Prepared By:

Stormwater Management Report

East Ridge Business Park - Blocks 3 & 4 Plan 16M-44 - Owen Sound, ON

Andpet Realty Ltd.

GMBP File: 221210

August 2021 Revised: July 2022

TABLE OF CONTENTS

1.	INTRODUCTION AND BACKGROUND	1
2.	EXISTING CONDITIONS AND DESIGN CRITERIA	1
3.	POST-DEVELOPMENT CONDITIONS AND STORMWATER MANAGEMENT PLAN	2
4.	QUANTITY CONTROL CRITERIA, PARAMETERS AND MODELLING	2
4.1	Design Rainfall Events	2
4.2	Site Soil Conditions	3
4.3	Existing and Post-Development Catchment Areas	3
4.4	MIDUSS Quantity Control Modelling Results	3
5.	STORMWATER QUALITY TREATMENT	5
6.	STORMWATER TEMPERATURE MITIGATION	5
7.	SUMMARY	6

FIGURES

Figure No. 1	Site Location Map
Figure No. 2	Existing and Proposed Conditions Drainage Area

APPENDICES

APPENDIX A: STAGE-STORAGE-DISCHARGE CALCULATIONS APPENDIX B: MIDUSS MODELLING

EAST RIDGE BUSINESS PARK - BLOCKS 3 & 4

PLAN 16M-44, OWEN SOUND STORMWATER MANAGEMENT REPORT AUGUST 2021 REVISED: JULY 2022

GMBP FILE: 221210

1. INTRODUCTION AND BACKGROUND

Andpet Realty Ltd. proposes to develop Blocks 3 and 4, Plan 16M-44, along 27th Avenue East, in the East Ridge Business Park located within commercial subdivision lands on the north westerly corner of 28th Avenue East and 16th Street East in the City of Owen Sound as shown in Figure No. 1. The property Owner, Andpet Realty Ltd. has requested that GM BluePlan Engineering Limited (GMBP) prepare a Stormwater Management (SWM) Report for the proposed development per the recommendation of the January 2011 Surface Water Management Report (2011 Report) prepared by GMBP (formerly Gamsby and Mannerow Limited).

The Owner proposes ultimately to develop the property with 10 storage buildings constructed across the property. This includes one two-storey building with an attached office and maintenance building on the south end of the site. Parking will along the north side of the two-storey building and office. For the purposes of this report, 27th Avenue East is assumed to be aligned in a north-south direction.

This report has been prepared by GMBP to document the design of the SWM system of the proposed development in support of Site Plan Approval.

2. EXISTING CONDITIONS AND DESIGN CRITERIA

Under existing conditions, the 2.01 ha property is undeveloped with no existing buildings. The existing conditions are as described in the 2011 Report.

Per the City of Owen Sound and the 2011 Report's individual lot requirements, the design criteria are as follows:

- 1. Post-development flows from the site during all storm events up to, and including, a 100-year design storm event, are expected to be attenuated to the existing condition peak flow rate of the respective storm event.
- 2. An "Enhanced" level of water quality treatment (80% long-term TSS Removal) is provided prior to runoff discharging from the subject property.
- 3. Thermal mitigation measures are employed on-site to reduce the potential temperature increase due to the proposed lot development.

3. POST-DEVELOPMENT CONDITIONS AND STORMWATER MANAGEMENT PLAN

The site is planned to be developed in phases. Ultimately, the site will have 10 storage buildings with one of the storage buildings being two-stories and having an attached office space. Proposed parking areas are located southerly side of the site, north of the two-story building and office space. The total combined area of the proposed buildings is approximately 5,600 m². The entrance to the site is proposed from 27th Avenue East at the southeast corner of the subject property. Stormwater runoff from the proposed development is to be attenuated by a stormwater management system at the north end of the site prior to draining from the site.

A 998 m² SWM pond is proposed along the northerly side of the subject property to provide stormwater attenuation for runoff from the entire site. A 125 mm diameter orifice plate is proposed on the outlet of the SWM pond to attenuate flow from the on-site storm sewer to the 18th Street East ditch. The orifice plate slowly releases runoff from the system, and the SWM pond allows stormwater to temporarily pond within the voids of the stone, until it can slowly drain from the site. Given the existing soil conditions it is unlikely that infiltration will provide impactful drainage from the site.

An emergency overflow weir is proposed for runoff to spill overland to the 18th Street East ditch under emergency situations only.

4. QUANTITY CONTROL CRITERIA, PARAMETERS AND MODELLING

4.1 Design Rainfall Events

The City of Owen Sound Engineering Standards provide rainfall data for design storms in the form of Chicago Storm Parameters. The Chicago storm input parameters used to model the various design rainfall events for the subject property are summarized in the following Table 1.

Coefficient	1:2-Year	1:5-Year	1:25-Year	1:100-Year				
A	854.100	1234.576	1750.276	2171.754				
В	7.781	8.297	8.303	8.303				
С	0.830	0.851	0.862	0.867				
R	0.375	0.375	0.375	0.375				
Duration (min)	180	180	210	210				
Depth (mm)	33.228	42.929	59.007	71.271				
Intensity (mm/hr)	101.673	134.692	165.718	202.862				

Table 1 - Design Rainfall Events – Provided by the City of Owen Sound Engineering Standards

4.2 Site Soil Conditions

The soil type within the subject property is characterized as Harkaway Silt Loam which consists of silt loam over brown loam over brown clay over calcareous till, as per the Grey County Soils Map (Ontario Soil Survey Report No. 17) published by the Department of Agriculture. The Harkaway Silt Loam soil type is known to be of the Hydrological Soil Group (HSG) BC. These soils generally have properties not conducive to infiltration.

An SCS Curve Number of 71 for unimproved lands on the site was used based on Design Chart 1.09: Soil/Land Use Curve Numbers provided by the US Department of Agriculture,1972. Impervious surfaces within the subject property are associated with an SCS Curve Number of 98.

4.3 Existing and Post-Development Catchment Areas

The entire site under existing conditions was modelled as Catchment 10 with an imperviousness of 0% for the entire subject area. It is worth noting that the existing conditions reflect the catchment area and drainage outlet information provided in the 2011 Report. Runoff from the entire site generally drains from southeast to northwest towards the 18th Street East Ditch.

Under proposed conditions, the site was modelled as one catchment area (Catchment 100) with an imperviousness of 75%, based on the overall proposed site conditions. There are several catch basins proposed throughout the site to drain runoff through on-site storm sewers to the proposed stormwater management pond that will attenuate post-development peak flows to less than existing condition peak flows.

The existing and proposed condition drainage areas are shown on Figure No. 2. The existing and proposed conditions catchments are outlined in Table 2 below.

The Stage-Storage-Discharge design calculations are attached as Appendix A and MIDUSS computer modelling is attached as Appendix B.

The results of the routing analysis are summarized in Section 4.4.

Catchment	Description	Area (ha)	Impervious Level (%)
10	10 Existing Conditions – Entire Property		0
100	Proposed Conditions – Entire Property	2.01	75

Table 2 – Existing and Proposed Condition Catchments

4.4 MIDUSS Quantity Control Modelling Results

MIDUSS modelling software was used to model the expected post-development conditions stormwater runoff from the subject property during the various design storm events. Results from the models are summarized in the following tables, and the modelling is provided for reference in Appendix B.

Table 3 below also provides the total peak flow rates discharging from the subject property under postdevelopment conditions as modelled in MIDUSS.

Storm Return Period (year)	1:2	1:5	1:25	1:100
Pro-Rated Allowable Peak Flow Rate (m ³ /s)	0.008	0.021	0.054	0.091
Post-Development Peak Flow Rates (m ³ /s)	0.006	0.013	0.039	0.041

|--|

As shown in Table 3 above, under post-development conditions, the peak flow discharge rates from the proposed SWM pond would be less than the allowable release rates (existing conditions) for all design storm events up to, and including, the 1:100-year design storm event.

Table 4 below summarizes the capacity available at the various stages in the stormwater management pond and provides a comparison to the capacity that is expected to be used during the various design storm events.

	Available Capacity in SWM Facility Design			Capacity Used During Various Design Storm Events			
	Peak Flow (m ³ /s)	Storage Volume (m ³)	Storage Elevation (m)	Peak Flow (m³/s)	Storage Volume (m ³)	Storage Elevation (m)	
Bottom of Stone Trench	0.000	0	223.95				
C/L of First Row of Perforations on Vertical Riser Outlet (First Controlled Outlet)	0.000	11.0	224.10				
Top of Stone/Bottom of Pond	0.004	56.0	224.50				
10 mm "First Flush"				0.004	81.6	224.54	
1:2-year Design Storm				0.006	395.4	224.77	
DICB L/S Grate	0.006	521.1	224.85				
1:5-year Design Storm				0.013	536.4	224.86	
1:25-year Design Storm				0.039	658.4	224.94	
1:100-year Design Storm				0.041	828.7	225.05	
Overflow Weir	0.041	837.0	225.05				
Top of Bank	0.167	998.0	225.15				

 Table 4: Stage-Storage-Discharge Capacities for Stormwater Management Pond

As shown in Table 4 above, during all design storm events up to, and including, the 1:100-year return, the runoff is expected to discharge via the orifice outlet without spilling via the overflow weir.

5. STORMWATER QUALITY TREATMENT

Based on the requirements from the City of Owen Sound, the on-site quality control for the stormwater flow is to achieve an 80% long term total suspended solids (TSS) removal rate while treating 90% of the annual runoff, prior to release to the off-site receiving drainage system.

The post-development site, Catchment 100, features primarily paved areas bordered with grassed areas. Stormwater quality treatment for Catchment 100 runoff is provided by the SWM facility. The facility features a channelized section of clear stone, proposed to provide additional TSS removal. All inflows conveyed through the channelized section of the SWM facility during a minor storm event (<10 mm rainfall depth) are proposed to flow through the clear stone prior to reaching the outlet. The clear stone will slow the flow through the facility to encourage sediment to settle out, and to provide treatment during minor storm events by directing runoff through it prior to discharging from the proposed SWM facility.

As shown in Table 4, all flow to the SWM facility is conveyed through the clear stone to the perforated vertical riser pipe during a 2-year design storm event.

For a site with at least 85% imperviousness, and when using a dry pond for water quality treatment, the Ministry of the Environment and Climate Change Stormwater Management Planning and Design Manual (MOECC SWMPD Manual) recommends 240 m³/ha of stormwater storage capacity to meet 60% long-term TSS removal. Based on this requirement, the proposed detention area should have a minimum volume of approximately 482 m³ of capacity. The proposed stormwater detention facility has a storage volume of 837 m³ at the overflow weir.

It is expected that this process of treatment with the pond volume over the requirements and the channelized clear stone will meet the MOECC enhanced level of 80% long-term TSS removal.

6. STORMWATER TEMPERATURE MITIGATION

Temperature mitigation measures are required due to the temperature increase often associated with SWM facilities as is outlined in section 4.4 of the 2011 Report. The measures outlined below are proposed to be implemented to reduce the impact of temperature increase on the stormwater draining from the site.

While planting vegetation along the edges of the SWM pond to increase shade may help to reduce the temperature of the stormwater, the main method of mitigation is provided from the channel of clear stone located within the stormwater management facility. From Section 4.4 of the SWMPDG, "treatment of water, by routing the discharge through a subsurface trench filled with clear stone, has also been suggested to reduce temperature", and that, "the trench should be designed to accommodate [the conveyance of peak runoff rate during] frequent events (i.e., <10 mm) which will have a greater effect on the thermal regime of the receiving water". As discussed in Section 5.1, all runoff draining to the SWM facility is proposed to be conveyed through the channelized section of clear stone prior to draining to the outlet system. Therefore, the channelized sections of clear stone are expected to provide thermal cooling effects to inflows as heat is transferred from the runoff to the clear stone.

7. SUMMARY

The proposed development includes the construction of ten (10) storage buildings totalling approximately 5,600 m² and parking areas. The site is an approximately 2.01 ha property located on blocks 3 & 4 in the East Ridge Business Park in the City of Owen Sound.

Upon completion of the proposed development;

- 1. The proposed drainage outlet is the 18th Street East ditch draining westerly via the SWM Pond.
- 2. Post-development flows from the site during all storm events up to, and including, a 100-year design storm event, are expected to be attenuated to the existing condition peak flow rate of the respective storm event.
- 3. An Emergency Overland spill route is provided to direct runoff to the 18th Street East ditch during storm events in excess of a 100-year design storm event, without spilling to neighbouring properties or reaching the finished floor elevation of any of the proposed buildings.
- 4. An "Enhanced" level of water quality treatment (80% TSS Removal) is provided by a clear stone channel in the SWM Pond and exceeding the pond volume requirement of the MOECC prior to discharging from the subject property.

All of which is respectfully submitted,

GM BLUEPLAN ENGINEERING LIMITED

Prepared by:

than Webb

Ethan C.J. Webb, P.Eng.

Reviewed by:

John Slocombe, P.Eng.

FIGURES:

1

LAST SAVED BY: Etwining, 7/14/2022 12:31:21 PM PLOTTED BY: Ed Twining - GM BluePlan 7/20/2022 11:55:06 AM

FILE:C:Drawings\221210spe8.dwg LAYOUT:FIG 2 LAST SAVED BY:Etwining, 7/14/2022 12:31:21 PM PLOTTED BY:Ed Twining - GM BluePlan 7/20/2022 12:23:14

221210 Blocks 3 & 4 Development East Ridge Business Park

LEGEND

DRAINAGE BOUNDARY

PERCENT IMPERVIOUS

EXISTING/PROPOSED CATCHMENT NUMBER CATCHMENT AREA

------ DIRECTION OF SURFACE FLOW

SCALE = 1:1,000 JULY 2022

EXISTING & PROPOSED CONDITIONS DRAINAGE AREA

Andpet Realty Blocks 3 & 4, Plan 16M-44 City of Owen Sound

Figure No. 2

APPENDIX A: STAGE-STORAGE-DISCHARGE CALCULATIONS

Block 4 - East Ridge Business Park City of Owen Sound Our File: 221210 July 2022

STORAGE VOLUME CALCULATIONS

ELEV	INC D	STONE SURFACE AREA	STONE AVERAGE AREA	INC. STONE STORAGE VOL	OPEN STORAGE AREA	AVERAGE OPEN STORAGE AREA	INC. OPEN STORAGE VOL	ACCUM. VOLUME	
(m)	(m)	(m²)	(m²)	(m ³)	(m²)	(m²)	(m²)	(m ³)	
223.90	0.00	120.80	0.00	0.00	0	0	0	0	B/ Stone Trench
223.95	0.05	120.80	121	2.4	0	n	0	0	
224.00	0.10	175.71	148	3.0	0	0	0	3	
224.05	0.15	194.01	185	3.7	0	0	0	7	
224.10	0.20	212.32	203	4.1	0	0	0	11	Perforation
224.15	0.25	230.62	221	4.4	0	0	0	15	
224.20	0.30	248.92	240	4.8	0	0	0	20	Perforation
224.25	0.35	267.22	258	5.2	0	0	0	25	
224.30	0.40	285.53	276	5.5	0	0	0	31	Perforation
224.35	0.45	303.83	295	5.9	0	0	0	37	
224.40	0.50	322.13	313	6.3	0	0	0	43	Perforation
224.45	0.55	340.44	331	6.6	0	0	0	49	
224.50	0.60	358.74	350	7.0	0	0	0	56	Top of Stone/B Pond
224.55	0.65	0.00	0	0.0	1349	675	34	90	
224.60	0.70	0	0	0.0	1377	1363	68	158	
224.65	0.75	0	0	0.0	1406	1392	70	228	
224.70	0.80	0	0	0.0	1435	1420	71	299	
224.75	0.85	0	0	0.0	1464	1449	72	371	
224.80	0.90	0	0	0.0	1493	1478	74	445	
224.85	0.95	0	0	0.0	1522	1508	75	521	
224.90	1.00	0	0	0.0	1552	1537	77	598	T/G Secondary Outlet
224.95	1.05	0	0	0.0	1582	1567	78	676	
225.00	1.10	0	0	0.0	1612	1597	80	756	
225.05	1.15	0	0	0.0	1643	1628	81	837	Weir
225.10	1.20	0	0	0.0	1674	1658	83	920	Overflow
225.15	1.25	0	0	0.0	1454	1564	78	998	Overflow
	PERFORATED	RISER OUTLET		SEC	CONDARY OUTLET P	PIPE		WEIR	CALCULATIONS
Vertical Perforated 20	0 mm Riser			Orifice Dia. =	125	mm	d1 =	225	.15 m
Area based on	6	perf. per 0.10 m of ve	rtical pipe	Orifice Area =	0.012	m ²	h =	225	05 m
Derferation Diameter	AND DO AND DE CONTRACTOR TENDES	r per er re in or re			5.012		11	LLU	

Perforation Diameter = 1.27 cm (0.5")

= Cd = Area of Each Perf. = Starting Elevation = Ending Elevation = Top of Solid Cap =

0.6 0.0001267 m² 224.10 m 224.40 m 224.50 m

Coefficient = 0.6 Invert Elev = 223.90

H = 0.10 m 2g = L = 19.612 2 m

STAGE-STORAGE-DISCHARGE CALCULATIONS

ELEV	STAGE	STORAGE	PERF RISER OUTLET FLOW	SECONDARY OUTLET FLOW	WEIR OUTLET FLOW	TOTAL OUTLET FLOW	
(m)	(m)	(m ³)	(m ³ /s)	(m ³ /s)	(m ³ /s)	(m ³ /s)	
223.90	0.00	0	0.0000	0.000	0.000	0.000	B/ Stone Trench
223.95	0.05	0	0.0000	0.000	0.000	0.000	
224.00	0.05	3	0.0000	0.000	0.000	0.000	
224.05	0.10	7	0.0000	0.000	0.000	0.000	
224.10	0.15	11	0.0000	0.000	0.000	0.000	Perforation
224.15	0.20	15	0.0005	0.000	0.000	0.000	
224.20	0.25	20	0.0006	0.000	0.000	0.001	Perforation
224.25	0.30	25	0.0012	0.000	0.000	0.001	
224.30	0.35	31	0.0015	0.000	0.000	0.002	Perforation
224.35	0.40	37	0.0022	0.000	0.000	0.002	
224.40	0.45	43	0.0026	0.000	0.000	0.003	Perforation
224.45	0.50	49	0.0034	0.000	0.000	0.003	
224.50	0.55	56	0.0039	0.000	0.000	0.004	Top of Stone/B Pond
224.55	0.60	90	0.0043	0.000	0.000	0.004	
224.60	0.65	158	0.0047	0.000	0.000	0.005	
224.65	0.70	228	0.0051	0.000	0.000	0.005	
224.70	0.75	299	0.0054	0.000	0.000	0.005	
224.75	0.80	371	0.0057	0.000	0.000	0.006	
224.80	0.85	445	0.0060	0.000	0.000	0.006	
224.85	0.90	521	0.0062	0.000	0.000	0.006	T/G Secondary Outlet
224.90	0.95	598	0.0065	0.032	0.000	0.038	
224.95	1.00	676	0.0067	0.032	0.000	0.039	
225.00	1.05	756	0.0070	0.033	0.000	0.040	
225.05	1.10	837	0.0072	0.034	0.000	0.041	Weir
225.10	1.15	920	0.0074	0.035	0.041	0.083	Overflow
225.15	1.20	998	0.0076	0.036	0.124	0.167	Overflow

A TECHNIKI MALI JULINI MARKA

APPENDIX B: MIDUSS MODELLING

11		MIDUSS Output>"
"		MIDUSS version Version 2.25 rev. 473"
"		MIDUSS created Sunday, February 07, 2010"
"	10	Units used: ie METRIC"
"		Job folder: \\os-2012r2\Users_Private\ewebb\Documents\"
п		MIDUSS\221210\July 2022"
"		Output filename: Ex. and Post 1 (10mm Flush) yr.out"
"		Licensee name: gmbp"
п		Company "
"		Date & Time last used: 7/18/2022 at 8:41:29 AM"
"	31 TI	IME PARAMETERS"
"	5.000	Time Step"
"	60.000	Max. Storm length"
"	360.000	Max. Hydrograph"
"	32 ST	FORM Canada AES"
"	4	Canada AES"
"	10.000	Rainfall depth"
"	60.000	Duration"
"	21.000	Time to peak"
"	7.000	Decay factor"
"	Ma	aximum intensity 31.121 mm/hr"
"	Тс	otal depth 10.000 mm"
"	5	10hyd Hydrograph extension used in this file"
"	33 C/	ATCHMENT 10"
	1	Triangular SCS"
	1	Equal length"
	1	SCS method"
	10	Pre "
	0.000	% Impervious"
	2.010	Total Area"
	200.000	Flow length"
	2.900	Overland Slope"
	2.010	Pervious Area"
	200.000	Pervious length"
	2.900	Pervious slope"
	0.000	Impervious Area
	200.000	Impervious length
	2.900	Impervious slope
	0.250	Pervious Manning n
	75.000	Pervious SCS Curve No."
	0.001	Pervious Runott coetticient
	0.100	Pervious la/S coefficient
	8.467	Pervious Initial adstraction
	08 000	Impervious Manning n
	20.000	Impervious SUS Curve NO. Imponvious Punoff coofficient"
	0.000	Impervious Runott Coetticient"
	0.100	Impervious Id/S COEFFICIENC
	0.210	$\frac{1000}{1000} = 0.000 = 0.00$
	C	atchment 10 Pervious Impervious Total Area "

"	Surfac	e Area	2,010	0.000	2,010	hectare"
"	Time o	494.543	11.147	494.236	minutes"	
	Time t	Time to Centroid			251.364	minutes"
	Rainfa	11 denth	10.000	10.000	10.000	mm"
	Rainfa	11 volume	201.00	0.00	201.00	C.m"
	Rainfa	11 losses	9 990	3 878	9 990	mm"
	Runoff	denth	0 010	6 122	0 010	mm"
	Runoff	volume	0.010	0.122	0.010	
	Runoff	coefficient	0.10	0.00	0.15	"
	Maximu	m flow	0.001	0.000	0.001	c m/soc"
		RADH Start - Now	Tributary"	0.000	0.000	C. III/ SEC
	40 IIIDK00	nt - Now Tributar	TI IDUCALY			
	2 514		y A 0.000	0 000"		
		ENT 100"	0.000	0.000		
	35 CATCHM	angulan SCS"				
	1 111	all longth"				
	I Equ	ai iength				
		method				
	100 POS	τ				
	75.000 % I	mpervious				
	2.010 100	al Area				
	20.000 F10	w length				
	2.000 Ove	riand Slope				
	0.503 Per	vious Area				
	20.000 Per	vious length"				
	2.000 Per	vious slope"				
	1.50/ Imp	ervious Area"				
	20.000 Imp	ervious length"				
	2.000 Imp	ervious slope"				
	0.250 Per	vious Manning 'n'				
	75.000 Per	vious SCS Curve M				
	0.003 Per	vious Runott coet	+icient"			
	0.100 Per	vious Ia/S coeffi	icient"			
	8.467 Per	vious Initial abs	straction"			
	0.015 Imp	ervious Manning	n'"			
	98.000 Imp	ervious SCS Curve	e No."			
	0.596 Imp	ervious Runott co	pefficient"			
	0.100 Imp	ervious Ia/S coef	ficient"			
	0.518 Imp	ervious Initial a	abstraction			
		0.095 0.000	0.000	0.000	c.m/sec"	
"	Catchm	ent 100	Pervious	Impervious	Total Area	"
"	Surfac	e Area	0.503	1.507	2.010	hectare"
"	Time o	of concentration	138.874	3.130	3.330	minutes"
"	Time t	o Centroid	154.799	27.218	27.406	minutes"
"	Rainfa	ll depth	10.000	10.000	10.000	mm"
"	Rainfa	ll volume	50.25	150.75	201.00	c.m"
"	Rainfa	ll losses	9.974	4.035	5.520	mm''
"	Runoff	depth	0.026	5.965	4.480	mm''
"	Runoff	volume	0.13	89.92	90.05	c.m"
"	Runoff	<pre>coefficient</pre>	0.003	0.596	0.448	
"	Maximu	ım flow	0.000	0.095	0.095	c.m/sec"

"	40	HY	DROGRAPH	Add Runoff			
"		4	Add Runo	ff "			
			0.0	95 0.6	95 0.0	00	0.000"
"	54	PO	ND DESIGN	"			
"		0.095	Current	peak flow	c.m/sec	"	
"		0.040	Target o	utflow	c.m/sec"		
"		90.1	Hydrogra	ph volume	c.m"		
"		26.	Number o	f stages"			
"		223.900	Minimum	water leve	el metre	"	
		225.150	Maximum	water leve	el metre	"	
"		223.900	Starting	water lev	vel metr	e"	
п		0	Keep Des	ign Data:	1 = True;	0 = Fal	.se"
ш			Level	Discharge	Volume"		
"			223.900	0.000	0.000"		
"			223.950	1.01E-05	1.01E-05"		
ш			224.000	2.01E-05	2.965"		
u			224.050	3.01E-05	6.662"		
"			224.100	4.01E-05	10.726"		
u			224.150	0.00050	15.155"		
"			224.200	0.00060	19.950"		
			224.250	0.00120	25.112"		
п			224.300	0.00150	30.639"	t.	
"			224.350	0.00220	36.533"		
"			224.400	0.00260	42.792"	l.	
"			224.450	0.00340	49.418"	1	
ш			224.500	0.00390	56.410"		
"			224.550	0.00430	90.135"	1	
"			224.600	0.00470	158.292"	I	
			224.650	0.00510	227.871"		
"			224.700	0.00540	298.882"	í.	
"			224.750	0.00570	371.339"	i i	
			224.800	0.00600	445.252"	1	
"			224.850	0.00620	520.635"	1	
			224.900	0.03810	597.500"	1	
щ			224.950	0.03910	675.859"	1	
п			225.000	0.04020	755.723"	I	
"			225.050	0.04120	837.105"	l.	
"			225.100	0.08320	920.017"	I	
"			225.150	0.1672	998.211"	ı	
"		Pe	ak outflo	W	e	.004	c.m/sec"
"		Ма	ximum lev	'el	224	.537	metre"
		Ма	ximum sto	rage	81	.632	c.m"
"		Ce	ntroidal	lag	4	.883	hours"
"			0.095	0.095	0.004	0.0	000 c.m/sec"

,			MIDUSS Output>"
			MIDUSS version Version 2.25 rev. 473"
,			MIDUSS created Sunday, February 07, 2010"
		10	Units used: ie METRIC"
			Job folder: \\os-2012r2\Users_Private\ewebb\Documents\"
			MIDUSS\221210\July 2022"
			Output filename: Ex. and Post 2 yr.out"
			Licensee name: gmbp"
,			Company "
			Date & Time last used: 7/18/2022 at 8:37:37 AM"
	' 3	1 TIN	ME PARAMETERS"
,		5.000	Time Step"
1		180.000	Max. Storm length"
		360.000	Max. Hydrograph"
	' 3	32 ST(DRM Chicago storm"
,		1	Chicago storm"
		854.100	Coefficient A"
		7.781	Constant B"
		0.830	Exponent C"
	•	0.375	Fraction R"
		180.000	Duration"
		1.000	Time step multiplier"
	•	Мах	ximum intensity 101.673 mm/hr"
		Tot	tal depth 33.228 mm"
	•	6	002hyd Hydrograph extension used in this file"
	' 3	3 CA	TCHMENT 10"
		1	Triangular SCS"
		1	Equal length"
		1	SCS method"
	•	10	Entire Site - Existing Conditions"
		0.000	% Impervious"
1		2.010	Total Area"
		200.000	Flow length"
		2.900	Overland Slope"
, i		2.010	Pervious Area"
i	•	200.000	Pervious length"
,		2.900	Pervious slope"
i.		0.000	Impervious Area"
1		200.000	Impervious length"
	•	2.900	Impervious slope"
		0.250	Pervious Manning 'n'"
	•	71.000	Pervious SCS Curve No."
1		0.117	Pervious Runoff coefficient"
,	•	0.100	Pervious Ia/S coefficient"
	1	10.375	Pervious Initial abstraction"
	1	0.015	Impervious Manning 'n'"
,	1	98.000	Impervious SCS Curve No."
,	1	0.000	Impervious Runoff coefficient"
	1	0.100	Impervious Ia/S coefficient"
		0.518	Impervious Initial abstraction"

"	0.008 0.00	0.000	0.000	c.m/sec"	
"	Catchment 10	Pervious	Impervious	Total Area	"
"	Surface Area	2.010	0.000	2.010	hectare"
п	Time of concentration	92.403	6.399	92.403	minutes"
"	Time to Centroid	197.322	94.221	197.322	minutes"
"	Rainfall depth	33.228	33.228	33.228	mm''
"	Rainfall volume	667.87	0.00	667.88	c.m"
	Rainfall losses	29.341	5.213	29.341	mm''
"	Runoff depth	3.886	28.015	3.886	mm''
"	Runoff volume	78.11	0.00	78.11	c.m"
	Runoff coefficient	0.117	0.000	0.117	"
"	Maximum flow	0.008	0.000	0.008	c.m/sec"
"	40 HYDROGRAPH Start - New	/ Tributary"			
п	2 Start - New Tributa	ary"			
n	0.008 0.00	0.000	0.000"		
"	33 CATCHMENT 100"				
"	1 Triangular SCS"				
	1 Equal length"				
"	1 SCS method"				
"	100 Entire Site - Post-	·Dev."			
u	75.000 % Impervious"				
	2.010 Total Area"				
	20.000 Flow length"				
"	2.000 Overland Slope"				
"	0.503 Pervious Area"				
"	20.000 Pervious length"				
	2.000 Pervious slope"				
"	1.507 Impervious Area"				
	20.000 Impervious length"				
	2.000 Impervious slope"				
	0.250 Pervious Manning 'r	ו'"			
	71.000 Pervious SCS Curve	No."			
	0.124 Pervious Runoff coe	efficient"			
	0.100 Pervious Ia/S coeff	-icient"			
	10.375 Pervious Initial at	ostraction"			
	0.015 Impervious Manning	'n'"			
	98.000 Impervious SCS Curv	/e No."			
	0.839 Impervious Runott o	coetticient"			
	0.100 Impervious Ia/S coe	etficient"			
	0.518 Impervious Initial	abstraction		<i>,</i>	
	0.305 0.00	0.000	0.000	c.m/sec"	
	Catchment 100	Pervious	Impervious	Total Area	
	Surface Area	0.503	1.507	2.010	hectare"
	lime of concentration	25.948	1./9/	2.932	minutes"
	lime to Centrola	132.813	87.255	89.396	minutes"
	Kaintall depth	33.228	33.228	33.228	mm ··
	Kaintall Volume	100.97	500.91	667.88	C.M.
	Kaintall losses	29.106	5.365	11.300	mm "
п		4.122	27.863	21.928	mm "
	KUNOTT VOLUME	20./1	420.03	440.75	C.M

н	Runoff coe	fficient	0.124	0.839	0.660	
"	Maximum flo	SW	0.005	0.305	0.305	c.m/sec"
11	40 HYDROGRAPH	Add Runof	f "			
11	4 Add Rund	off "				
н	0.3	305 0.3	305 0.00	0.000"		
"	54 POND DESIG	۷"				
11	0.305 Current	peak flow	c.m/sec"			
"	0.046 Target (outflow	c.m/sec"			
11	440.7 Hydrogra	aph volume	c.m"			
11	26. Number o	of stages"				
"	223.900 Minimum	water leve	el metre"			
п	225.150 Maximum	water leve	el metre"			
11	223.900 Starting	g water le	vel metre	"		
"	Ø Keep De	sign Data:	1 = True; 0	= False"		
"	Level	Discharge	Volume"			
"	223.900	0.000	0.000"			
11	223.950	1.01E-05	1.01E-05"			
"	224.000	2.01E-05	2.965"			
"	224.050	3.01E-05	6.662"			
"	224.100	4.01E-05	10.726"			
"	224.150	0.00050	15.155"			
"	224.200	0.00060	19.950"			
"	224.250	0.00120	25.112"			
"	224.300	0.00150	30.639"			
"	224.350	0.00220	36.533"			
"	224.400	0.00260	42.792"			
	224.450	0.00340	49.418"			
"	224.500	0.00390	56.410"			
"	224.550	0.00430	90.135"			
	224.600	0.00470	158.292"			
"	224.650	0.00510	227.871"			
	224.700	0.00540	298.882"			
	224.750	0.00570	371.339"			
	224.800	0.00600	445.252"			
	224.850	0.00620	520.635"			
	224.900	0.03810	597.500"			
	224.950	0.03910	675.859"			
	225.000	0.04020	755.723"			
	225.050	0.04120	837.105"			
	225.100	0.08320	920.017"			
	225.150	0.1672	998.211"			
	Peak outfl	DWWC	0.	006 c.m/s	ec"	
	Maximum le	vel	224.	766 metre		
	Maximum st	orage	395.	411 c.m"		
	Centroidal	Lag	14.	158 hours'		
n	0.305	0.305	0.006	0.000 c.n	ı/sec"	

.

"		MIDUSS Output>"
"		MIDUSS version Version 2.25 rev. 473"
		MIDUSS created Sunday, February 07, 2010"
	10	Units used: ie METRIC"
		Job folder: \\os-2012r2\Users_Private\ewebb\Documents\"
u		MIDUSS\221210\July 2022"
		Output filename: Ex. and Post 5 yr.out"
		Licensee name: gmbp"
"		Company "
"		Date & Time last used: 7/18/2022 at 8:33:19 AM"
	31	TIME PARAMETERS"
"	5.000	Time Step"
	180.000	Max. Storm length"
п	360.000	Max. Hydrograph"
	32 5	STORM Chicago storm"
"	1	Chicago storm"
	1234.580	Coefficient A"
	8.297	Constant B"
"	0.851	Exponent C"
	0.375	Fraction R"
	180.000	Duration"
	1.000	Time step multiplier"
	Ν	Maximum intensity 134.693 mm/hr"
	· 7	Total depth 42.929 mm"
	6	005hyd Hydrograph extension used in this file"
	33 (CATCHMENT 10"
	1	Triangular SCS"
	1	Equal length"
	1	SCS method"
	10	Entire Site - Existing Conditions"
	0.000	% Impervious"
	2.010	Total Area"
	200.000	Flow length"
	2.900	Overland Slope"
	2.010	Pervious Area"
п	200.000	Pervious length"
	2.900	Pervious slope"
	0.000	Impervious Area"
	200.000	Impervious length"
	2.900	Impervious slope"
	0.250	Pervious Manning 'n'"
"	71.000	Pervious SCS Curve No."
"	0.177	Pervious Runoff coefficient"
	0.100	Pervious Ia/S coefficient"
"	10.375	Pervious Initial abstraction"
"	0.015	Impervious Manning 'n'"
"	98.000	Impervious SCS Curve No."
	0.000	Impervious Runoff coefficient"
"	0.100	Impervious Ia/S coefficient"
"	0.518	Impervious Initial abstraction"

"	0.021 0	0.000	0.000	0.000 (c.m/sec"	
	Catchment 10		Pervious	Impervious	Total Area	"
"	Surface Area		2.010	0.000	2.010	hectare"
"	Time of concentrati	ion	69.279	5.646	69.278	minutes"
"	Time to Centroid		173.873	91.776	173.873	minutes"
"	Rainfall depth		42.929	42.929	42.929	mm"
"	Rainfall volume		862.87	0.00	862.87	c.m"
	Rainfall losses		35.340	5.350	35.340	mm''
"	Runoff depth		7.589	37.579	7.589	mm''
"	Runoff volume		152.54	0.00	152.54	c.m"
"	Runoff coefficient		0.177	0.000	0.177	"
н	Maximum flow		0.021	0.000	0.021	c.m/sec"
"	40 HYDROGRAPH Start -	New	Tributary"			
	2 Start - New Trib	outar	ry"			
"	0.021 6	0.000	0.000	0.000"		
"	33 CATCHMENT 100"					
	1 Triangular SCS"					
"	1 Equal length"					
"	1 SCS method"					
п	100 Entire Site - Po	ost-D	Dev."			
"	75.000 % Impervious"					
	2.010 Total Area"					
"	20.000 Flow length"					
"	2.000 Overland Slope"					
"	0.503 Pervious Area"					
"	20.000 Pervious length'					
"	2.000 Pervious slope"					
"	1.507 Impervious Area'					
"	20.000 Impervious lengt	th"				
	2.000 Impervious slope	e"				
	0.250 Pervious Manning	g 'n'				
	71.000 Pervious SCS Cur	rve M	No."			
	0.181 Pervious Runoff	coet	fficient"			
	0.100 Pervious Ia/S co	peffi	icient"			
	10.375 Pervious Initia.	L abs	straction"			
	0.015 Impervious Mann	ing	'n'"			
	98.000 Impervious SCS (Lurve	e No."			
	0.867 Impervious Runo	FT CO	Detticient"			
	0.100 Impervious Ia/S	coei	Fficient"	•		
	0.518 Impervious Init:	lal a	abstraction		<i>,</i>	
	0.426	9.000	0.000	- 0.000	c.m/sec"	
	Catchment 100		Pervious	Impervious	lotal Area	
	Surface Area		0.503	1.507	2.010	hectare"
	lime of concentrat:	ron	19.454	1.585	2./4/	minutes"
	lime to Centroid		121.159	85.654	87.961	minutes"
	Raintall depth		42.929	42.929	42.929	mm"
	Raintail volume		215.72	647.15	862.87	C.M"
	Kaintall losses		35.166	5.695	13.063	mm
			7.763	37.234	29.866	mm"
	KUNOTT VOLUME		3 3 .0T	501.30	16.000	C.M.

"	Runoff coef	ficient	0.181	0.867	0.696	н
"	Maximum flo	W	0.012	0.425	0.426	c.m/sec"
"	40 HYDROGRAPH	Add Runof	F "			
"	4 Add Rund	off "				
"	0.4	126 0.4	426 0.00	0.000		
"	54 POND DESIGN	1"				
"	0.426 Current	peak flow	c.m/sec"			
п	0.017 Target o	outflow	c.m/sec"			
"	600.3 Hydrogra	aph volume	c.m"			
"	26. Number d	of stages"				
	223.900 Minimum	water leve	el metre"			
"	225.150 Maximum	water leve	el metre"			
**	223.900 Starting	g water lev	vel metre	11		
"	Ø Keep Des	sign Data:	1 = True; 0	= False"		
"	Level	Discharge	Volume"			
"	223.900	0.000	0.000"			
"	223.950	1.01E-05	1.01E-05"			
	224.000	2.01E-05	2.965"			
	224.050	3.01E-05	6.662"			
"	224.100	4.01E-05	10.726"			
	224.150	0.00050	15.155"			
	224.200	0.00060	19.950"			
"	224.250	0.00120	25.112"			
"	224.300	0.00150	30.639"			
"	224.350	0.00220	36.533"			
"	224.400	0.00260	42.792"			
"	224.450	0.00340	49.418"			
"	224.500	0.00390	56.410"			
"	224.550	0.00430	90.135"			
"	224.600	0.00470	158.292"			
"	224.650	0.00510	227.871"			
"	224.700	0.00540	298.882"			
"	224.750	0.00570	371.339"			
"	224.800	0.00600	445.252"			
"	224.850	0.00620	520.635"			
"	224.900	0.03810	597.500"			
"	224.950	0.03910	675.859"			
	225.000	0.04020	755.723"			
"	225.050	0.04120	837.105"			
"	225.100	0.08320	920.017"			
"	225.150	0.1672	998.211"			
	Peak outflo	W	0.	013 c.m/	sec"	
"	Maximum lev	vel	224.	860 metr	e"	
	Maximum sto	prage	536.	375 c.m"		
"	Centroidal	lag	16.	676 hours	11 23 - 10000	
"	0.426	0.426	0.013	0.000 c.	n/sec"	

		MIDUSS Output>"
"		MIDUSS version Version 2.25 rev. 473"
"		MIDUSS created Sunday, February 07, 2010"
	10	Units used: ie METRIC"
"		Job folder: \\os-2012r2\Users_Private\ewebb\Documents\"
"		MIDUSS\221210\July 2022"
		Output filename: Ex. and Post 25 yr.out"
11		Licensee name: gmbp"
"		Company "
		Date & Time last used: 7/18/2022 at 8:28:23 AM"
"	31 1	IME PARAMETERS"
	5.000	Time Step"
"	210.000	Max. Storm length"
"	360.000	Max. Hydrograph"
"	32 5	TORM Chicago storm"
"	1	Chicago storm"
	1750.276	Coefficient A"
"	8.303	Constant B"
"	0.862	Exponent C"
п	0.375	Fraction R"
"	210.000	Duration"
"	1.000	Time step multiplier"
"	Μ	aximum intensity 165.717 mm/hr"
"	Т	otal depth 59.007 mm"
"	6	025hyd Hydrograph extension used in this file"
"	33 (ATCHMENT 10"
"	1	Triangular SCS"
"	1	Equal length"
"	1	SCS method"
"	10	Entire Site - Existing Conditions"
"	0.000	% Impervious"
"	2.010	Total Area"
"	200.000	Flow length"
"	2.900	Overland Slope"
"	2.010	Pervious Area"
н	200.000	Pervious length"
"	2.900	Pervious slope"
"	0.000	Impervious Area"
"	200.000	Impervious length"
н	2.900	Impervious slope"
"	0.250	Pervious Manning 'n'"
"	71.000	Pervious SCS Curve No."
"	0.258	Pervious Runoff coefficient"
"	0.100	Pervious Ia/S coefficient"
"	10.375	Pervious Initial abstraction"
"	0.015	Impervious Manning 'n'"
"	98.000	Impervious SCS Curve No."
"	0.000	Impervious Runoff coefficient"
"	0.100	Impervious Ia/S coefficient"
"	0.518	Impervious Initial abstraction"

"		0.054 0.	000 0.0	00 0.000	c.m/sec"		
"	Cato	chment 10	Pervious	Imperviou	s Total Area	н	
"	Sur	Face Area	2.010	0.000	2.010	hectare"	
ш	Time	e of concentratio	n 49.499	5.160	49.499	minutes"	
"	Time	e to Centroid	168.462	102.651	168.461	minutes"	
"	Rair	ıfall depth	59.007	59.007	59.007	mm"	
	Rair	ıfall volume	1186.04	0.00	1186.05	c.m"	
"	Rair	ıfall losses	43.792	5.436	43.792	mm ''	
"	Rund	off depth	15.215	53.571	15.215	mm''	
"	Rund	off volume	305.82	0.00	305.82	c.m"	
"	Rund	off coefficient	0.258	0.000	0.258		
"	Max	imum flow	0.054	0.000	0.054	c.m/sec"	
"	40 HYDE	ROGRAPH Start - N	lew Tributar	у"			
"	2 9	Start - New Tribu	itary"				
"		0.054 0.	000 0.0	00 0.000			
	33 CAT	CHMENT 100"					
	1 -	Friangular SCS"					
	1 1	Equal length"					
"	1 9	SCS method"					
	100	Entire Site - Pos	t-Dev."				
	75.000 9	% Impervious"					
	2.010	ſotal Area"					
	20.000	<pre>-low length"</pre>					
	2.000	Overland Slope"					
	0.503	Pervious Area"					
	20.000	Pervious length"					
	2.000	Pervious slope"					
	1.507	Impervious Area"					
	20.000	Impervious length	1"				
	2.000	Impervious slope"					
	0.250	Pervious Manning	'n'"				
	/1.000	Pervious SCS Curv	ve No."				
	0.262	Pervious Runott c	CCicicicut"				
	0.100	Pervious la/S coe	etticient				
	10.375	Pervious Initial	abstraction				
	0.015	Impervious Mannin Impervious SCS Cu	ig n				
	98.000	Impervious SCS Cu Impervious Bunoff	rve NO.	+ "			
	0.890	Impervious Runott	coefficient"	L			
	0.100	Impervious la/s c Imponvious Initia	.oetticient	on"			
	0.518				c m/coc"		
	Cat	0.555 0. chmont 100	Donvious		c.m/sec		
	Call	face Apop	Pervious	1 EQ7	S TOLAT Area	hostono"	
"	Sur" Tim	ale Aled	2003 12 000	1 440	2.010	minutor"	
		e to Controid	127 106	1.449 07 007	2.33/	minutes	
"		e to centroid	50 007	50 007	50 007	mm"	
	Rall	naii uepun nfall volumo	206 51	220 52	1196 05		
п	Rall	naii voiume	13 501	6 161	15 502	с.ш mm"	
	Run	off denth	43.521 15 /Q7	52 Q//	13 501	mm"	
"	Run	off volume	77 82	796 62	874 44	c m"	
	Kum		77.02	, ,0,02	0/7.74	C • 111	

"	1	Ru	noff coef	ficient	0.262	0.896	0.737	п
1		Ма	ximum flow	N	0.031	0.533	0.535	c.m/sec"
1	40	HY	DROGRAPH	Add Runoff				
1		4	Add Runo [.]	ff "				
			0.5	35 0.5	635 0.00	0.0	300"	
	54	PO	ND DESIGN					
		0.535	Current	peak flow	c.m/sec"			
1		0.356	Target o	utflow	c.m/sec"			
1		874.4	Hydrogra	ph volume	c.m"			
		26.	Number o	f stages"				
1		223.900	Minimum	water leve	el metre"			
1		225.150	Maximum	water leve	el metre"			
		223.900	Starting	water lev	vel metre	e"		
,		0	Keep Des	ign Data:	1 = True; 0) = False	•	
			Level	Discharge	Volume"			
'			223.900	0.000	0.000"			
1			223.950	1.01E-05	1.01E-05"			
1			224.000	2.01E-05	2.965"			
'			224.050	3.01E-05	6.662"			
1	1		224.100	4.01E-05	10.726"			
'			224.150	0.00050	15.155"			
'	•		224.200	0.00060	19.950"			
'	•		224.250	0.00120	25.112"			
'			224.300	0.00150	30.639"			
1			224.350	0.00220	36.533"			
'			224.400	0.00260	42.792"			
			224.450	0.00340	49.418"			
			224.500	0.00390	56.410"			
			224.550	0.00430	90.135"			
			224.600	0.00470	158.292"			
			224.650	0.00510	227.871"			
			224.700	0.00540	298.882"			
			224.750	0.00570	3/1.339"			
			224.800	0.00600	445.252"			
			224.850	0.00620	520.635			
			224.900	0.03810	597.500"			
			224.950	0.03910	6/5.859"			
			225.000	0.04020	/55./23			
			225.050	0.04120	837.105			
,	,		225.100	0.08320	920.017			
		D -	225.150	0.10/2	998.211"	020 -	m/co-"	
1		Pe	ak outtio	w	0.	C 959 C	.m/sec	
		Ma Ma	ximum rev	6T	224.	אט איז	etre	
		Ma	ximum Sto	lage	658.	528 C	. III	
		Ce		Tag	13.	0/3 NO	urs e m/aaa"	
			0.535	0.535	0.039	0.000	c.m/sec	

н		MIDUSS Output>"
11		MIDUSS version Version 2.25 rev. 473"
"		MIDUSS created Sunday, February 07, 2010"
"	10	Units used: ie METRIC"
"		Job folder: \\os-2012r2\Users_Private\ewebb\Documents\"
н		MIDUSS\221210\July 2022"
п		Output filename: Ex. and Post 100 yr.out"
"		Licensee name: gmbp"
		Company "
u		Date & Time last used: 7/18/2022 at 8:26:32 AM"
"	31 1	IME PARAMETERS"
"	5.000	Time Step"
"	210.000	Max. Storm length"
"	360.000	Max. Hydrograph"
"	32 5	GTORM Chicago storm"
"	1	Chicago storm"
	2171.754	Coefficient A"
"	8.303	Constant B"
"	0.867	Exponent C"
"	0.375	Fraction R"
	210.000	Duration"
"	1.000	Time step multiplier"
"	Μ	Naximum intensity 202.862 mm/hr"
"	1	Total depth 71.271 mm"
"	6	100hyd Hydrograph extension used in this file"
	33 (CATCHMENT 10"
	1	Triangular SCS"
	1	Equal length"
	1	SCS method"
ï	10	Entire Site - Existing Conditions"
	0.000	% Impervious"
	2.010	lotal Area"
	200.000	Flow length"
	2.900	Overland Slope"
	2.010	Pervious Area"
	200.000	Pervious length
п	2.900	
	0.000	Impervious Area Impervious Jonath"
	200.000	Impervious length
	2.900	Impervious slope
	0.250	Pervious Manning n ^a
	/1.000	Pervious SCS Curve No.
"	0.313	Pervious Runott Coetticient
	10.100	Pervious Id/S COETTICIENC Denvious Initial abstraction"
	10.375	Tervious Initial abstraction
	00 000	Impervious ses curve No."
п	20.000	Impervious SCS curve NO. Impervious Runoff coefficient"
	0.000	Impervious Ta/S coefficient"
	0.100 0 510	Impervious Initial abstraction"
	0.010	Tuber (1949 Tutetat absel action

		0 001	a aaa	0 000	0 000 0	m/sec"	
	Ca	tchment 10	0.000	Dervious	Tmpervious	Total Area	
	Su	rface Area		2 010	a aaa	2 010	hoctaro"
	Ti	me of concentrat	ion d	42,231	4 735	42 230	minutes"
п	Ti	me to Centroid		159.260	101,449	159,260	minutes"
	Ra	infall depth		71.271	71.271	71,271	mm"
	Ra	infall volume		1432.55	0.00	1432.55	c.m"
"	Ra	infall losses		48,990	5.636	48,990	mm"
	Ru	noff depth		22.281	65.635	22.281	mm"
"	Ru	noff volume		447.85	0.00	447.85	c.m"
"	Ru	noff coefficient		0.313	0.000	0.313	"
"	Ма	ximum flow		0.091	0.000	0.091	c.m/sec"
"	40 HY	DROGRAPH Start -	New	Tributary"			
"	2	Start - New Tri	butar	у"			
"		0.091	0.000	0.000	0.000"		
"	33 CA	TCHMENT 100"					
"	1	Triangular SCS"					
"	1	Equal length"					
"	1	SCS method"					
"	100	Entire Site - P	ost-D	ev."			
	75.000	% Impervious"					
	2.010	Total Area"					
	20.000	Flow length"					
	2.000	Overland Slope"					
	0.503	Pervious Area					
	20.000	Pervious length					
	2.000	Pervious slope					
	1.507	Impervious Area	+ 6 "				
	20.000	Impervious leng	cn o"				
	0 250	Dervious Mannin	e a'n'				
	71 000	Pervious SCS Cu	б " rve N	o "			
"	0.315	Pervious Runoff	coef	ficient"			
	0.100	Pervious Ia/S c	oeffi	cient"			
	10.375	Pervious Initia	1 abs	traction"			
"	0.015	Impervious Mann	ing '	n'"			
"	98.000	Impervious SCS	Curve	No."			
"	0.907	Impervious Runo	ff co	efficient"			
"	0.100	Impervious Ia/S	coef	ficient"			
"	0.518	Impervious Init	ial a	bstraction'	,		
		0.676	0.000	0.000	0.000 (c.m/sec"	
"	Ca	tchment 100		Pervious	Impervious	Total Area	
"	Su	rface Area		0.503	1.507	2.010	hectare"
"	Ti	me of concentrat	ion	11.859	1.330	2.422	minutes"
	Ti	me to Centroid		122.661	96.344	99.075	minutes"
	Ra	infall depth		71.271	71.271	71.271	mm"
	Ra	intall volume		358.14	1074.41	1432.55	c.m"
	Ra	intall losses		48.815	6.631	17.177	mm"
	Ru	nott depth		22.456	64.641	54.094	mm"
	Ru	nott volume		112.84	9/4.46	108/.30	C.M.

"	Runoff coe	Fficient	0.315	0.907	0.759	"
"	Maximum flo	DW .	0.049	0.670	0.676	c.m/sec"
"	40 HYDROGRAPH	Add Runof	f "			
"	4 Add Rund	off "				
"	0.0	576 0.0	676 0.00	0.000	н	
"	54 POND DESIG	۷"				
"	0.676 Current	peak flow	c.m/sec"			
"	0.356 Target o	outflow	c.m/sec"			
	1087.3 Hydrogra	aph volume	c.m"			
"	26. Number o	of stages"				
"	223.900 Minimum	water leve	el metre"			
"	225.150 Maximum	water leve	el metre"			
"	223.900 Starting	g water le	vel metre	"		
"	0 Keep De	sign Data:	1 = True; 6) = False"		
"	Level	Discharge	Volume"			
	223.900	0.000	0.000"			
	223.950	1.01E-05	1.01E-05"			
	224.000	2.01E-05	2.965"			
	224.050	3.01E-05	6.662"			
	224.100	4.01E-05	10.726"			
	224.150	0.00050	15.155"			
	224.200	0.00060	19.950"			
	224.250	0.00120	25.112"			
	224.300	0.00150	30.639"			
	224.350	0.00220	36.533"			
	224.400	0.00260	42.792			
	224.450	0.00340	49.418			
	224.500	0.00390	56.410			
	224.550	0.00430	90.135			
	224.000	0.00470	130.292 337 971"			
	224.050	0.00510	22/.0/1			
	224.700	0.00540	271 220"			
п	224.750	0.00570	<i>1/</i> 15 252"			
"	224.800	0.00000	520 635"			
"	224.050	0.00020	597 500"			
	224.900	0.03010	675 859"			,
"	225,000	0.03910	755.723"			
"	225.000	0.04120	837.105"			
	225,100	0.08320	920.017"			
"	225.150	0.1672	998.211"			
"	Peak outfl	0011071 DW	0.	.041 C.m/	'sec"	
	Maximum le	vel	225	045 metr	'e"	
"	Maximum sto	orage	828.	663 c.m"		
"	Centroidal	lag	11.	687 hours		
"	0.676	0.676	0.041	0.000 c.	m/sec"	