Arrival 4:12 PM	Departure 7:01 PM
Owen Sound Transit Terminal 1020 3rd Ave. E., Owen Sound				Arrival 7:55 PM

Book your ride with GTR | Call 226-910-1001 to reserve your ticket or book online.

All rides must be booked in advance to ensure capacity and safety.

https://www.grey.ca/grey-transit-route | https://driverseatinc.com/greytransitroute/

ROUTE 3 EASTBOUND (Meaford to Owen Sound)

Wednesday - Sunday

Owen Sound Transit Terminal	Departure	Departure	Departure	Departure	Departure	Departure
1020 3rd Ave. E., Owen Sound	6:30 AM	8:06 AM	9:39 AM	11:21 AM	4:30 PM	6:06 PM
Woodford Community Center 107 Woodford Cres, Owen Sound	express (no stop)	8:27 AM	10:00 AM	express (no stop)	express (no stop)	6:27 PM
Don Bumstead & Family Medical Clinic 206106, ON-26 Meaford	express (no stop)	8:39 AM	10:12 AM	express (no stop)	express (no stop)	6:39 PM
N Sykes St. @ Nelson St W. Meaford	Arrival 7:00 AM	Arrival 8:42 AM	Arrival 10:15 AM	Arrival 11:51 AM	Arrival 5:00 PM	Arrival 6:42 PM

ROUTE 3 WESTBOUND (Meaford to Owen Sound)

Wednesday - Sunday

N Sykes St. @ Nelson St W, Meaford	Departure 8:46 AM	Departure 10:28 AM	Departure 11:55 AM	No Stop	Departure 6:46 PM
Don Bumstead & Family Medical Centre 206106, ON-26, Meaford	8:53 AM	10:35 AM	12:02 PM	No Stop	6:53 PM
Smart Centres Bus Stop 16th St E @ 18th Ave E, Owen Sound	9:16 AM	10:58 AM	12:25 PM	Pick Up Only 4:15 PM	7:16 PM
Grey Bruce Health Services Owen Sound Hospital 1800 8th St E, Owen Sound	9:23 AM	11:05 AM	12:32 PM	Pick Up Only 4:18 PM	7:23 PM
Georgian College 8th St. E., Owen Sound	9:30 AM	11:12 AM	12:39 PM	Pick Up Only 4:21 PM	7:30 PM
Owen Sound Transit Terminal 1020 3rd Ave. E., Owen Sound	Arrival 9:35 AM	Arrival 11:17 AM	Arrival 12:44 PM	Arrival 4:26 PM	Arrival 7:35 PM

ROUTE 4 EASTBOUND

(Meaford to Town of the Blue Mountains)

Wednesday - Sunday

Downtown Meaford N Sykes St. @ Nelson St W, Meaford	Departure 7:04 AM	Departure 8:46 AM	Departure 5:04 PM	Departure 6:46 PM
Masse's Independent 206497 ON-26, Meaford	7:11 AM	8:53 AM	5:11 PM	6:53 PM
Thornbury Foodland 105 Arthur St W, Thornbury	7:21 AM	9:03 AM	5:21 PM	7:03 PM
Town of Blue Mountains Municipal Office 32 Mill St, The Blue Mountains	7:27 AM	9:09 AM	5:27 PM	7:09 PM
Blue Mountain Community Health Centre 78 King St E, Thornbury	7:34 AM	9:16 AM	5:34 PM	7:16 PM
Blue Mountain Village 156 Jozo Weider Blvd.	Arrival 7:51 AM	Arrival 9:33 AM	Arrival 5:51 PM	Arrival 7:33 PM

ROUTE 4 WESTBOUND

(Town of the Blue Mountains to Meaford)

Wednesday - Sunday

		.commy currency		
Blue Mountain Village 156 Jozo Weider Blvd.	Departure 7:55 AM	Departure 9:37 AM	Departure 5:55 PM	Departure 7:37 PM
Blue Mountain Community Health Centre 78 King St E, Thornbury	8:16 AM	9:58 AM	6:16 PM	7:58 PM
Town of Blue Mountains Municipal Office 32 Mill St, The Blue Mountains	8:23 AM	10:05 AM	6:23 PM	8:05 PM
Thornbury Foodland 105 Arthur St W, Thornbury	8:29 AM	10:11 AM	6:29 PM	8:11 PM
Masse's Independent 206497 ON-26, Meaford	8:39 AM	10:21 AM	6:39 PM	8:21 PM
Downtown Meaford N Sykes St. @ Nelson St W, Meaford	Arrival 8:42 AM	Arrival 10:24 AM	Arrival 6:42 PM	8:28 PM
Owen Sound Transit Terminal 1020 3rd Ave. E., Owen Sound				Arrival 8:58 PM

Book your ride with GTR | Call 226-910-1001 to reserve your ticket or book online.

All rides must be booked in advance to ensure capacity and safety.

https://www.grey.ca/grey-transit-route | https://driverseatinc.com/greytransitroute/

ROUTE 5 NORTHBOUND

(Owen Sound to Wiarton to Sauble Beach)

Friday – Monday (May 21 to September 6, 2021 *Including Holiday Mondays*)

Owen Sound Transit Terminal 1020 3rd Ave E, Owen Sound	Departure 7:17 AM	Departure 12:17 PM	Departure 8:17 PM
Bergen's No Frills 1020 10th St W, Owen Sound	7:27 AM	12:27 PM	8:27 PM
Shallow Lake & District Community Centre 550 Princess St, Shallow Lake	7:41 AM	12:41 PM	8:41 PM
South Bruce Peninsula Visitor Centre 50 ON-6, Hepworth	7:47 AM	12:47 PM	8:47 PM
Wiarton Foodland 425 Berford St, Wiarton	7:59 AM	12:59 PM	express (no stop)
Downtown Wiarton Louisa St, @ George St, Wiarton	8:07 AM	1:07 PM	express (no stop)
Sauble Beach 104 2nd Ave N, Sauble Beach	Arrival 8:31 AM	Arrival 1:31 PM	Arrival 9:02 PM

ROUTE 5 SOUTHBOUND

(Sauble Beach to Wiarton to Owen Sound)

Friday – Monday (May 21 to September 6, 2021 *Including Holiday Mondays*)

Sauble Beach 104 2nd Ave N, Sauble Beach	Departure 8:33 AM	Departure 1:33 PM	Departure 9:04 PM
Downtown Wiarton Louisa St, @ George St, Wiarton	express (no stop)	1:59 PM	9:30 PM
Wiarton Foodland 425 Berford St, Wiarton	express (no stop)	2:07 PM	9:38 PM
South Bruce Peninsula Visitor Centre 50 ON-6, Hepworth	8:45 AM	2:19 PM	9:50 PM
Shallow Lake & District Community Centre 550 Princess St, Shallow Lake	8:51 AM	2:25 PM	9:56 PM
Bergen's No Frills 1020 10th St W, Owen Sound	9:05 AM	2:39 PM	10:10 PM
Owen Sound Transit Terminal 1020 3rd Ave E, Owen Sound	Arrival 9:13 AM	Arrival 2:47 PM	Arrival 10:18 PM

ROUTE 6 WESTBOUND

(Flesherton / Durham - Walkerton)

Monday and Friday

Flesherton Arena	Departure	Departure	Departure
103 ON-10, Flesherton	8:05 AM	12:41 PM	5:04 PM
Durham Credit Union 118 Queen St S, Durham	8:29 AM	1:05 PM	5:25 PM
Hanover Municipal Office 341 10th St, Hanover	8:50 AM	1:26 PM	5:46 PM
Downtown Walkerton	Arrival	Arrival	Arrival
306 Scott St, Walkerton	9:03 AM	1:39 PM	5:59 PM

ROUTE 6 EASTBOUND

(Walkerton - Durham / Flesherton)

Monday and Friday

Downtown Walkerton	Departure	Departure	Departure	Departure
306 Scott St, Walkerton	7:03 AM	9:07 AM	1:43 PM	6:03 PM
Hanover Municipal Office 341 10th St, Hanover	7:20 AM	9:24 AM	2:00 PM	6:20 PM
Durham Credit Union 118 Queen St S, Durham	7:41 AM	9:45 AM	2:21 PM	6:41 PM
Flesherton Arena	Arrival	Arrival	Arrival	Arrival
103 ON-10. Flesherton	8:01 AM	10:05 AM	2:41 PM	7:01 PM

Book your ride with GTR | Call 226-910-1001 to reserve your ticket or book online.

All rides must be booked in advance to ensure capacity and safety.

https://www.grey.ca/grey-transit-route | https://driverseatinc.com/greytransitroute/

__6___

Route 5

Highway 6

Owen Sound to Wiarton to Sauble Beach

Adult (18+): \$3.00

Adult (55+) and student (6-17): \$2.50

Children 5 and under: Free Operating: Friday to Monday

Route 1 & 2

Highway 10

Owen Sound to Orangeville

Adult (18+): \$5.00

Adult (55+) and student (6-17):

Children 5 and under: Free

Operating:

Monday to Friday

Telephone Number: 226-910-1001 Website: www.grey.ca/gtr

Route 3 & 4 Highway 26

Owen Sound to The Blue Mountains

Adult (18+): \$5.00

Adult (55+) and student (6-17):

Children 5 and under: Free

Operating:

Wednesday to Sunday

Telephone Number: 226-910-1001 Website: www.grey.ca/gtr

APPENDIX L

Owen Sound Trails Brochure and Grey County Cycling Map

In addition to Maps 1a and 1b, the County's cycling loops were reviewed to understand roads and trails that are already promoted by the County as desirable routes for cyclists. These cycling loops are illustrated on the County's map of bike routes (here). Though most of these cycling loops do not have a formal facility, they were used as a starting point of the network development process. The County's cycling loops are organized into three categories – easy, moderate and advanced – and typically include a series of roads and / or trails that take advantage of the surrounding landscapes and views. **Figure 9** illustrates the County's cycling loops.

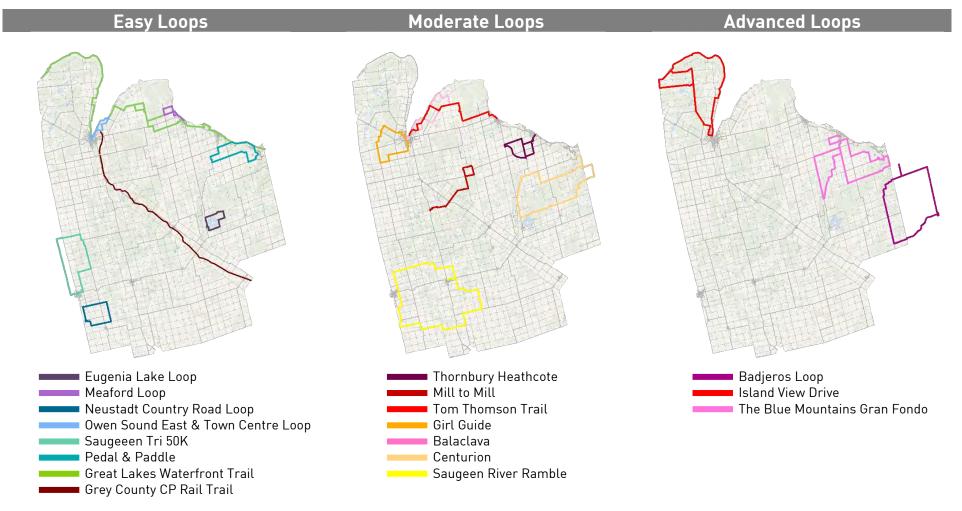


Figure 9 - Overview of Grey County's Cycling Loops

HARRISON PARK

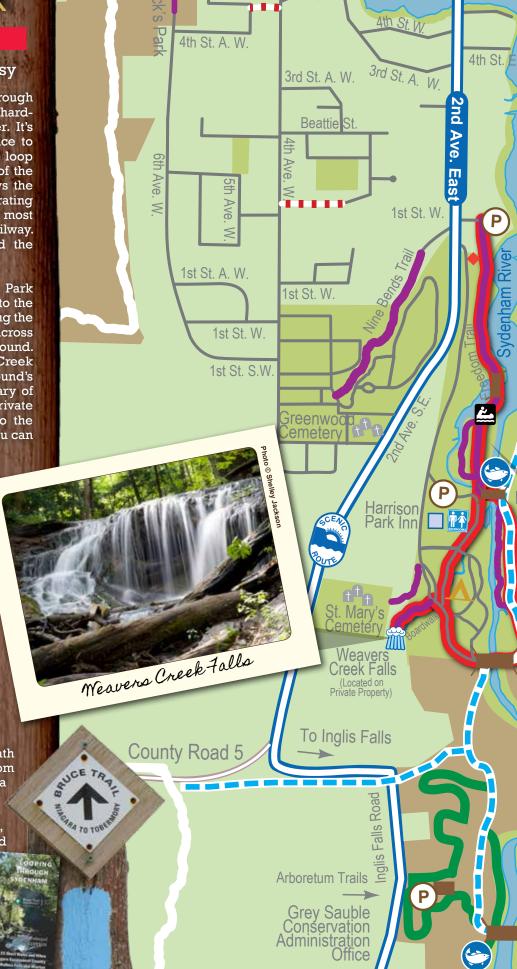
(HIGHLIGHTED ON THE MAP)

Distance: 2.5km Difficulty: Easy

The Harrison Park loop is a beautiful walk through hardwood forest and open parkland on wide, hardpacked trails following the Sydenham River. It's accessible in all seasons and a popular place to snowshoe or cross-country ski in winter. The loop begins at the trail head and kiosk just east of the park entrance off 2nd Avenue East. It follows the river south to the Freedom Trail, commemorating the first black settlers of Owen Sound, the most northern "station" on the Underground Railway. Stop to view the Black History Cairn, and the interpretive plaques around it.

The trail continues south towards Harrison Park Inn, crossing the bridge near the duck pond to the east of it. Here, you will see blue blazes marking the Bruce Side Trail. Follow the trail south and across another bridge leading into the campground. Continue west past the pool to the Weaver's Creek Boardwalk and discover one of Owen Sound's treasured waterfalls, just beyond the boundary of Harrison Park. Be mindful that this is on private property. Quiet roads will take you back to the playgrounds and Harrison Park Inn, where you can fuel up with a meal or snack. The trails will lead you back to your starting point.

NINE BENDS


Distance: 0.5km Difficulty: Moderate to Difficult

The Nine Bends Trail is one of many paths in Owen Sound that offer pedestrians a short-cut through the escarpment from one street to another. The Nine Bends is a steep, windy path that connects 1st Street West near Harrison Park to the Greenwood Cemetery.

THE BRUCE TRAIL

Distance: 45 km Difficulty: Various

The Bruce Trail is the longest and oldest footpath in Canada, stretching 886 kilometres from Niagara Falls to Tobermory along the Niagara Escarpment – a recognized world biosphere reserve. The trail forms a ribbon around Owen Sound, linking the Centennial Tower, Harrison Park, Inglis Falls, the West Rocks and Jones Falls. Look for white painted "blazes" on trees along the Bruce Trail to mark your path. Blue blazes denote a side trail. Most of the trails with white blazes are for hikers only. Bruce Trail guides are available at the Owen Sound Visitor Information Centre or from www.brucetrail.org.

INGLIS FALLS CONSERVATION AREA METRES

INGLIS FALLS CONSERVATION AREA

Distance: 7.4km of looped trails Difficulty: Varied - Easy to Difficult

Severals trails fan out from Inglis Falls, the most popular waterfall in the region, with linkages to Harrison Park, West Rocks, Jones Falls and the city's Centennial Tower. The Bruce Trail is the main artery with side trails offering shorter, looped hikes within the Inglis Falls Conservation Area. Features include more than 20 species of ferns, bird watching, glacial potholes and an expansive view of the Owen Sound valley and harbour. Salmon and trout spawn in the Sydenham River below. Open year-round for hiking, snowshoeing and cross-country skiing with a nominal parking fee. Access off Inglis Falls Road, north of Country Road 18.

CONNECT WITH US.

Share your experience and photos using **#OWENSOUND**

f /OwenSoundTourismandEvents @OSTourism @ /OwenSoundTourism

1-888-675-5555 OWENSOUNDTOURISM.CA

JONES FALLS CONSERVATION AREA

TO INGLIS FALLS

4th St. E

Distance: 6 km of looped trails Difficulty: Varied

The Pottawatomi River cascades 12 metres over the escarpment at Jones Falls, just west of Owen Sound. The trail cuts through large clusters of White Trillium in the spring and leads to a wonderful view of the surrounding lowlands. Cross the bridge for the best views, but watch your footing on the rocky terrain. Parking available at the Grey-Bruce Visitor Centre on Highway 6.

HIBOU CONSERVATION AREA

Distance: 4.5 km of looped trails **Difficulty:** Easy

The Hibou Conservation Area sports a natural, sandy beach and 4.5 kilometres of gentle, flat trails and boardwalks. Enjoy the 1.2-km Point Loop on the waterfront or the Main Trail, on the other side of the road. Park at the trail head on County Road 15 a short drive east of Owen Sound. Also accessible by bike via the Tom Thomson Trail. Open year-round, with snowshoeing and cross-country skiing in winter. Nominal parking fee in peak season.

INDIAN FALLS CONSERVATION AREA

Distance: .7 km Difficulty: Challenging

The 20-minute hike along Indian Creek is vigorous, with steep hills and rocky terrain, but you are rewarded with sheer beauty when you reach Indian Falls, a 15-metre bridal veil falls at the end. The horseshoe-shaped waterfall is similar in formation to Niagara Falls. Parking available at the trail head off County Road 1 north of Owen Sound. Trail not maintained in winter.

RAIL TRAILS

Distance: Various Difficulty: Moderate

The Georgian Bluffs Trail and the CP Rail Trail are two former railway trails open to the public. The hard-packed dirt and gravel trails are used primarily by off-road cyclists and snowmobilers. Access the Georgian Bluffs Trail from County Road 1 just north of the Georgian Shores Marina, where it continues 16 kilometres through scenic farmland to Park Head. The CP Rail Trail is 77 kilometres long, with coarse gravel in the southern sections.

OWEN SOUND TRAILS **NETWORK**

FEATURED HIKE

PALISADES LOOP

Distance: 1.8km

Difficulty: Moderate to Difficult

The Palisades loop of the Bruce Trail offers a rare chance to hike the lower talus of the Niagara

Escarpment, hugging cliff walls that slope down to the Owen Sound valley below. The trail is rugged in areas, but showcases a spectacular range of flora,

Access the trail from the south end of 7th Avenue

East where the pavement ends. From the trail head on the east side of the street, walk a short 75 metres

and turn right onto the Palisades Side Trail, marked

with blue blazes. The trail climbs to an intersection

with the Bruce Trail; turn left to complete a shorter loop back to the trail head, or continue on the

Palisades Side Trail south, where it meets the main, trail again. Turn left to continue the Palisades loop,

heading uphill over rocky terrain to a spectacular

canyon with cliffs towering over you on both sides.
You can reach the summit of the escarpment – the
Raven's Nest – by taking a short side trail to the

Back on the main trail heading north keep

your eyes open for an unmarked, narrow opening in the cliff face on your right. It leads to the "Devil's Playhouse," an enclave with

rock "benches" and an overhang serving as a roof -- one of nature's many wonders on

The trail continues north to the Harrison

Park Side Trail on your left; follow the blue

blazes back to the trail head.

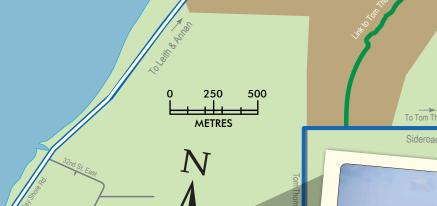
fauna and rock formations.

lookout.

100

BLACK HISTORY CAIRN

OWEN SOUND TRAILS NETWORK


Waterfront Irail

Indian Falls

OWEN SOUND TRAILS link to key attractions throughout and near the city, such as the Centennial Lookout Tower, Black History Cairn, Weavers Creek Falls, Inglis Falls and Jones Falls Conservation Areas, Harrison Park and Greenwood Cemetery, the burial ground of three Victoria Cross winners and many of the city's luminaries. The very short trails on the maps show pedestrian links between city streets, the so-called "catwalks" of Owen Sound that offer short-cuts through the rocky escarpment. Whatever your mode of transport, enjoy and respect our public trails.

> Georgian Bay

View from Stoney Orchard Park

+

Explore Owen Sound's harbour along this 3-kilometre trail that stretches from Kelso Beach Park to the city's East Boat Launch, with historic interpretive plaques along the way. The trail passes by the Visitor Information Centre, the Owen Sound Marine & Rail Museum and the Harry Lumley Bayshore Community Centre, gardens, playground and beach. Cyclists can continue along the Tom Thomson Trail to the east or the Georgian Bluffs Rail Trail beyond Kelso Beach Park to the west. Kelso Beach has a playground and

STONEY ORCHARD PARK Distance: 2km looped trails Difficulty: Easy

Stoney Orchard Park offers access to kilometres of flat, wide stone dust trails accessible to all recreational users. Along the western edge, marvel at the cliff-top views of Georgian Bay below. The trail system links with quiet city streets and paths to offer access to a number of other areas, including the Kiwanis Soccer Complex, the Tom Thomson Trail, the Harbourfront Trail, Heritage Place Mall, the Julie McArthur Regional Recreation Centre and downtown Owen Sound. Parking available off 23rd Ave. East near Ecole St. Dominique Savio. Open all seasons.

TOWNSHIP OF GEORGIAN BLUFFS

TOM THOMSON TRAIL

MUNICIPALITY **OF MEAFORD**

Distance: 43.4 km Difficulty: Easy to Challenging

Storybook Park

Named after the iconic Canadian painter Tom Thomson, this recreational cycling trail leads from Owen Sound to Leith, the small village that Thomson called home during his childhood years, and the place he is now buried. The Hibou Conservation Area and trails are just south of the village. The Tom Thomson Trail continues on to Meaford, where it connects with the Georgian Trail to Collingwood.

WEST ROCKS & DERBY FOREST TRAILS

Distance: 13km Difficulty: Moderate

The West Rocks trail system consists of the Bruce Trail, offering spectacular views of the City and beyond from the western bluffs, and the Derby Forest trails that loop behind the main trail and are often used by off-road cyclists. A feature of the West Rocks trail is the former limestone quarry that provided the foundation of many historic homes in Owen Sound. You can access the West Rocks Trails on foot at 7th Street West and 7th Avenue West.

CATWALKS & PATHS

The City of Owen Sound lies in a river valley carved deep into the Niagara Escarpment, which is hilly itself, and that presents challenges in terms of getting around. The solution: pedestrian "catwalks" or paths linking streets to one another. Owen Sound has many of these short-cuts, some iron stairways (maintenance-free in winter), and some paved pathways. Most are steep and not for the faint

ROCKFORI

Inglis Falls

(HIGHLIGHTED ON THE MAP

Distance: 21km Difficulty: Moderate to challenging

There are numerous cycling routes in and around Owen Sound, for both road riders and those who prefer to hit the trail. Here is a route that incorporates both roads and trails, urban and rural scenery, forest paths and harbour views. The Keeling Side Trail near Inglis Falls is rugged and not suitable for road bikes. The route can be started at any point, but keep in mind there are steep hills heading south along the Nine Bends Trail and south on Inglis Falls Road towards the falls. The CP Rail Trail from Rockford to Owen Sound Harbour has a nice downhill grade. Parking and washrooms are available at Inglis Falls and the Bayshore Community Centre.

List of Figures

Figure 1: Site Plan

Figure 2: Site Location Plan

Figure 3: Existing Traffic Controls and Lane Configuration

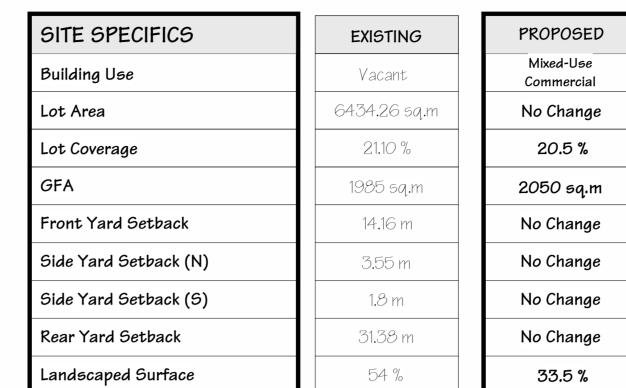
Figure 4: 2022 Traffic Volumes

Figure 5: Future Background 2028 Traffic Volumes

Figure 6: Trip Distribution

Figure 7: Event Venue Trip Assignment Figure 8: Restaurant Trip Assignment Speakeasy Trip Assignment Figure 10: Office Trip Assignment

Figure 11: Future Total 2028 Traffic Volumes


EXISTING ZONING: Institutional ZONING DESIGNATION **PROPOSED ZONING**: Mixed Use Commercial LEGAL DESCRIPTION LOTS 15 & 16 EAST OF BAY ST & LOTS 15 & 16 WEST OF HILL ST

FC Hospitality & Entertainment Inc. OWNERSHIP

SITE SPECIFICS	EXISTING	PROPOSED	
Building Use	Vacant	Mixed-Use Commercial	
Lot Area	6434.26 sq.m	No Change	
Lot Coverage	21.10 %	20.5 %	
GFA	1985 sq.m	2050 sq.m	
Front Yard Setback	14.16 m	No Change	
Side Yard Setback (N)	3.55 m	No Change	
Side Yard Setback (S)	1.8 m	No Change	
Rear Yard Setback	31.38 m	No Change	
Landscaped Surface	54 %	33.5 %	

PROPERTY ADDRESS 1234 & 1259 3rd AVENUE EAST, OWEN SOUND, ONTARIO

INFORMATION TAKEN FROM PLAN OF SURVEY

Revision Schedule Issued for Pre-Consultation Meeting
 Issued for Client Review
 Issued for OPA/ZBA - Submission 1

 IF CONSTRUCTION ADMINISTRATION SERVICES ARE INCLUDED IN THE SCOPE OF WORK, THE ARCHITECT WILL REVIEW SHOP DRAWINGS SUBMITTED BY THE CONTRACTOR FOR DESIGN CONFORMANCE ONLY. 4. DRAWINGS ARE NOT TO BE SCALED FOR CONSTRUCTION. 5. THE CONTRACTOR MUST VERIFY ALL SITE CONDITIONS AND DIMENSIONS REQUIRED TO PERFORM THE WORK AND REPORT ANY DISCREPANCIES WITH THE CONTRACT DOCUMENTS TO THE ARCHITECT BEFORE COMMENCING OR CONTINUING WITH ANY WORK. 6. THIS DRAWING IS NOT TO BE USED FOR CONSTRUCTION UNTIL SIGNED BY THE ARCHITECT. 7. POSITIONS OF EXPOSED FINISHED MECHANICAL AND ELECTRICAL DEVICES, FITTINGS, AND FIXTURES MAY BE INDICATED ON THE ARCHITECTURAL DRAWINGS. THE LOCATIONS SHOWN IN THE ARCHITECTURAL DRAWINGS GOVERN OVER THE MECHANICAL AND ELECTRICAL DRAWINGS. THOSE ITEMS NOT CLEARLY LOCATED WILL BE LOCATED AS DIRECTED BY BOLDERA ARCHITECTS INC. 8. ALL WORK IS TO BE CARRIED OUT IN CONFORMANCE WITH THE MOST CURRENT BUILDING CODE AND BYLAWS OF THE AUTHORITIES HAVING JURISDICTION. ALL PLUMBING AND DRAINAGE WORK TO CONFORM TO CURRENT ONTARIO REGULATIONS. ALL ELECTRICAL WORK TO CONFORM TO ONTARIO HYDRO ELECTRICAL SAFETY CODE AS AMENDED. 9. ALL CONTRACTORS OR SUBCONTRACTORS MUST SATISFY THEMSELVES WHEN BIDDING AND AT ALL TIMES ENSURE THAT THEY CAN PROPERLY CONSTRUCT THE WORK REPRESENTED BY THESE PLANS.

© BOLDERA ARCHITECTS INC.

ALL DRAWINGS, SPECIFICATIONS AND RELATED DOCUMENTS ARE THE COPYRIGHT PROPERTY OF BOLDERA ARCHITECTS INC. AND MUST BE RETURNED UPON REQUEST.

REPRODUCTION OF DRAWINGS, SPECIFICATIONS AND RELATED DOCUMENTS IN PART OR IN WHOLE IS FORBIDDEN WITHOUT THE WRITTEN PERMISSION OF THE ARCHITECT.

2. THESE CONTRACT DOCUMENTS ARE THE PROPERTY OF BOLDERA ARCHITECTS INC.

THE ARCHITECT BEARS NO RESPONSIBILITY FOR THE INTERPRETATION OF THESE DOCUMENTS BY

THE CONTRACTOR. UPON WRITTEN APPLICATION, THE ARCHITECT WILL PROVIDE WRITTEN/GRAPHIC

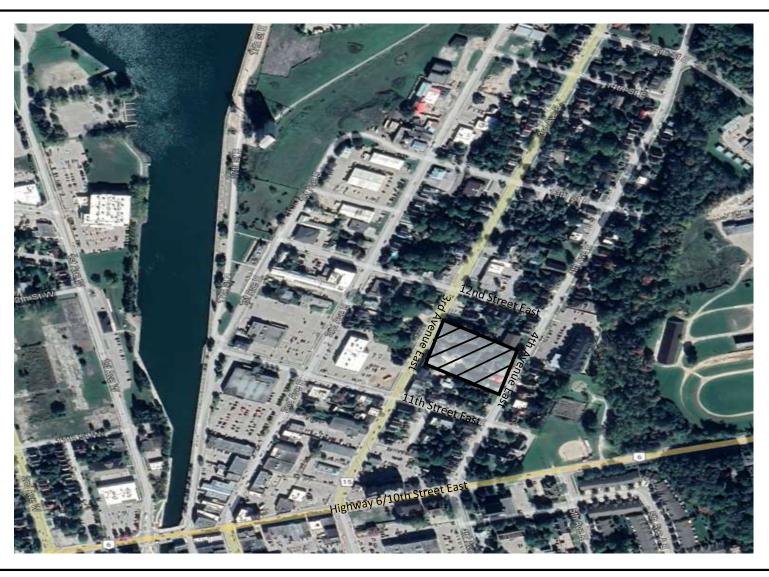
CLARIFICATION OR SUPPLEMENTARY INFORMATION REGARDING THE INTENT OF THE CONTRACT

DOCUMENTS.

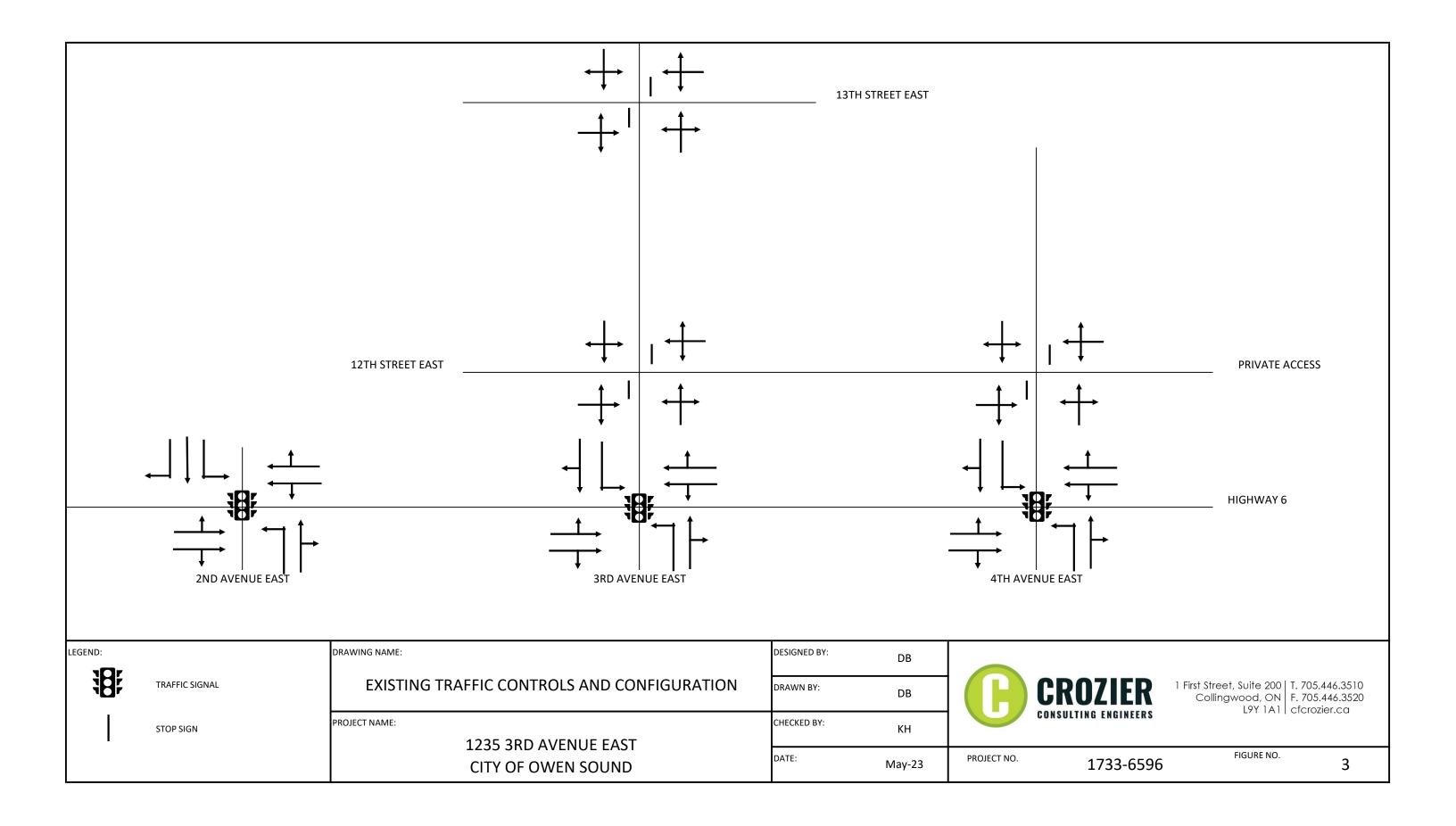
2022-10-14 2022-12-09 2023-04-20

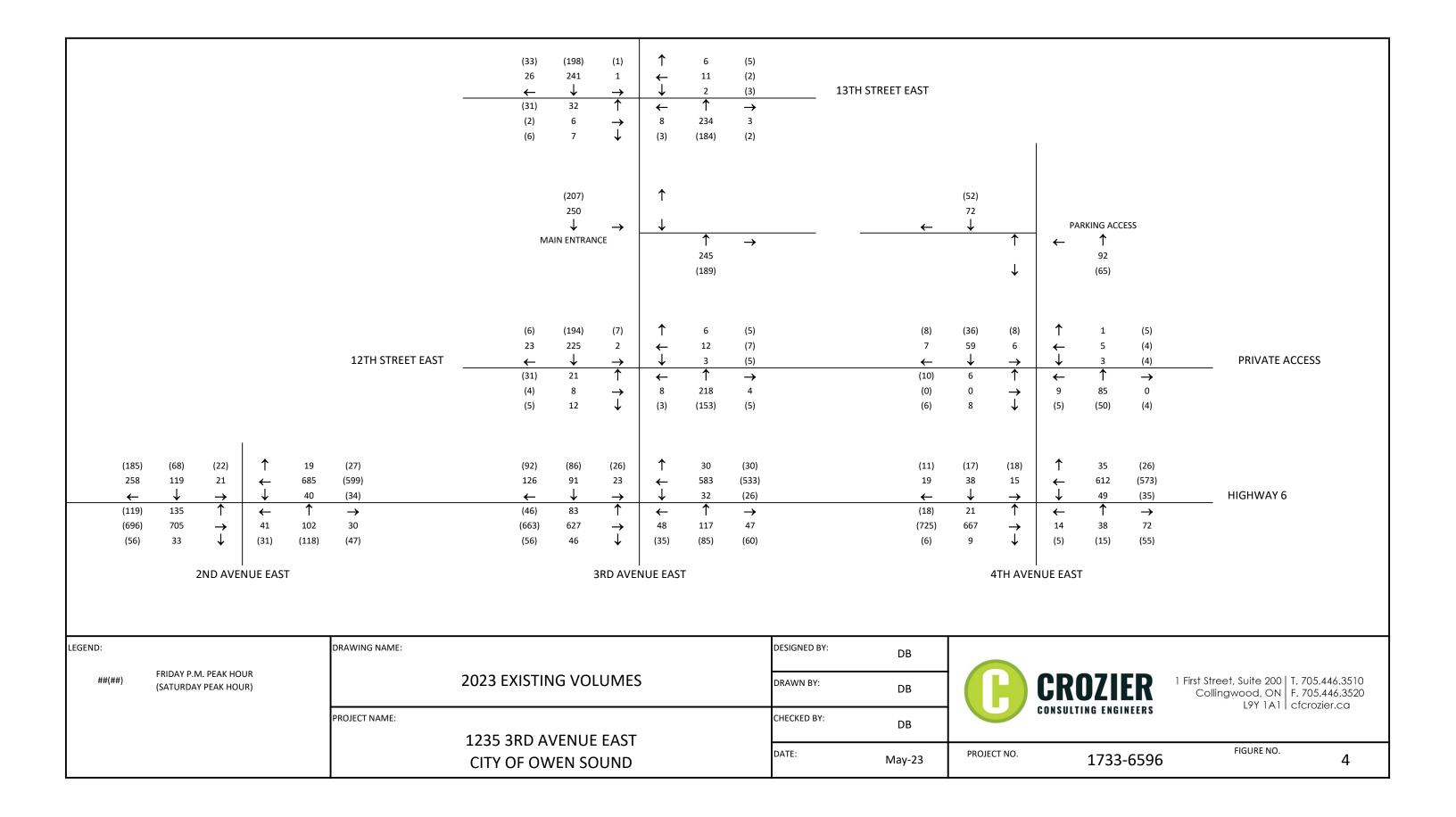
Rethinking the future of architecture, sustainably.

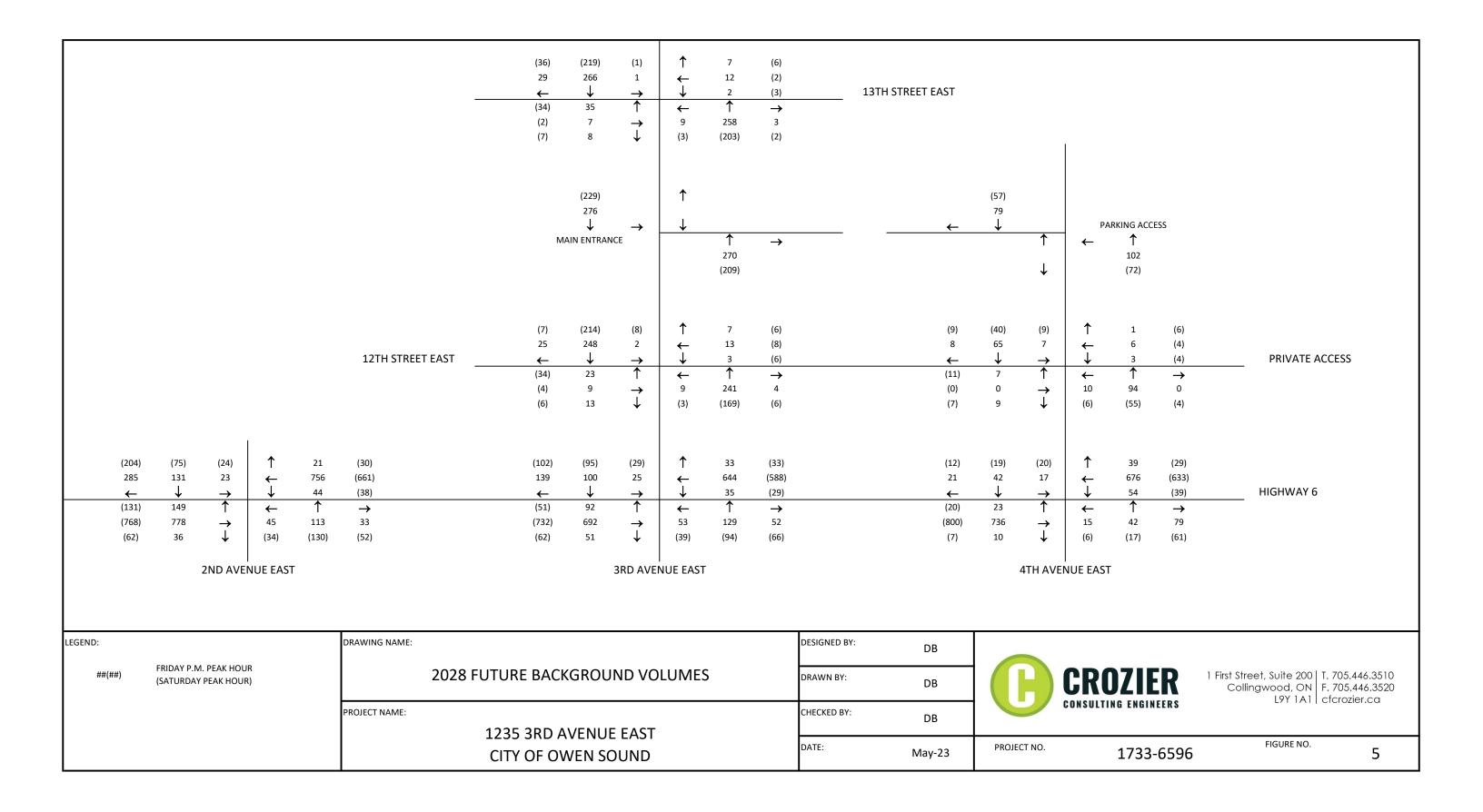
Phone 647 799 9518 Email info@boldera.ca Web boldera.ca 62 Westmount Avenue Toronto, Ontario M6H 3K1

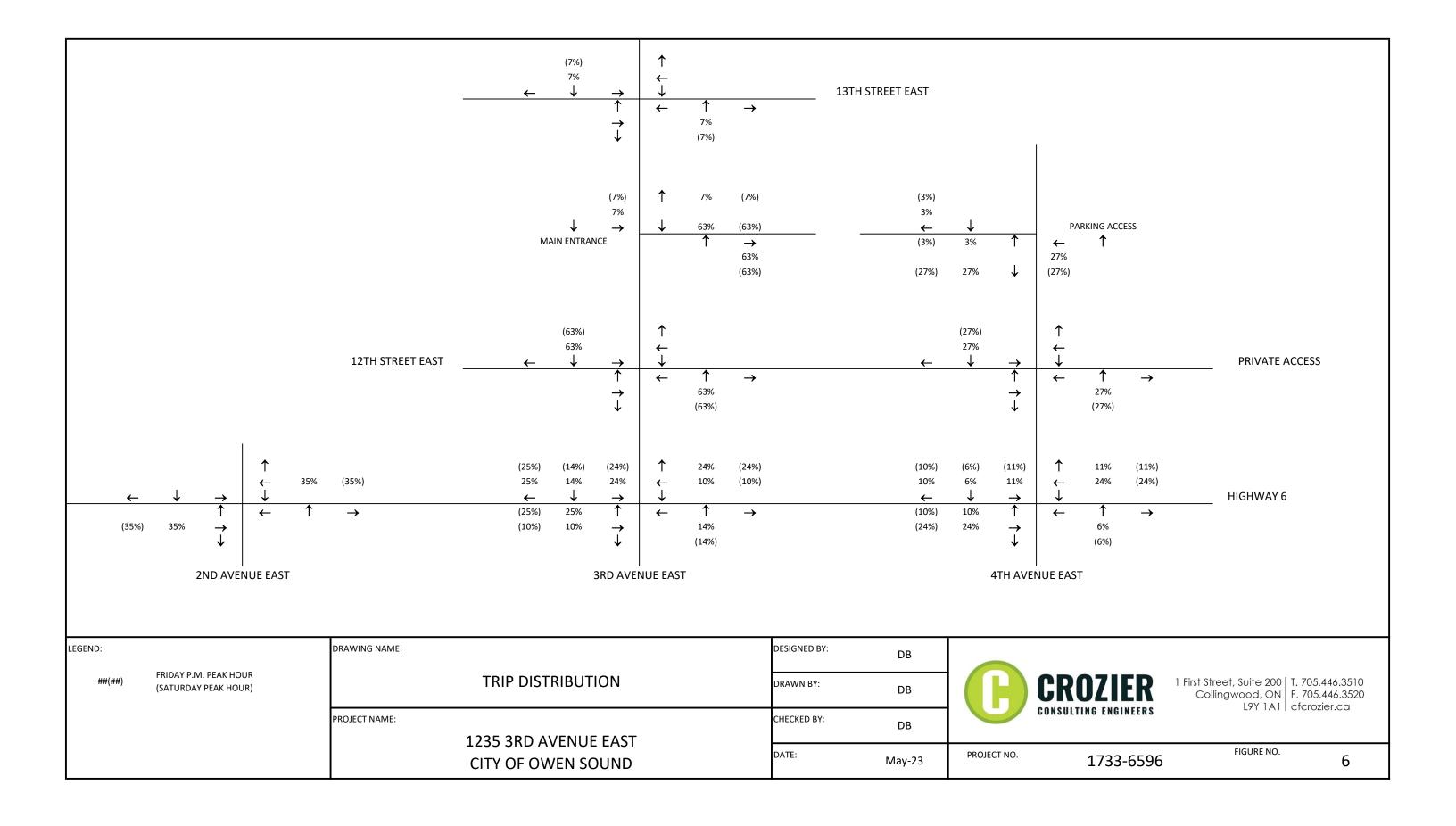

FC Entertainment & Hospitality Inc. **Royal Rose Court**

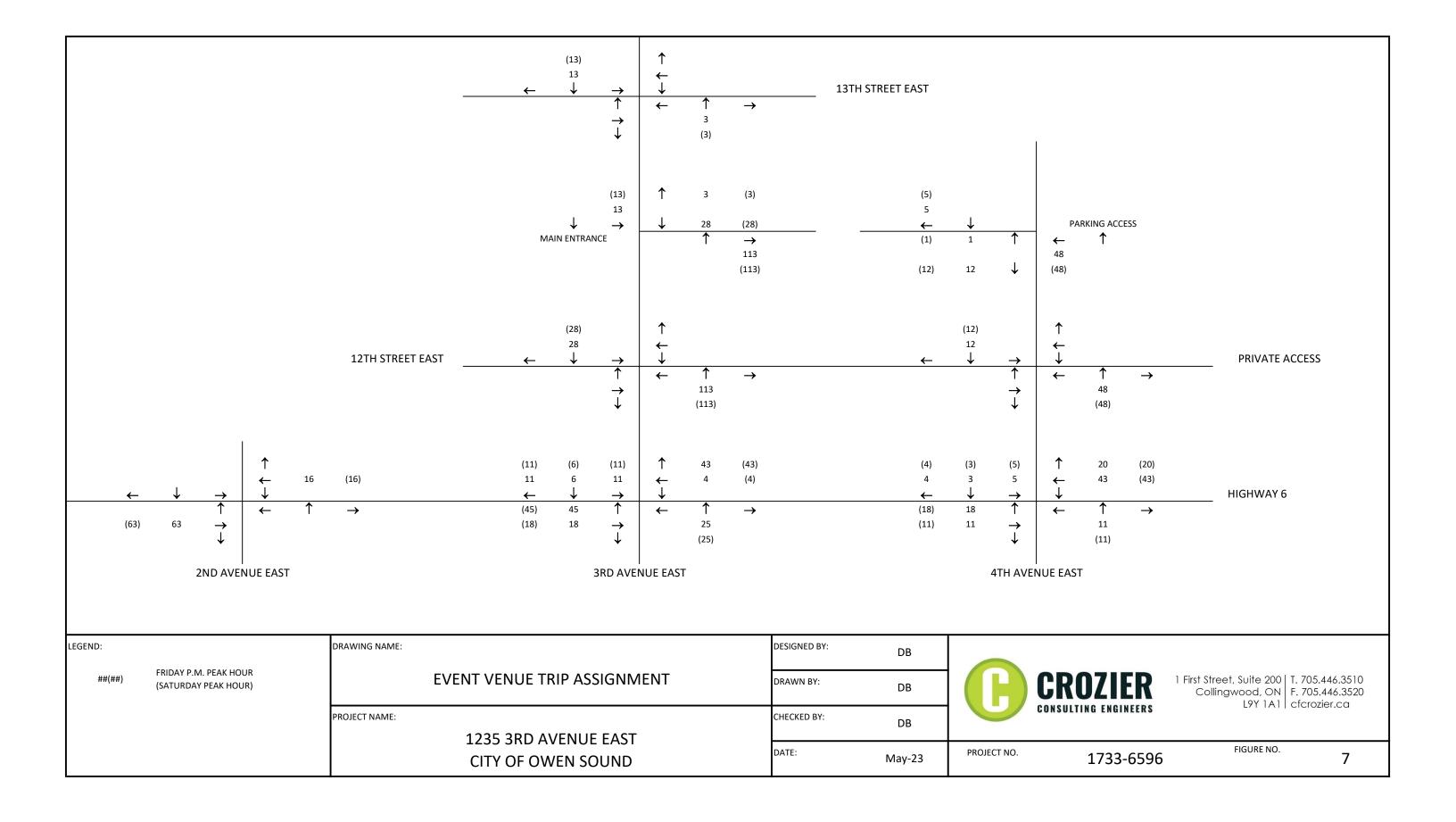
1235 & 1259 3rd Avenue East Owen Sound, ON N4K 2L6


SITE PLAN **OPA/ZBA Application** Project Number


AP-001






Legend	1235 3rd Avenue East City of Owen Sound	CROZIER	Figure 2
Location of the Site	Site Location	CONSULTING ENGINEERS	Project No. 1733-6596 Date: May 2023 Analyst D.B.

