

BARENCO INC.

Phase I and II Environmental Assessment

2202 3rd Avenue East Owen Sound, Ontario

April 10, 2008

For

Rafa Corporation

1810 Midland Avenue Toronto, Ontario M1P 3C2

By
BARENCO INC.
P. O. Box 295
2561 Stouffville Road, Suite 202
Gormley, Ontario
L0H 1G0
Telephone (905) 887-6661

TABLE OF CONTENTS

		<u>Pa</u>	age
1.0	INTR	ODUCTION	. 1
1.0	1.1		
	1.1	Terms of Reference	• •
2.0	SITE	BACKGROUND	
	2.1	Site Description	
	2.2	Historical Documentation	. 2
		2.2.1 Aerial Photographs	
		2.2.2 Municipal Records	. 4
		2.2.3 MOE Documentation	. 4
		2.2.4 TSSA Documentation	. 5
		2.2.5 Areas of Natural and Scientific Interest (ANSI)	. 5
		2.2.6 Fire Insurance Maps and Reports	. 5
		2.2.7 EcoLog ERIS Database Search	. 6
		2.2.8 Environmental Bill of Rights Registry	. 7
		2.2.9 Brownfield Environmental Site Registry	
		2.2.10 Hazardous Waste Information Network (HWIN)	. 7
	2.3	Previous Reports	. 8
	2.4	Interviews	13
3.0	SITE	VISIT	13
0.0	3.1	Property Walk-Through Inspection	
	3.2	Native Soils and Topography	
	3.3	Ground Water and Municipal Services	
	3.4	Designated Substances and Other Issues	
	0.1	3.4.1 Designated Substances	
		3.4.2 Special Attention Items	
		3.4.2 Special Attention Items	13
4.0	ADDI	TIONAL ASSESSMENT WORK	16
5.0	ASSE	SSMENT STANDARDS	20
	5.1	Ontario Ministry of the Environment Standards	
	5.2	Site Assessment Standards	
6.0	CITE	INVESTIGATION	21
0.0	6.1	Soil Assessment	
	0.1		
		6.1.1 Drilling Investigation	
	6.2	6.1.2 Surficial Soil Sampling	
	6.3	Soil Chemical Analysis	
	บ.อ	DUII CHCHHCAI AMAIVSIS	43

	6.4	Ground Water Chemical Analysis	35
7.0	CURRI	ENT SITE STATUS	35
8.0		ATION OF LIABILITY, SCOPE OF REPORT AND THIRD PARTY	

LIST OF FIGURES, TABLES, AND APPENDICES

Figure 1	Locality Plan
Figure 2	Site Plan showing Site Features
Figure 3	Site Plan showing Areas of Concern
Figure 4	Site Plan showing Sampling Locations
Table 1	Site Environmental Setting Data
Table 2	Darcy's Law Calculations
Table 3	Soil Chemical Analysis - BTEX and Petroleum Hydrocarbon Parameters
Table 4	Soil Chemical Analysis - VOCs
Table 5	Soil Chemical Analysis - PAHs
Table 6	Soil Chemical Analysis - Metals
Table 7	Soil Chemical Analysis - PCBs
Table 8	Ground Water Chemical Analysis - VOCs
Table 9	Ground Water Chemical Analysis - PAHs
Table 10	Ground Water Chemical Analysis - Metals
Appendix A	Terms and Conditions
Appendix B	Site Photographs
Appendix C	Aerial Photographs
Appendix D	Fire Insurance Plan (1946)

Appendix E EcoLog ERIS Report

Appendix F Qualifications of Assessors

Appendix G Test Hole Logs

Appendix H Laboratory Certificates of Analysis

1.0 INTRODUCTION

1.1 Terms of Reference

Barenco Inc. was retained by Rafa Corporation to conduct a Phase I and II Environmental Assessment at the property located at 2202 3rd Avenue East in Owen Sound, Ontario. In the past, the property had been used for industrial purposes. Currently, the property is vacant, but future use will be residential.

The objective of this Phase I work was to determine whether, within the sources of information outlined below, there exists publicly available, predominantly documentary indications of environmental impairment relating to historical land uses.

The Phase I environmental assessment involved a search of historical records pertaining to the site and surrounding properties, a review of previous environmental reports provided by the client, and a walk-by inspection of the site and the surrounding properties. Historical sources of information included archival air photographs, street directories, a search of fire insurance records, selected Ministry of the Environment (MOE) databases and inventories, and available reports. Although Barenco Inc. made requests for the information available from the operators of these databases, there are inherent limitations and uncertainties in the data provided in that the available data could be an incomplete or inaccurate reflection of historical conditions, and the searches may not have turned up all available relevant data. Due to the historical and documentary nature of the sources consulted, no verification of the accuracy or completeness of the data was made by Barenco Inc. and statements made by others were not verified for accuracy.

Barenco Inc. performed the Phase I environmental assessment following the principles of the *Canadian Standards Association Z768 Guideline* and in accordance with generally accepted professional practices related to the nature of the work accomplished at the time and place the services were performed. Subject to this standard of care, Barenco Inc. makes no express or implied warranties regarding its services nor the completeness nor accuracy of any data used in this report. No third-party beneficiaries are intended. Barenco Inc.'s Terms and Conditions are attached in Appendix A.

Whenever professional consulting services are applied to determine the composition of a site's subsurface or the existence or non-existence of contamination, special risks occur and guarantees cannot be expected. Barenco Inc. cannot eliminate these risks altogether, but Barenco Inc. applies

professional techniques to reduce these risks to a level deemed tolerable for the land use proposed at the time of the assessment. There may be additional techniques beyond this Phase I scope of work that could further reduce the risk. If requested, Barenco Inc. can make recommendations in this regard.

2.0 SITE BACKGROUND

2.1 Site Description

The property is located at 2202 3rd Avenue East in Owen Sound, Ontario. A locality plan is provided as Figure 1.

The subject property is located to the south of 24th Street East and to the north of 18th Street East on the west side of 3rd Avenue East. The subject property occupies an area of approximately 5.5 hectares (13.5 acres) and is bordered by Georgian Bay to the west. Concrete pads and foundation footings surrounded by paved and gravel driveways from the former industrial buildings were observed on the property. The remainder of the property was covered in vegetation at the time of the site visit. Site photographs are included in Appendix B and a site plan showing the location of the former buildings is included as Figure 2.

The subject property was developed for industrial use in the late 1800s. Occupants included a ship building company (Russel Brothers Limited) and a cement manufacturing operation (1894 to 1912). Historical documents supplied by the client for review by Barenco also indicate past tenants on the property have included a foundry, a furniture manufacturer and a second cement manufacturing company. According to previous reports, the Russel Brothers facility occupied the property from approximately 1925 to the early 1990s. The facility reportedly included ship building and heavy steel fabrication and manufacturing including diesel, automotive, industrial and marine engines.

For the purpose of this Phase I environmental assessment, site north is assumed to be parallel to 3rd Avenue East. The property is bounded by the former Empire Stove property to the north (currently residential buildings), residential homes to the east, Owen Sound Waste Water Treatment Plant to the south and Owen Sound Harbour (Georgian Bay) to the west.

2.2 Historical Documentation

A search of historical documents for the area was conducted to determine the

use of the land and the surrounding properties. The documentation review involved an examination of municipal directories at the Toronto Reference Library. Archival air photos were requested from the National Air Photo Library. A search of documentation on file with CGI Environmental Services' Historical Environmental Reporting System (HEIRSTM) was also requested. A fire insurance plan from 1946 was retrieved and reviewed through this search.

A search of federal and provincial government and private source databases was conducted through EcoLog Environmental Risk Information Services Ltd. (ERIS). Historical records were requested from the Ministry of Environment's (MOE) and the City of Owen Sound Freedom of Information (FOI) offices. A search of the Ministry of Environment's Environmental Bill of Rights Registry was conducted online for the municipal area of the subject property.

2.2.1 Aerial Photographs

Aerial photographs of the area were obtained from the National Air Photo Library for the years 1966, 1973 and 1987. Copies of these photographs are provided in Appendix C.

In the 1966 photograph, the subject property is only partially visible. The portion that can be seen is developed and has a similar building configuration as the site plan (attached as Figure 2). A rail line is visible to the east of the subject property and a parking area can be seen in between the property line and the rail line. A spit is visible running west from the site into the Owen Sound Harbour. To the south of the spit, a small harbour is visible including what appears to be train tracks extending into the water. The areas surrounding the buildings on-site appear to be paved and are primarily used for parking. To the north of the subject site, a series of buildings are visible (most likely the former Empire Stove facility). To the east of the subject site (across 3rd Avenue East), residential buildings are visible.

In the 1973 photograph, the subject site and surrounding properties appear to have the same configuration as in the 1966 air photograph.

In the 1987 photograph, the subject property is only partially visible (does not include entire spit extending into the Owen Sound Harbour). The building configuration appears to be the same as in the 1966 and 1973 air photographs. To the north of Building 3 (refer to the site plan attached as Figure 2), there appears to be several rail cars. To the south of the property, it appears that the Owen Sound Waste Water Treatment Plant is being developed.

2.2.2 Municipal Records

Records pertaining to the site were requested through a municipal FOI search request through the City of Owen Sound. A response that included the historical location of landfill sites in Owen Sound was provided to Barenco for review. According to the municipal information provided, a landfill was reportedly located just west of 3rd Avenue East on the northern portion of the subject property. This landfill was reportedly closed in October 1952 and contained urban municipal domestic waste.

A search for municipal records was also conducted at the Toronto Reference Library. Street directories for the City of Owen Sound published in 1928, 1968, 1977 and 1989 were reviewed.

The subject property was not listed in the 1928 street directory. Russel Brothers Ltd. was listed as occupying the subject property from 1968 to 1989.

The north adjacent property (2362 3rd Avenue East) was listed as Empire Stove Works in 1928, as Jones-Taggart Trance Company in 1968, as Black Clawson Kennedy Company in 1977 and as Thom Construction Inc. in 1989.

Further north, 2600 3rd Avenue East was listed as residential in 1968, and as the Neath R H Water Purification Plant in the 1977 and 1989 street directories.

The south adjacent property (2198 3rd Avenue East) was listed as 'not built on' in 1928, vacant in 1968 and 1977 and 'not listed' in 1989. Further south, at 2050 3rd Avenue East, the property was listed in the 1968 street directory as the Owen Sound Water Pollutant Control plant, and as the MOE Sewage Treatment Plant in the 1977 and 1989 street directories.

2.2.3 MOE Documentation

Records pertaining to the site were requested through the MOE's FOI Act. One record was retrieved and was reviewed by Barenco. The record consisted of a letter dated June 12, 1990 from the MOE to Mr. R. J. Allan at Russel Brothers. The letter was in reference to a generator registration report dated February 28, 1986 and stipulated that the generator number assigned to the subject property was ON0218000. Wastes listed under this generator number included waste hydraulic oil (Shell Tellus 32), waste hydraulic oil (Shell Tellus 68), waste xylol solvent, spent petroleum distillates, paint sludge and polychlorinated biphenyl (PCB) waste.

2.2.4 TSSA Documentation

The Technical Standards and Safety Authority (TSSA), Fuels Safety Division, was contacted for records of underground storage tanks or other fuel handling equipment on the subject property. Mr. Prem Lal (Coordinator Public Information Services, Fuels Safety Division, TSSA) was contacted by telephone on August 24, 2007. Mr. Lal stated that the TSSA does not have any records on file pertaining to the subject site.

2.2.5 Areas of Natural and Scientific Interest (ANSI)

Information provided by the Ministry of Natural Resources' (MNR) website indicated that there were no areas of natural and scientific interest in the vicinity of the subject property.

2.2.6 Fire Insurance Maps and Reports

A search of fire insurance plans of the subject property and surrounding area was conducted at the Toronto Reference Library. Fire insurance plans dated 1931 and 1946 showing the subject property were reviewed.

CGI Environmental Services' Historical Environmental Reporting System (HEIRS $^{\text{TM}}$) was also contacted for information pertaining to sites in the vicinity of the site. A fire insurance plan from 1946 was provided to Barenco for review and is included as Appendix D.

The 1931 fire insurance plan shows four buildings on the property. Two of the buildings are listed as being vacant and one is listed as being in ruins ("stone walls fifteen feet high"). The north adjacent property is shown as being occupied by Empire Stove & Furnace Co. Limited. The facility includes an enameling department, a milling room and a moulding shop. One underground storage tank is shown on the north side of the Empire Stove & Furnace Co. Limited property. The south adjacent property is shown as being occupied by elevated tramways. The Canadian Pacific Railway is shown to the east of the subject property (along 3rd Avenue East).

The 1946 fire insurance plan shows the subject property as being occupied by Russel Brothers Limited (manufacturing of steel boats and diesel engines). One underground storage tank and four rail spurs are shown as being located on the property. The Russel Brothers Limited facility includes a fitting shop, lumber

storage, boat building facility, a machine and generator shop and a steel storage building.

2.2.7 EcoLog ERIS Database Search

A search of provincial, federal and private databases for records pertaining to properties within 250 metres of the centre of the subject property was conducted by EcoLog ERIS. Barenco has confirmed neither the completeness nor the accuracy of the records that were provided. A copy of the EcoLog ERIS report is included in Appendix E.

Several records were found that pertained to the subject property. The relevant listings are explained in further detail below.

The following listings pertaining to the subject property were found in the Ontario Regulation 347 Waste Generators Summary:

- Russel Brothers for paint/pigment/coating residues, aromatic solvents, petroleum distillates, waste oils & lubricants and PCBs from 1986 to 1990 and from 1992 to 2001 (generator #ON0218000) relating to the plate work industry
- Owen Sound (Corporation of the City) for PCBs and oil skimmings & sludges from 1996 to 2004 (generator #ON0393505)
- 982435 Ontario Ltd. for PCBs from 1994 to 1998 (generator #ON1924400) relating to a truck and bus body shop

Four listings pertaining to the subject property were found in the National PCB Inventory. These listings indicated that PCBs were stored for disposal on the subject property in 1995 and 1996 (two of the records were undated).

Five listings pertaining to the subject property were found in the Inventory of PCB Storage Sites. These listings indicated that the former Russel Brothers Plant had an inventory of PCB containing material during the years 1995, 1998 to 2000 and 2003 to 2004. The listings include:

- 12 capacitors with a high level of PCBs (>1000ppm)
- 289 kilograms of bulk liquid with low level PCBs (<1000ppm)
- 1,400 kilograms of liquid in transformers with low level PCBs (<1000ppm) in two transformers
- 1 drum of other material with low level PCBs (<1000ppm)

• 150 kilograms in one drum of other material with low level PCBs (<1000ppm)

One listing pertaining to the subject property was found in the Occurrence Reporting Information System database. This listing indicated that a small amount of capacitor oil was released to the ground due to a container leak. The listing did not indicate the date of the spill or if an environmental impact was anticipated.

Other listings included in the EcoLog ERIS report in the vicinity of the subject property were not deemed to be of environmental significance to the site.

2.2.8 Environmental Bill of Rights Registry

The Ministry of the Environment's Environmental Bill of Rights Registry was searched online for any listings pertaining to the subject property and/or the properties in the vicinity of the subject site. There were no listings pertaining to the subject property or to the properties in the surrounding area.

2.2.9 Brownfield Environmental Site Registry

The MOE Brownfield Site Registry was searched online for any record of site condition (RSC) posted for the subject property and/or the surrounding properties. No RSCs have been filed for the subject property. There were four brownfield sites registered in Owen Sound, Ontario. The closest brownfield was registered at 1450 7th Avenue East, approximately 1.8 km south of the property.

2.2.10 Hazardous Waste Information Network (HWIN)

The MOE Hazardous Waste Information Network (HWIN), a web-based system that allows generators, carriers and receivers of hazardous wastes to register their activities with the MOE, was searched online for any listings pertaining to the subject property and/or the surrounding properties. There were no listings for any active generators of hazardous wastes on the subject property.

One listing was found for the City of Owen Sound Facilities (1900 3rd Avenue East). The wastes listed for this waste generator were brines, chlor-alkali wastes and liquid industrial waste.

2.3 Previous Reports

Reports provided to Barenco for review include:

- Phase I Environmental Audit, Russel Bros. Site, Owen Sound, Ontario, dated December 4, 1992 prepared by Terraprobe Limited
- Phase I Environmental Site Assessment, Former Russel Brothers Site, dated June 1997 prepared by CH2M Gore & Storrie Limited (CG&S)
- Phase II Environmental Site Assessment, Former Russel Brothers Site, dated September 1997 prepared by CG&S
- Phase II Environmental Site Assessment dated 2000 prepared by Conestoga-Rovers & Associates (CRA)
- Phase III Environmental Site Assessment, Former Russel Brothers Property, East Harbour, Owen Sound, Ontario, dated July 20, 2001 prepared by Rubicon Environmental Inc.
- Risk Assessment Feasibility Analysis for Separation Zone, Former Russel Brothers Property, Owen Sound, Ontario dated January 2006 prepared by CRA
- Preliminary Geotechnical Investigation dated 2000 prepared by CRA

A letter re: Soil Quantity Estimates and Budget Level Estimate of Remediation Costs at the Former Russel Brothers Site, Owen Sound, Ontario was also provided to Barenco for review. The letter was prepared by CH2M Hill and was dated September 19, 2005.

Phase I Environmental Audit (1992) Terraprobe Limited

In December 1992, Terraprobe, retained by Designers Collaborative, completed a Phase I Environmental Audit for the Russel Brothers property. At the time of the environmental audit, the ship building plant was still operating and all four main buildings were present.

Terraprobe outlined the former use of each building as is summarized below:

Building 1 - "Boat Shop"

Building 1 was reported to have been a two-storey, clapboard structure with concrete floors and a central open area. Small vacant offices were located on the second floor. At the time of their report, the building was being used for welding, fabricating and some minor painting of products. The concrete floor appeared to be in good condition (no floor drains or major areas of staining). No long-term storage of chemicals was observed. Black staining was however observed on the gravel outside the exit doors on the north side of the building. Terraprobe noted that it was most likely due to residual paint or oil products.

Building 2 - Offices and Crane Assembly

Building 2 was reported to have been a two-storey brick and wooden structure. At the time of their report, the building contained fifteen offices. The open portion of the building housed a cran assembly area with concrete floors. Several underfloor drains were noted. In the south portion of the building, a storage area for parts and machinery was observed.

Building 3 - "Machine Shop"

Building 3 was reported to have been a two-storey clapboard building used for the machining of parts. Machines in use included milling machines, a horizontal boring mill, a vertical boring mill and a drill press. In the western portion of the building, there was a second storey of vacant offices.

A small room labelled "PCB Storage" was noted on the north side of the building. This was not in use at the time of the Terraprobe site visit and had reportedly been used to store old electrical apparatus including capacitors prior to transport off-site. The concrete floor just outside the PCB storage room was reported to be stained and flaking. Otherwise, the concrete floors in the rest of the building were reported to be in good condition. Previously, the building had included a carpentry shop and had been used for work on boats. No long term storage of chemical or liquid materials were observed. An area of black staining was observed on the gravel outside the northeast corner of the building.

Building 4 - Manufacturing Shop

At the time of the Terraprobe site visit, Building 4 was reported to be a twostorey metal building containing a fabricating area (including welding and large machine presses). In the western portion of the building, a paint booth was observed. The northwest portion of the building reportedly contained a paint storage area consisting of five metal storage cupboards for paints and thinners.

In their report, Terraprobe outlined the property conditions and gave observations of surrounding areas in order to provide recommendations. Twenty-seven areas of concern were identified and twelve test pits (TP1 to TP12) were advanced to depths ranging from 1.8 metres to 3.9 metres below grade. Slag and black foundry sand were observed in fill material in some of the test pits. Solvent and petroleum odours were noted in a few of the excavated test pits located near former Buildings 3 and 4.

Terraprobe indicated that the property had been used for heavy industrial activities since the late 1800s. These activities reportedly included metal fabricating and welding, the use of cutting oils and various paints and solvents, the use of various fuels including gasoline and diesel, and the creation of wood waste and sawdust from various former site operations. They recommended excavating the solvent and petroleum hydrocarbon impacted soil material near Buildings 3 and 4 and that further investigations be completed to characterize the soil and ground water quality at the site.

Phase I Environmental Site Assessment (1997) CH2M Gore & Storrie Limited (CG&S)

In June 1997, CG&S Limited was retained by the City of Owen Sound to complete a Phase I Environmental Site Assessment at the former Russel Brothers industrial property. The property had been vacant since the closure of the plant in 1992. The four main buildings were reportedly demolished in 1993.

CG&S indicated that considerable soil and building rubble materials had been placed over the property as fill, including foundry sand in some areas. Twenty-eight areas of concern were identified on the property. In their conclusions, CG&S recommended that further investigations including the drilling of 15 shallow boreholes and 23 test pits be completed to further characterize the site.

Phase II Environmental Site Assessment (1997) CH2M Gore & Storrie Limited (CG&S)

In September 1997, CG&S was retained by the City of Owen Sound to complete a

Phase II Environmental Site Assessment at the former Russel Brothers industrial property. CG&S advanced 23 test pits (TP1 to TP23) and 15 boreholes (BH1 to BH4; MW1 to MW11), eleven of which included ground water monitors. Slag and scrap metal/iron debris was identified in varying thickness in 9 of the 38 locations. Soil sample results for metals, petroleum hydrocarbons and volatile organic compounds (VOCs) indicated that concentrations above the MOEE 1996 Table B Guidelines existed on-site. The ground water results indicated that there were no exceedances of the MOEE 1996 Table B Guideline criteria (non-potable ground water conditions). Five sediment samples were collected to characterize the sediment quality in the Owen Sound Harbour. The sediment samples were analyzed for metals, PAHs and PCBs. Sediment samples were found to exceed the MOEE 1996 Table E Guideline criteria for several metals.

Phase II Environmental Site Assessment (2000) Conestoga-Rovers & Associates (CRA)

In November 2000, CRA was retained by City of Owen Sound to complete a Phase II Environmental Site Assessment of the Canadian Pacific (CP) Railway Lands (Mile 105.7 and 107.1) located in Owen Sound, Ontario. The property was located west of 3rd Avenue, between 28th Street East and 95 metres south of 18th Street East. Based on the Phase I ESA completed by CRA in June 2000 (not provided to Barenco for review), several closed waste disposal sites were found to be located adjacent to the CN property. One of these landfill sites was reportedly located on the east side of the CN railway, just east of the former Russel Brothers Limited site.

Five boreholes (MW1 to MW5) and thirteen test pits (TP1 to TP13) were advanced to a depth of 1.5 to 9.1 metres below grade (mbg). Railways ballast material was encountered in all the boreholes and test pit locations in the top 1.5 metres of soil. Soil samples were analyzed for metals, VOCs, PAHs and total petroleum hydrocarbons (TPH). The soil analytical results indicated concentrations of arsenic and PAHs exceeding the MOEE 1996 Table B Guidelines. The ground water analytical results indicated the concentrations of some PAHs also exceeded the MOEE 1996 Table B Guidelines for ground water criteria.

Phase III Environmental Site Assessment (2001) Rubicon Environmental Inc.

In July 2001, Rubicon was retained by Georgian Quay Development Corporation to complete environmental assessment work at the former Russel Brothers property to delineate the extent of previously identified environmental impacts.

Twenty test pits (TP101 to TP119, TP120 to TP121) were excavated and nine ground water monitoring wells (MW101 to MW109) were installed across the property. An additional three test pits (TP204 to TP206) were advanced to further identify the depths of fill materials and concrete footings on the property.

The results of laboratory analyses for soil indicated that concentrations of metals, VOCs, petroleum hydrocarbons, PCBs and PAHs exceeded the 1996 MOEE Table B Guideline criteria for a residential land use. The results of laboratory analyses for ground water indicated that concentrations of VOCs and PAHs exceeded the 1996 MOEE Table B Guidelines.

Preliminary Geotechnical Investigation (2006) Conestoga-Rovers & Associates (CRA)

In February 2006, CRA was retained by Rafa Corporation to complete a preliminary geotechnical feasibility study for a proposed residential development at the former Russel Brothers industrial property. Three test holes (OW1-06 to OW3-06) were advanced to depths ranging from approximately 10.7 metres to 13.4 metres below the existing ground surface.

According to the environmental reports, soil and ground water at the property were found to be contaminated above the Ministry of the Environment (MOE) Standards that are appropriate for the site as indicated by the MOE Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act. A summary of the contaminants are listed below:

SOIL

- Metals (including arsenic, boron, copper, lead, molybdenum and nickel)
- Petroleum hydrocarbons (including benzene, toluene, ethylbenzene, xylenes (BTEX), and petroleum hydrocarbon fractions F1-F4)
- Polycyclic Aromatic Hydrocarbons (PAHs) including benzo(a)pyrene

GROUND WATER

- Metals (including boron, cobalt, copper and lead)
- Petroleum hydrocarbons (including BTEX and petroleum fractions F1-F4)
- PAHs (including benzo(a)anthracene, benzo(a)pyrene, benzo(b)fluoranthene, benzo(g,h,i)perylene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, fluoranthene, indeno(1,2,3-cd)pyrene and pyrene)

2.4 Interviews

Barenco conducted a telephone interview with Mr. Moe Zadeh, of Rafa Corporation, the current owner of the subject property. Mr. Zadeh indicated that he has owned the site for approximately a year and a half. He reported that the site had been vacant for ten years and that he purchased the property from the City of Owen Sound. Mr. Zadeh indicated that previously, the site had been occupied by Russel Brothers Limited, a ship building company. He noted that there have been no issues of environmental significance in the time that he has owned the property. The site is reported to be fenced in and is currently vacant. He also reported that to the best of his knowledge, there are no filled areas and that nothing is currently being stored on-site.

Most of the answers obtained during the interview process were accompanied by visual observations during the site walk-through and are described elsewhere in this report.

3.0 SITE VISIT

3.1 Property Walk-Through Inspection

The site investigation, which was conducted on October 23, 2006 and August 22, 2007 consisted of a visual survey of the subject property and surrounding properties. Selected photographs of the site are included in Appendix B and a site plan is included as Figure 2. Qualifications of the assessors are provided in Appendix F.

The property, located on the west side of 3rd Avenue East in Owen Sound, is currently vacant. Concrete pads and foundation footings of buildings formerly

located on-site were observed. The concrete pads were surrounded by paved or gravel driveways. Vehicular access to the site was possible through two gravel roads along 3rd Avenue East and one gravel road on the northern side of the subject property. The property is enclosed by a chain link fence on the north, east and south side. The west side of the property borders on Georgian Bay (Owen Sound Harbour). Former rail spurs from the Canadian Pacific Railway were visible entering the site at the northeast corner of the property. The remainder of the property is covered in trees and tall grasses.

The southwest portion of the site included an area with standing water. Surrounding this area were three berms (on south, east and west sides). The portion of the property bordering on the lake was covered in tall grasses and sand.

Residential buildings were visible to the north and east of the subject property and the Owen Sound water treatment plant was visible to the south. The water treatment plant was observed to be separated from the subject property by a gate and berm.

No evidence of under ground or above ground storage tanks were observed during the site inspection.

There was no evidence of stained areas on the subject property.

Site photographs taken during the inspection are provided in Appendix B.

3.2 Native Soils and Topography

The property is located in the physiographic region known as the Niagara Escarpment. Vertical cliffs that are located along the top of the escarpment outline the edge of the dolostone of the Lockport and Amabel Formations while the slopes below are carved in red shale. The surface soils in this area are composed of glacial till (sandy silt) on top of red shale (*Physiography of Southern Ontario*, Chapman and Putnam, 1984).

The hydraulic conductivity of the native soil (sandy silt till) at the site was measured to be approximately 10⁻⁵ cm/s (CG&S, 1997).

Based on observations made during the site inspection, the ground water flow direction was assumed to be to the northwest towards Georgian Bay (Owen

3.3 Ground Water and Municipal Services

The property is vacant and is not serviced by municipal water or sewers. According to the City of Owen Sound, the adjacent properties are serviced by municipal water (surface water) and sewers.

The regional ground water flow direction is anticipated to be to the west and northwest towards Georgian Bay (Owen Sound Harbour).

Table 1 summarizes the environmental setting and site characteristics. Table 2 shows Darcy's Law calculations of the estimated ground water flow velocity at the site. The ground water flow velocity was estimated to be about 0.09 metres per year according to the measured hydraulic conductivity of approximately 10⁻⁵ cm/s (CG&S, 1997).

3.4 Designated Substances and Other Issues

3.4.1 Designated Substances

The Occupational Health and Safety Act identifies eleven designated substances. These substances are regulated for labour exposure issues during construction and demolition activities. These eleven substances are asbestos, acrylonitrile, arsenic, benzene, coke oven emissions, ethylene oxides, isocyanates, lead, mercury, silica, and vinyl chloride.

Since there are no buildings present on the site, there are no designated substances to evaluate with respect to worker exposure.

3.4.2 Special Attention Items

The Canadian Standards Association document CSA Z768 outlines general requirements for the Phase I environmental site assessment process. The CSA Z768 requires that the potential presence of several substances be identified during a Phase I investigation due to heightened public concern or specific environmental legislation. These special attention items include polychlorinated biphenyls (PCBs), ozone-depleting materials (ODMs), urea

formaldehyde foam insulation (UFFI), radon, mould, noise and vibrations, pesticides and herbicides and electric and magnetic fields.

No transformers or other potential PCB containing equipment were observed during the site visit, however, according to the EcoLog ERIS reports (referred to in Section 2.2.7), the property was listed as a waste generator of PCBs in the 1990s, was included on the National PCB Inventory and was listed as a PCB storage site in the late 1990s and early 2000s.

The Radiation Protection Service of the Ontario Ministry of Labour no longer considers radon to be a serious environmental issue. Several studies were provided by the Ministry of Labour and concluded that there is no evidence of an increase in lung cancer risk caused by exposure to radon gas at levels that would be encountered due to natural radium levels associated with subsurface soils. No radon gas measurement was undertaken as part of this assessment.

Since there were no buildings on the site, ODMs, UFFI, and mould were not investigated as part of this investigation.

Due to the property location beside Georgian Bay and its distance from 3rd Avenue East, very little noise was observed during the site inspection. Additional noise and vibration tests were neither deemed warranted nor performed as a part of this investigation.

No storage of pesticides or herbicides was observed at the site.

Overhead hydro wires were observed to the east of the site (along 3rd Avenue East). Electromagnetic field (EMF) exposure has received considerable attention due to suspected health impacts. However, there is still considerable scientific debate as to the causal role and levels of concern regarding EMF exposure.

4.0 ADDITIONAL ASSESSMENT WORK

The Phase I environmental assessment provides a reasonable assessment of the environmental conditions at the subject site as of August 22, 2007. The subject property is located to the south of 24th Street East and to the north of 18th Street East on the west side of 3rd Avenue East in Owen Sound, Ontario. The subject property occupies an area of approximately 5.5 hectares (13.5 acres) and is bordered by Georgian Bay to the west. Concrete pads and foundation footings

surrounded by paved and gravel driveways of the former industrial buildings were observed on the property during the site visit. The remainder of the property was covered in vegetation.

The subject property was developed for industrial use in the late 1800s. Early occupants included a ship building company (Russel Brothers Limited) and a cement manufacturing operation (1894 to 1912). Historical documents supplied by the client for review by Barenco also indicate past tenants on the property have included a foundry, a furniture manufacturer and a second cement manufacturing company. According to previous reports, the Russel Brothers facility occupied the site from approximately 1925 to the early 1990s. The facility reportedly included ship building and heavy steel fabrication and manufacturing including diesel, automotive, industrial and marine engines. The buildings on-site were reportedly removed in 1993.

Based on the historical documentation that was reviewed during this investigation, previous reports and the site inspection, the following areas of concern (AOC) were identified are listed in the table below. The location of the AOCs are shown in attached Figure 3.

AOC	Reason for Concern	Reference Reports	Chemical s of Concern	Further Assessment or Remediation Required
1	Former spray booth (west side of former Building 4)	CG&S Phase I (1997) CG&S Phase II (1997)	VOCs	No - no exceedances in previous analytical results
2	Former drum storage area	Terraprobe Phase I (1992) CG&S Phase II (1997)	BTEX, F1-F4, metals, PCBs, VOCs	Yes - data gap (petroleum parameter fractions - previously sampled for TPH) and vinyl chloride detection limit issue
3	Former drum storage area	CG&S Phase II (1997) Rubicon (2001)	BTEX, F1-F4, metals, PCBs, VOCs	Yes - TPH (heavy oils) exceedance ¹ at 1.5-2.1mbg
4a and b	Former storage area/ship loading zone/metal slag noted	Terraprobe Phase I (1992)	Metals and PAHs	Yes - data gap (no previous analytical results)

AOC	Reason for Concern	Reference Reports	Chemical s of Concern	Further Assessment or Remediation Required
5	Former above ground fuel storage tank	Terraprobe Phase I (1992) CG&S Phase II (1997) Rubicon Phase III (2001)	BTEX, F1-F4	Yes - exceedance ² of toluene, ethylbenzene and xylenes
6	Former metal and lumber scrap area (and reported soil staining in 1992)	Terraprobe Phase I (1992)	BTEX, F1-F4, metals and PAHs	Yes - data gap (no previous analytical results)
7	Former lumber storage area	CG&S Phase I (1997)	PAHs	Yes - data gap (no previous analytical results)
8	Former scrap metal and crane parts (storage)	Terraprobe Phase I (1992) Rubicon Phase III (2001)	Metals. PAHs, F1- F4	Yes - exceedance ¹ of benzo(a)pyrene (unknown depth)
9	Former fuel oil and kerosene above ground storage tanks	CG&S Phase II (1997)	BTEX, F1-F4	Yes - exceedance ¹ of TPH (gas/diesel and heavy oils) at 0.45- 1.4mbg, arsenic/copper/ lead/molybdenum at 00.6mbg and VOCs (1.5-2.1mbg)
10	Former metal scrap and rail spur	Terraprobe Phase I (1992) CG&S Phase II (1997) Rubicon Phase III (2001)	Metals, PAHs	Yes - exceedance ¹ of arsenic/copper/ lead/molybdenum/ nickel at 0-0.35mbg
11a and 11b	Former transformer areas	Terraprobe Phase I (1992) CG&S Phase II (1997) Rubicon Phase III (2001)	PCBs, F2- F4	11a- No - no exceedances in previous analytical results 11b- Yes - exceedance¹ of TPH (heavy oils) at 0.1- 0.7mbg and PCBs at 0-0.4mbg at 11b

AOC	Reason for Concern	Reference Reports	Chemical s of Concern	Further Assessment Required
12	Former stained soil area and former septic tank	CG&S Phase II (1997)	BTEX, F1-F4	Yes - exceedance ¹ of TPH (heavy oils) at 0.8-1.4mbg
13	Former underground fuel storage tank	Terraprobe Phase I (1992) CG&S Phase II (1997)	BTEX, F1-F4	Yes - exceedance ¹ of TPH (heavy oils) at 0-1.5mbg
14	Area of reported former landfill	CRA Phase II (2000)	Metals, and PAHs	Yes - exceedance ¹ of PAHs and heavy metals (in surficial soil)
15	Former above ground storage tanks (diesel fuel)	Terraprobe Phase I (1992) CG&S (1997) Rubicon (2001)	F2-F4, metals	No - no exceedances in previous analytical results
16	Former ship loading area	Terraprobe Phase I (1992)	PAHs, metals, F1-F4	Yes - data gap (no previous analytical results)
17	Former rail spur	Terraprobe Phase I (1992)	PAHs	No - no exceedances in previous analytical results

¹ - exceedance of MOEE Table B Guideline Criteria (1996) - residential/parkland

Although not considered to be within an area of concern, soil exceedances of the MOEE Table B Guideline Criteria (1996) for TPH (gas/diesel) and arsenic were found at TP114 (Rubicon 2001), for TPH (heavy oils) and vinyl chloride (detection limit issue) at MW11 (CG&S, 1997), for lead at TP115 (Rubicon 2001), and for vinyl chloride (detection limit issue) at BH1R (CG&S, 1997).

In addition to the information listed in the table above, the close proximity of the subject property to the former industrial site immediately adjacent to the north (listed in the municipal street directories as Empire Stove Works in 1928, Jones-Taggart Trance Company in 1968, Black Clawson Kennedy Company in 1977 and Thom Construction Inc. in 1989) could be reason for concern with respect to potential environmental impacts.

Based on the results of the Phase I Environmental Assessment and a review of previous reports, a Phase II Environmental Assessment was conducted by

² - exceedance of MOE Table 1 Standard (2004) - sample from within 30 metres of Georgian Bay

Barenco to evaluate the current environmental condition of the soil and ground water in the areas of concern, to re-assess previous exceedances and to fill in gaps in previous data collected by others.

5.0 ASSESSMENT STANDARDS

5.1 Ontario Ministry of the Environment Standards

The Soil, Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act, March 9, 2004 (Standards) is intended for the assessment and restoration of all sites in Ontario. The Standards provide assessment standards based on land use (agricultural, residential, parkland, institutional, industrial, commercial or community), ground water use (potable or non-potable), soil type (coarse or medium to fine textured) and restoration depth (full or stratified restoration).

Assessment standards for both soil and ground water are outlined in the Standards as follows:

- Table 1 Full depth background site condition standards (e.g. sensitive site)
- Table 2 Full depth generic site condition standards in a potable ground water condition
- Table 3 Full depth generic site condition standards in a non-potable ground water condition
- Table 4 Stratified site condition standards in a potable ground water condition
- Table 5 Stratified site condition standards in a non-potable ground water condition
- Table 6 Soil extract and ground water standards to determine whether a property is a "shallow soil property"

5.2 Site Assessment Standards

For the purpose of this assessment, the subject property was divided into two zones as shown in Figure 4. The area within 30 metres of the Owen Sound

Harbour (Georgian Bay) was considered to be Zone 1. As this portion of the site is defined as being environmentally sensitive (MOE Table 1 Standard) it will be addressed in a separate Risk Assessment and Remediation report. The remainder of the site, considered to be Zone 2, was the focus of the Phase II Environmental Assessment.

Based on the site environmental setting data shown in Table 1, the property will be classified as having a residential/parkland/institutional land use with non-potable ground water. As such, the Table 3 or 5 Standards for a residential land use with fine to medium textured soils are appropriate for evaluating conditions at this site (Zone 2).

The Table 3 and 5 site classification is based on several factors including the absence of potable water use in the area, the future land use (residential), previous reports indicating the hydraulic conductivity of approximately 10⁻⁵ cm/s (representing medium/fine soil) and test hole logs.

6.0 SITE INVESTIGATION

The objective of the Phase II ESA was to confirm and update the historical findings of previous assessments and to fill in data gaps, where present. The environmental assessment included test hole drilling, test pitting, surficial soil sampling and ground water sampling.

The rationale for the location of the test holes, test pits and surficial soil samples is summarized in the table below:

AOC (located in Zone 2)	Reference Report and Sample Location	Rationale (Phase I Report)	Parameter(s) Exceeding MOE Standard or requiring further assessment (soil)	Barenco Test Hole/Surficial Soil Sample ID	Sample Depth Below Grade (m)
2	CG&S Phase II-1997 (MW4)	Former drum storage area	BTEX, F1-F4	HH7, TP5	0-1.5
3	CG&S Phase II-1997 (MW3)	Former drum storage area	BTEX, F1-F4	тн6	1.5-2.1
8	Rubicon Phase III- 2001 (TP103)	Former scrap metals and crane parts (storage)	PAHs	SM4, TP19-B, TP104-B	0-0.5

AOC (located in Zone 2)	Reference Report and Sample Location	Rationale (Phase I Report)	Parameter(s) Exceeding MOE Standard or requiring further assessment	Barenco Test Hole/Surficial Soil Sample ID	Sample Depth Below Grade (m)
9	CG&S Phase II-1997 (TP15, MW1)	Former fuel and kerosene oil (ASTs)	BTEX and F1- F4	TH3, HH8, TP15-B	0.3-1.4
10	CG&S Phase II-1997 (TP17) Rubicon Phase III- 2001 (TP108)	Former scrap metal and rail spur	Metals	SM1	0-0.3
11B	CG&S Phase II-1997 (TP10) Rubicon Phase III- 2001 (TP121)	Former transformer areas	PCBs, F2-F4	TH2, SM3	0-2.1
12	CG&S Phase II-1997 (MW8)	Former stained soil area and former septic tank	BTEX and F1-F4	TH1	0-0.6
13	CG&S Phase II-1997 (TP23)	Former fuel UST	BTEX and F1- F4	TH4	0-2.1
14	CRA Phase II-2000 (TP1 to TP7, MW3)	Former landfill area	PAHs, metals, F1-F4, VOCs (soil and/or ground water)	SM5, SM6, TH 8 to TH10, SP7-B, MW3-B, TP2	0-2.1

Although not included in the areas of concern identified by Barenco, existing exceedances found in other areas were included in the Phase II environmental assessment as follows:

- TP114 (Rubicon, 2001) location of former soil exceedance (TPH (heavy oil) and arsenic) located at a depth of 0.3 0.6 metres
- TP115 (Rubicon, 2001) location of former soil exceedance (lead) located at a depth of 0 0.5 metres
- TP205 (Rubicon, 2001) location of former soil exceedance (TPH (gas/diesel)) and lab detection limit issue with 1,2-Dichloroethylene and ethylene dibromide
- BH1R (CG&S, 1997) location of vinyl chloride detection limit issue at a depth of 0.8 1.4 metres
- MW11 (CG&S, 1997) location of former soil exceedance (TPH (heavy

- oil)) at a depth of 4.5 metres and vinyl chloride detection limit issue at a depth of 1.2 1.8 metres
- MW7 (CG&S, 1997) location of former soil exceedances (molybdenum) at 0 0.6 metres

These areas will be explained in more detail in Section 6.3.

A site plan showing the location of all sampling locations is included as Figure 4.

6.1 Soil Assessment

6.1.1 Drilling Investigation

A drilling investigation was conducted on October 23 and 24, 2006 to determine the environmental conditions of soil and/or ground water at the subject property.

Barenco subcontracted Canadian Soil Drilling Inc. to advance ten test holes (TH1 to TH10) to a maximum depth of 3.7 metres. Test holes were advanced using a drill rig equipped with solid stem augers and samples were collected from split spoon samplers. Test hole locations are shown in Figure 4.

The log for each test hole is shown in the attached Appendix G, Test Hole Logs. Soil samples were collected as the test holes progressed. Samples were examined for visual and olfactory evidence of environmental impact. The vapour concentrations ranged from non detectable to 25 ppm. Organic vapour readings were obtained from the head space of selected soil samples using a Gastechtor 1238 ME Gas Detection System. The 1238 ME battery powered portable instrument is designed to detect and measure concentrations of combustible gas in the atmosphere. It is equipped with two ranges of measurement, reading concentrations in parts per million (ppm) or in percentage lower explosive limit (LEL). The Gastechtor instrument can determine combustible vapour concentrations in the range equivalent to 0 to 11,000 ppm of hexane. The 1238 ME was configured to eliminate any response from methane for all sampling conducted at the site. Instrument calibration is checked on a daily basis in both the ppm range and LEL range using standard gases comprised of a known concentration of hexane in air. If the instrument readings are within ±10% of the standard gas value, then the instrument is deemed to be calibrated. However, if the readings are greater than ±10% of the standard gas value then the instrument is re-calibrated prior to use.

All soil samples were placed into sealed laboratory prepared glass jars provided by Maxxam Analytics Inc.

Ground water monitors were installed in three of the test holes (TH8, TH9 and TH10) to facilitate ground water sampling. The monitors were standpipes which consisted of PVC pipe slotted across the inferred ground water table. Each test hole was sealed with bentonite to prevent surface water infiltration and sealed with locking J-plug type caps. All other test holes were backfilled with bentonite and sealed with concrete. The test holes were logged for geologic information, as well as for organic vapour data, as the drilling progressed.

6.1.2 Surficial Soil Sampling

Soil sampling was completed as follows:

October 25, 2006

Barenco collected a surficial soil sample (SM1) in one of the areas of environmental concern. Soil samples were collected with a clean hand auger or shovel.

July 20, 2007

Barenco collected surficial soil samples SM2 to SM6, HH7 and HH8. Soil samples were collected with a clean hand auger or shovel.

November 7, 2007

Barenco collected soil sample TP114A. Soil samples were collected through a test pitting program with an excavator.

November 21, 2007

Barenco collected soil samples TP15-B, TP104-B, MW3-B, TP19-B, SP7-B and MW7-B. Soil samples were collected through a test pitting program with an excavator.

April 7, 2008

Barenco collected soil samples MW11, TP5, TP115 and BH1R. Soil samples were collected with a clean hand auger.

As the soil sampling progressed, soil samples were examined for physical evidence of environmental impacts.

6.2 Ground Water Assessment

Ground water monitors were installed in three of the test holes that were drilled in October, 2006 (TH8 to TH10). Monitors were constructed of 50 mm PVC piping with the lower 0.7 to 3.7 metres consisting of screened pipe and the remainder with solid pipe. Clean washed sand filter pack was placed around the screened section and a bentonite seal was placed from the top of the sand pack to just below the ground surface. The monitors were then sealed with locking caps. Ground water monitor locations are shown on Figure 4.

Ground water monitoring and sampling of newly installed monitors and existing monitors completed by others (prior to 2006) was performed on October 26, 2006. Ground water monitoring and sampling of all on site monitors was performed on August 22, 2007.

On August 22, 2007, the depth to ground water ranged from 1.62 metres in TH9 to 3.55 metres in MW10 below the ground surface. Prior to sampling, ground water monitors were developed by purging up to three monitor volumes.

All ground water samples were collected using new disposable bailers or waterra inertial pumps and footvalves. Ground water samples were placed into sealed laboratory prepared glass bottles and vials provided by Maxxam Analytics Inc.

6.3 Soil Chemical Analysis

Soil samples were collected during the drilling and soil sampling programs on October 23, 24 and 25, 2006, July 20, 2007, November 7 and 21, 2007 and April 7, 2008. Using sampling protocols as described in the MOE document *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*, 1996, samples were placed directly into the sampling containers provided by Maxxam Analytics. A clean stainless steel spoon was used for sampling. Samples to be analyzed for metals were obtained through composite soil sampling. Samples to be analyzed for VOCs, PCBs or petroleum parameters were obtained through discrete soil sampling.

If applicable, the soil chemical analysis results have been separated into areas of concern (AOC) as presented in Section 6.0.

AOC 2

In 1992, Terraprobe identified the former drum storage area as an environmental concern. In 1997, CG&S advanced a test hole (MW4) to a depth of 3.7 metres and identified elevated levels of TPH (heavy oil) at a depth of 1.5-2.1 metres. Although the results did not indicate an exceedance of the MOEE Table B Guideline Criteria (1996), additional analysis was necessary to determine if the soil in this area was impacted with petroleum hydrocarbons. CG&S also advanced a test pit (TP5) to a depth of approximately 2 metres and identified a detection limit issue with vinyl chloride at a depth of 0.5 to 1.5 metres.

On July 20, 2007, Barenco advanced a test hole (HH7) adjacent to MW4 by hand augering to a depth of 1.5 metres. The soil was examined for physical evidence of petroleum impacts as the augering progressed. A worst case soil sample soil sample was selected based on visual and olfactory evidence of petroleum impacts. The soil sample, obtained at a depth of 0-1.5 metres, was analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX) and petroleum hydrocarbon fractions F1-F4.

On April 7, 2008 Barenco advanced a test hole (TP5) adjacent to TP5 (CG&S) by hand augering to a depth of 1.5 metres. The soil was examined for physical evidence of VOC impacts as the augering progressed. A worst case soil sample was selected at a depth of 1.0 metres and was analyzed for vinyl chloride.

The results of the soil chemical analysis for petroleum parameters and VOCs are provided in Tables 3 and 4 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

All soil samples were within the applicable MOE Table 3 Standards for all parameters that were analyzed.

AOC 3

In 1997, CG&S advanced a test hole (MW3) to a depth of 2.9 metres in the area formerly used for drum storage. An exceedance of the MOEE Table B Guideline Criteria (1996) was identified for TPH (heavy oil) at a depth of 1.5-2.1 metres.

On October 24, 2006, Barenco advanced a test hole (TH6) adjacent to MW3 to a depth of 2.9 metres. As the drilling progressed, soil samples were examined for physical evidence of petroleum impacts. A worst case soil sample soil sample was selected based on visual and olfactory evidence of petroleum impacts and

the location of the historical exceedance. The soil sample, obtained at a depth of 1.5-2.1 metres, was analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX) and petroleum hydrocarbon fractions F1-F4.

The results of the soil chemical analysis for petroleum parameters are provided in Table 3 along with the applicable MOE Table 3 or 5 Standards for medium to fine textured soil.

All soil samples were within the applicable MOE Table 3 or 5 Standards for all parameters that were analyzed.

AOC 8

In 2001, Rubicon advanced a test pit (TP103) to an unknown depth in the area formerly used for scrap metal and crane parts storage. An exceedance of the MOEE Table B Guideline Criteria (1996) was identified for benzo(a)pyrene at an unknown depth. On July 20, 2007, Barenco advanced a test hole (SM4) adjacent to TP103 by hand augering to a depth of 0.5 metres. A worst case soil sample soil sample was selected at a depth of 0 - 0.5 metres for PAH (benzo(a)pyrene) analysis.

In 2001, Rubicon also advanced a test pit (TP104) and sampled for PAHs. An exceedance of the MOEE Table B Guideline Criteria (1996) was identified for benzo(a)pyrene at a depth of 0.2 to 0.6 metres. On November 21, 2007, Barenco advanced a test pit (TP104B) to a depth of 1.5 metres. A soil sample was selected at a depth of 0.2 to 1 metres for PAH (benzo(a)pyrene) analysis.

In 1997, CG&S advanced a test pit (TP19) and sampled for PAHs. An exceedance of the MOEE Table B Guideline Criteria (1996) was identified for benzo(a)pyrene at a depth of 0.1 to 1 metres. On November 21, 2007, Barenco advanced a test pit (TP19B) to a depth of 3 metres. A sample was selected at a depth of 0.5 to 3 metres for PAH (benzo(a)pyrene) analysis.

The results of the soil chemical analysis for PAHs are provided in Table 3 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

Soil exceeding the MOE Table 3 Standard was found for benzo(a)pyrene at SM4 and TP104B. Soil exceeding the MOE Table 3 Standard was found for benzo(b/j)fluoranthene and dibenzo(a,h)anthracene at SM4.

AOC 9

In 1997, CG&S identified a fuel oil and kerosene above ground storage tank area as an environmental concern. A test pit was advanced (TP15) to a depth of 1.6 metres. TPH for both gas/diesel and heavy oil were found to exceed the MOEE Table B Guideline Criteria (1996) at a sample depth of 0.5 to 1.4 metres.

On November 21, 2007, Barenco advanced a test pit (TP15-B) adjacent to TP15 to a depth of 2.1 metres. Based on visual and olfactory evidence of potential petroleum impacts and historical data, a soil sample was analyzed for BTEX and petroleum hydrocarbon fractions F1-F4. Exceedances of the MOE Table 3 standard were found for F1 and F2.

CG&S also advanced two test holes (MW1 and MW7) to a depth of 4 metres in this area and found MOEE Table B Guideline Criteria (1996) exceedances of arsenic, copper, lead and molybdenum at a depth of 0 - 0.6 metres and of VOCs (due to lab detection limit issues) at a depth of 1.5 to 2.1 metres.

On October 23, 2006, Barenco advanced a test hole (TH3) adjacent to MW7 to a depth of 2.9 metres. Based on visual and olfactory evidence of potential petroleum impacts and historical data, a soil sample was analyzed for BTEX and petroleum hydrocarbon fractions F1-F4. The results were found to be within the MOE Table 3 Standards.

On July 20, 2006, Barenco advanced another test hole (HH8) adjacent to MW1 by hand augering to a depth of 0.6 metres. Based on the depth of the historical exceedance and visual and olfactory evidence of potential petroleum impacts, a soil sample was analyzed for BTEX and petroleum hydrocarbon fractions F1-F4 and selected metals (arsenic, boron, copper, lead, molybdenum and nickel). An exceedance of the MOE Table 3 Standard was found for lead at HH8.

On November 21, 2007, Barenco advanced a test pit (MW7-B) to a depth of 1.5 metres. A soil sample was selected for analysis of molybdenum at a depth of 0.2 to 1.5 metres. The soil sample was found to be within the MOE Table 3 Standard for molybdenum.

Detection limit issues found at MW1 for VOCs will need to be addressed in the remediation of the subject property along with the remaining MOE Table 3 exceedances found at HH8 and TP15B.

The results of the soil chemical analysis are provided in Tables 3 and 6 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

AOC 10

In 1992, Terraprobe identified the scrap metal storage along the northeast corner of former Building 3 as being an environmental concern. In 1997, CG&S advanced a test pit (TP17) to a depth of 1.4 metres. A soil sample obtained at a depth of 0 - 0.35 metres was found to exceed the MOEE Table B Guideline Criteria (1996) for arsenic, copper, lead, molybdenum and nickel.

In 2001, Rubicon advanced a test pit (TP108) to a depth of 6.9 metres. A soil sample obtained at a depth of 0 - 0.2 metres was found to exceed the MOEE Table B Guideline Criteria (1996) for copper, lead, molybdenum and nickel.

On October 25, 2006, Barenco advanced a test hole (SM1) adjacent to TP17 and TP108 by hand augering to a depth of 0.3 metres. A soil sample obtained at a depth of 0-0.3 metres was analyzed for selected metals (arsenic, boron, copper, lead, molybdenum and nickel).

The results of the soil chemical analysis are provided in Table 6 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

Soil exceeding the MOE Table 3 Standard was found at SM1 for lead and molybdenum.

AOC 11B

In 1992, Terraprobe identified the location of a transformer as of environmental concern. In 1997, CG&S advanced a test pit (TP10) to a depth of 1.5 metres. A soil sample obtained at a depth of 0.1 to 0.7 metres was found to exceed the MOEE Table B Guideline Criteria (1996) for TPH (heavy oil). In 2001, Rubicon advanced a test pit (TP121) to a depth of 2 metres. A soil sample obtained at a depth of 0-0.4 metres was found to exceed the MOEE Table B Guideline Criteria (1996) for PCBs.

On October 23, 2006, Barenco advanced a test hole (TH2) adjacent to TP10 to a

depth of 2.9 metres. Based on visual and olfactory evidence of potential petroleum impacts and historical data, two soil samples were analyzed for BTEX and petroleum hydrocarbon fractions F1-F4. Based on visual evidence of potential PAH impact (black ash), one soil sample was analyzed for PAHs.

On July 20, 2007, Barenco advanced another test hole (SM3) adjacent to TP121 by hand augering to a depth of 0.4 metres. A soil sample was obtained from a depth of 0 - 0.4 metres and was analyzed for PCBs.

The results of the soil chemical analysis are provided in Tables 3, 5 and 7 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

All soil samples were within the applicable MOE Table 3 Standards for all parameters that were analyzed.

AOC 12

In 1997, CG&S advanced a test hole (MW8) to a depth of 3.7 metres in the area where a septic tank was reportedly located and also where there was reported soil staining. A soil sample obtained at a depth of 0.8 - 1.4 metres was found to exceed the MOEE Table B Guideline Criteria (1996) for TPH (heavy oil).

On October 23, 2006, Barenco advanced a test hole (TH1) adjacent to MW8 to a depth of 3.7 metres. Based on visual and olfactory evidence of potential petroleum impacts and historical data, a soil sample was obtained at a depth of 0-0.6 metres and was analyzed for BTEX and petroleum hydrocarbon fractions F1-F4.

The results of the soil chemical analysis are provided in Table 3 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

All soil samples were within the applicable MOE Table 3 Standards for all parameters that were analyzed.

AOC 13

In 1992, Terraprobe identified the location of a former underground storage

tank as an issue of environmental concern. In 1997, CG&S advanced a test pit (TP23) to a depth of 1.5 metres. A soil sampled obtained at a depth of 0-1.5 metres was found to exceed the MOEE Table B Guideline Criteria (1996) for TPH (heavy oil).

On October 23, 2006, Barenco advanced a test hole (TH4) adjacent to TP23 to a depth of 3.7 metres. Based on visual and olfactory evidence of potential petroleum impacts and the location of the historical exceedance, a soil sample was obtained at a depth of 1.5-2.1 metres and was analyzed for BTEX and petroleum hydrocarbon fractions F1-F4.

The results of the soil chemical analysis are provided in Table 3 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

All soil samples were within the applicable MOE Table 3 Standards for all parameters that were analyzed.

AOC 14

In 2000, Conestoga-Rovers Associates (CRA) advanced eight test pits (TP1-TP8) and one test hole (MW3)and one standpipe (SP7) in the reported former landfill area along 3rd Avenue East. Soil samples obtained were found to exceed the MOEE Table B Guideline Criteria (1996) for the following contaminants:

- benzo(a)pyrene (SP7, TP1-TP7 at sample depths between 0 0.8 metres)
- benzo(b/j)fluoranthene, benzo(k)fluoranthene, chrysene, dibenzo(a,h)anthracene, indeno(1,2,3-cd)pyrene (TP5 at a sample depth of 0 0.3 metres)
- arsenic (TP1-TP6 and MW3 at sample depths between 0 0.8 metres)
- lead (TP2 at a sample depth of 0 0.5 metres)

On October 24, 2006, Barenco advanced three test holes with ground water monitors (TH8 to TH10) to a maximum depth of 3.7 m in the area of TP1-TP8. Based on visual and olfactory evidence, a soil sample from each test hole (TH8 to TH10) was analyzed for VOCs and heavy metals.

On July 20, 2007, Barenco advanced two test holes (SM5 and SM6) adjacent to TP7 and TP5 respectively by hand augering to a depth of 0.3 metres. Based on

the depth of the historical exceedances, a worst case soil sample was obtained and was analyzed for the contaminants of concern (selected PAHs, arsenic and lead).

On November 21, 2007 Barenco advanced two test pits (MW3-B and SP7-B) adjacent to MW3 and SP7 respectively using an excavator. Based on the depth of the historical exceedances, a worst case soil sample was obtained and was analyzed for the contaminants of concern (benzo(a)pyrene and arsenic).

The results of the soil chemical analysis are provided in Tables 4, 5 and 6 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

All soil samples were within the applicable MOE Table 3 Standards for all parameters that were analyzed.

Remaining arsenic, lead, benzo(a)pyrene and dibenzo(a,h)anthracene soil exceedances previously found at TP1, TP2, TP3, TP4 and TP6 will need to be addressed in the remediation of the subject property.

Additional Soil Assessment

In 1997, CG&S advanced a test hole (MW11) to a depth of 4.5 metres at the south east corner of the subject property. An exceedance of the MOEE Table B Guideline Criteria (1996) was identified for TPH (heavy oil) at a depth of 0.6 - 1.2 metres and a detection limit issue for vinyl chloride was identified at a depth of 1.2 - 1.8 metres.

On October 24, 2006, Barenco advanced a test hole (TH5) adjacent to MW11 to a depth of 2.9 metres. As the drilling progressed, soil samples were examined for physical evidence of petroleum impacts. A worst case soil sample soil sample was selected based on visual and olfactory evidence of petroleum impacts and the location of the historical exceedance. The soil sample, obtained at a depth of 0.6 - 1.4 metres, was analyzed for benzene, toluene, ethylbenzene and xylenes (BTEX) and petroleum hydrocarbon fractions F1-F4.

On April 7, 2008, Barenco advanced a test hole (MW11) with a hand auger adjacent to MW11 (CG&S) to a depth of approximately 2 metres. As the hand augering progressed, soil samples were examined for physical evidence of VOC impacts. A worst case soil sample was selected and was analyzed for vinyl

chloride.

The results of the soil chemical analysis for petroleum parameters and vinyl chloride are provided in Tables 3 and 4 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

All soil samples were within the applicable MOE Table 3 Standards for all parameters that were analyzed.

In 2001, Rubicon advanced a shallow test pit (TP115) to a depth of approximately 1 metre in the area between buildings 2 and 4. An exceedance of the MOEE Table B Guideline Criteria (1996) was identified for lead in the sample labelled "paint" (surficial soil sample).

On April 7, 2008, Barenco advanced a test hole (TP115) adjacent to TP115 (Rubicon) by hand augering to a depth of 0.5 metres. A composite soil sample was obtained from a depth of 0 to 0.5 metres, based on the location of the historic soil exceedance, and was analyzed for lead.

The results of the soil chemical analysis for lead are provided in Table 6 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

The soil sample was found to be within the applicable MOE Table 3 Standards for the parameter that was analyzed (lead).

In 2001, Rubicon advanced a test pit (TP114) to a depth of 2.2 metres in the area to the east of the former ship loading zone and storage area along the shore of Georgian Bay. An exceedance of the MOEE Table B Guideline Criteria (1996) was identified for TPH (heavy oil) and arsenic at a depth of 0.3 - 0.6 metres.

On July 20, 2007, Barenco advanced a test hole (SM2) adjacent to TP114 by hand augering to a depth of 0.6 metres. A worse case soil sample was selected based on the location of the historic soil exceedance and was analyzed for arsenic.

On November 7, 2007, Barenco advanced a test hole (TP114A) adjacent to TP114 to a depth of approximately 1 metre. A soil sample was selected based on visual and olfactory evidence of petroleum impacts and the location of the historical exceedance. The soil sample, obtained at a depth of 0.3 to 0.6 metres, was analyzed for petroleum hydrocarbon fractions F1-F3.

The results of the soil chemical analysis for petroleum parameters are provided in Tables 3, 5 and 6 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

All soil samples were within the applicable MOE Table 3 Standards for all parameters that were analyzed.

In 1997, CG&S advanced a test pit (BH1R) to a depth of approximately 2 metres in the area to the northwest of building 3. An exceedance of the MOEE Table B Guideline Criteria (1996) due to a detection limit issue for vinyl chloride was identified at a depth of 0.8 to 1.4 metres.

On April 7, 2008, Barenco advanced a test hole (BH1R) adjacent to BH1R (CH&S) by hand augering to a depth of approximately 1.5 metres. A composite soil sample was obtained from a depth of 1.0 metre, based on the location of the historic soil exceedance, and was analyzed for vinyl chloride.

The results of the soil chemical analysis for lead are provided in Table 4 along with the applicable MOE Table 3 Standards for medium to fine textured soil.

The soil sample was found to be within the applicable MOE Table 3 Standards for the parameter that was analyzed (vinyl chloride).

In 2002, Rubicon reportedly advanced a test hole (TP205) at the northeast corner of former Building 3. An exceedance of the MOEE Table B Guideline Criteria (1996) was identified for TPH (gas/diesel) at a depth of 0.3 - 0.6 metres.

On November 21, 2007, Barenco attempted to advance a test pit in the same location as the previous test pit (TP205). During the test pitting investigation, the reported location of TP205 was found to be a former water storage tank area (beneath the floor of former Building 3). The concrete lined "tank" was investigated and no indication of environmental impact was observed. No soil was found to be located within the excavation (bricks and water were observed), therefore, no soil sample was obtained for analysis. As this test pit location was most likely inaccurately placed on the original site plan, it is not deemed of environmental significance to the subject property for remediation purposes.

Any soil that was found to exceed the MOE Table 3 Standard will require remediation to bring soil concentrations to levels that are within the Standard.

As is indicated in the previous Section, many of the previous exceedances were no longer found to be present at the subject site. There are two main factors in this discovery as explained below:

- pre-existing petroleum based contamination has most likely degraded (through natural attenuation and biodegradation) to a point where the analytical values no longer exceed the MOE Table 3 Standard
 - According to the U.S. Environmental Protection Agency (EPA/600/F-98/021, "Monitored Natural Attenuation of Petroleum Hydrocarbons") natural attenuation refers to the "reliance on natural processes to achieve site-specific remedial objectives. Natural attenuation processes include a variety of physical, chemical or biological processes that, under favourable conditions, act without human intervention to reduce the mass, toxicity, mobility, volume, or concentration of contaminants in soil (or groundwater). These processes include biodegradation; dispersion; dilution; sorption; volatilization; and chemical or biological stabilization, transformation, or destruction of contaminants."
- pre-existing metal contamination may have been sampled using the discrete method
 - According to the MOE document *Guidance on Sampling and Analytical Methods for Use at Contaminated Sites in Ontario*, 1996, soil samples to be analyzed for metals can be obtained through composite sampling (entire sample must be from within a 2 metre radius from the centre).

6.4 Ground Water Chemical Analysis

The results of the ground water chemical analysis are provided in Tables 8 to 10 along with the applicable MOE Table 3 Standards for fine to medium textured soil.

All ground water samples from Zone 2 were found to be within the applicable MOE Table 3 Standards for all parameters.

7.0 CURRENT SITE STATUS

The appropriate Ministry of the Environment (MOE) Standards for this site are

the Table 3 or 5 Standards for a residential/parkland/institutional land use with use with fine to medium textured soils as listed in the *Soil*, *Ground Water and Sediment Standards for Use Under Part XV.1 of the Environmental Protection Act* (March 2004).

Remaining soil exceedances of the MOE Table 3 Standard (or MOEE Table B Guideline Criteria (1996)) found at SM1, SM4, HH8, TP104-B, MW1, TP15-B, TP1, TP2, TP3, TP4 and TP6 will require remediation to bring soil concentrations to levels that are within the MOE Table 3 Standards.

SM1

- Lead = 398 g/g (MOE Table 3 Standard for lead is 200 g/g)
- Molybdenum = 57.9 g/g (MOE Table 3 Standard for molybdenum is 40 g/g)

SM4

- Benzo(a)pyrene = $6.2\,$ g/g (MOE Table 3 Standard for benzo(a)pyrene is $1.2\,$ g/g)
- Benzo(b/j)fluoranthene = 14 g/g (MOE Table 3 Standard for benzo(b)fluoranthene is 12 g/g)
- Dibenzo(a,h)anthracene = 2 g/g (MOE Table 3 Standard for dibenzo(a,h)anthracene is 1.2 g/g)

HH8

• Lead = 410 g/g (MOE Table 3 Standard for lead is 200 g/g)

TP104-B

• Benzo(a)pyrene = 1.8 g/g (MOE Table 3 Standard for Benzo(a)pyrene is 1.2 g/g)

MW1

• laboratory detection limit issues (VOCs)

TP15-B

• petroleum fractions F1 and F2 = 310 g/g and 1200 g/g respectively (MOE Table 3 Standard for F1 is 260 g/g and F2 is 900 g/g)

TP1, TP2, TP3, TP4, TP6 (former landfill area)

• arsenic, lead, benzo(a)pyrene and dibenzo(a,h)anthracene exceed the MOE Table 3 Standard at depths between 0.2 and 1 metre

Ground water samples obtained from ground water monitors located in Zone 2 were found to be within the MOE Table 3 Standard.

8.0 LIMITATION OF LIABILITY, SCOPE OF REPORT AND THIRD PARTY RELIANCE

This report has been prepared for and the work referred to in this report has been undertaken by Barenco Inc. under contract to Rafa Corporation It is intended for the sole and exclusive use of Rafa Corporation. Any use, reliance on or decision made by any person other than Rafa Corporation based on this report is the sole responsibility of such other person. Barenco Inc. makes no representation to any other person with regard to this report and the work referred to in this report and Barenco Inc. accepts no duty of care to any other person or any liability or responsibility whatsoever for any losses, expenses, damages, fines, penalties, or other harm that may be suffered or incurred by any other person as a result of the use of, reliance on, any decision made or any action taken based on this report or the work referred to in this report.

The investigation undertaken by Barenco Inc. with respect to this report and any opinions, conclusions or recommendations made in this report reflect Barenco Inc.'s judgement based on the site conditions observed at the time of the site inspection on the date set out in this report and on information available at the time of preparation of this report. The findings cannot be extended to future site conditions.

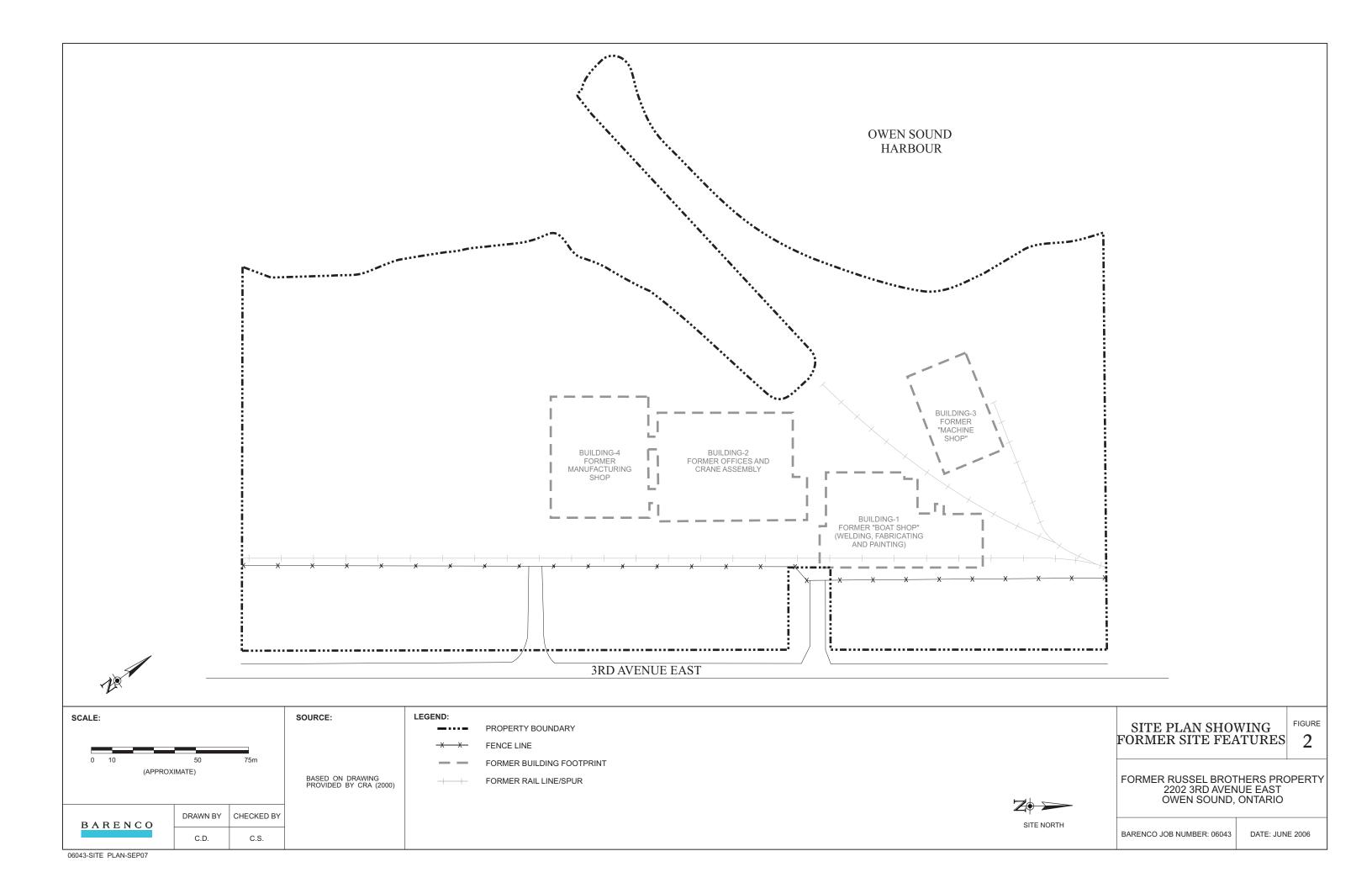
If site conditions or applicable standards change or if any additional information becomes available at a future date, modifications to the opinions, conclusions and recommendations in this report may be necessary.

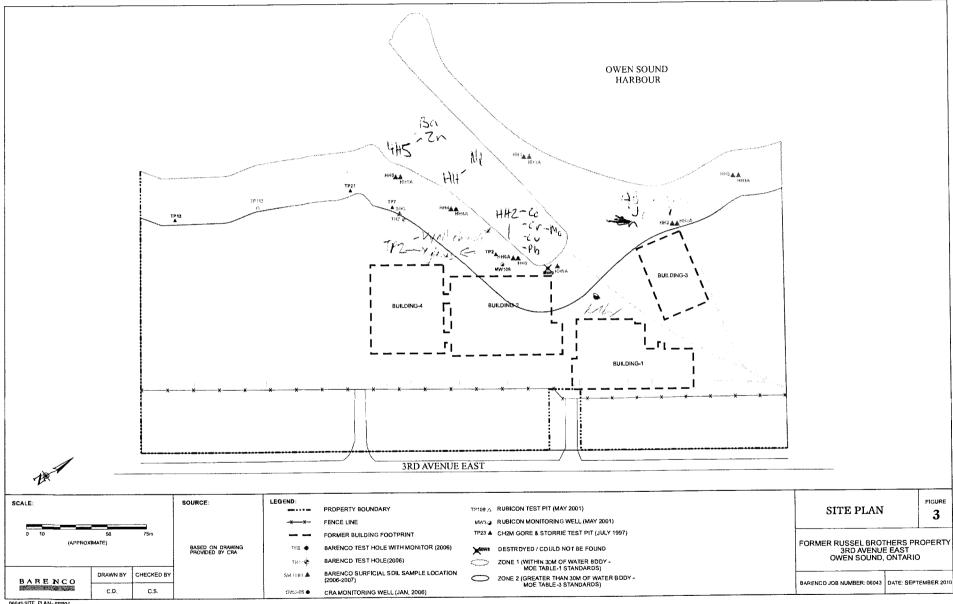
Other than by Rafa Corporation, copying or distribution of this report or the use of or reliance on the information contained herein, in whole or in part, is not permitted without the express written permission of Barenco Inc. Nothing in this report is intended to constitute or provide a legal opinion.

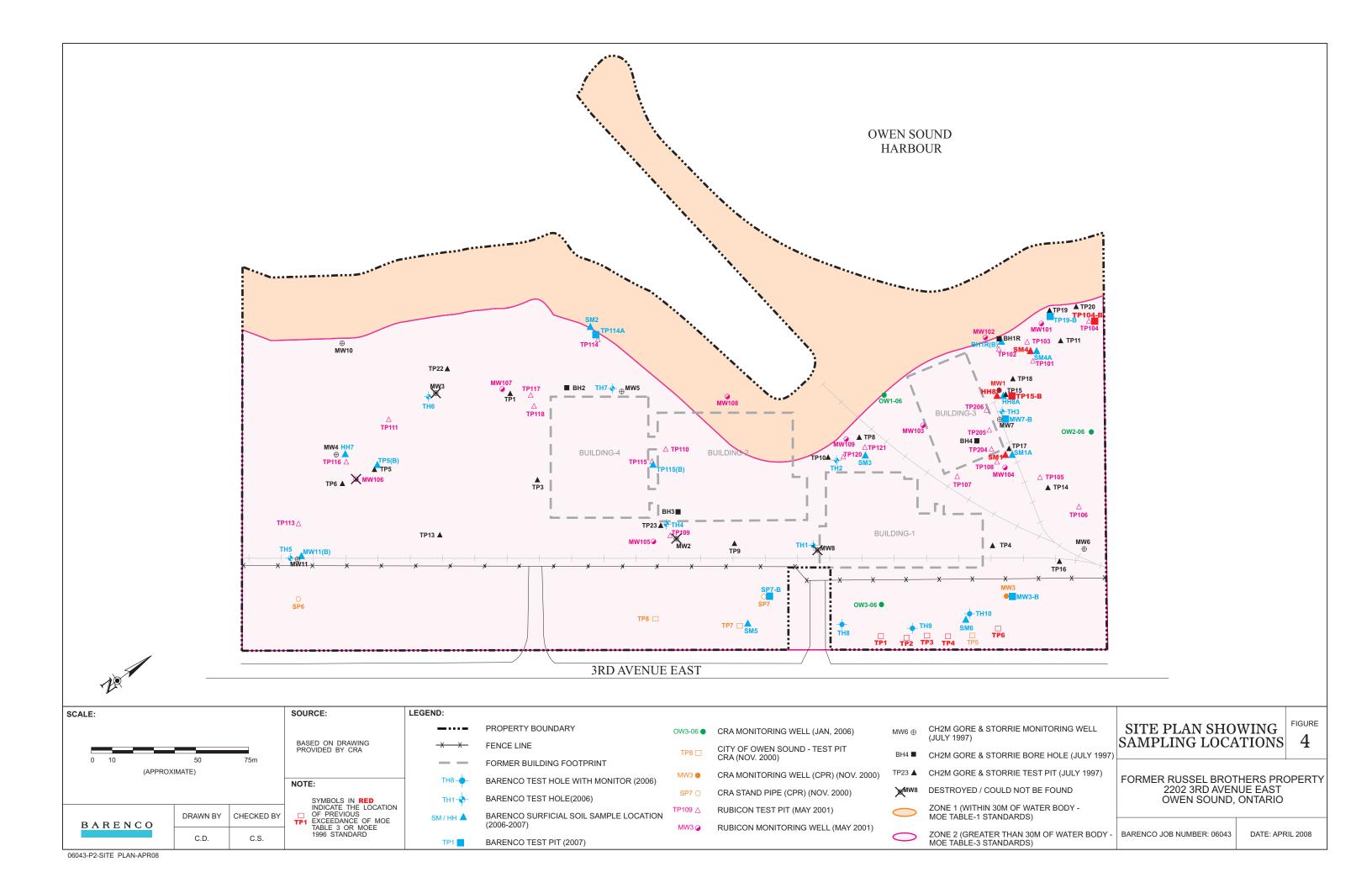
Respectfully submitted, BARENCO INC.

Carolyn Singer, B.Sc.(Hons.), P.Ag. Environmental Scientist

Jim Phimister, P.Eng,


Principal, Hydrogeologist


FIGURES


BARENCO

SCALE:	NOTES:				
			,	LOCALI'	TY PLAN
1:25000	SOURCE: MAPART PUB	LISHING 2005		2202 3RD AV OWEN SOUN	
BARENCO	DRAWN BY	CHECKED BY	Ñ	OWEN 300N	D, ONTARIO
	C.D.	C.S.		BARENCO JOB #: 06043	DATE: SEPTEMBER 2007

TABLES

	Table 1
SITE ENVIRONMEN	NTAL SETTING DATA
Site Location: 2202 3rd Avenue	Fast
Owen Sound, On	tario
Date: September, 2007	
NATIVE SOIL	
Type:	Sandy silt
Hydraulic Conductivity	
< 10-3 cm/s:	
	Estimated to be 10-5cm/s
·	Estimated to be 10 conne
> 10-6 cm/s:	
Percent Sand:	Not measured
GROUND WATER	
	and the second s
Depth to Water Table:	1.6 to 3.5 metres
Estimated or Measured:	Measured
-	Northwest
Direction of Flow:	
Estimated or Measured:	Measured
MUNICIPAL SERVICES	
Piped Water:	N/A - site is vacant
Ground Water Source:	NA
Distance to Well:	NA
Surface Water Source:	No
Sanitary Sewer:	No
Storm Sewer:	No
Otomi Ocwer.	110
PRIVATE SERVICES	
Distance to Negacit Wells	University
Distance to Nearest Well:	Unknown
Approximate Depth of Well:	Unknown
Private Sanitary Sewage:	No
SURFACE WATER	
Name of water body:	Georgian Bay (Owen Sound Harbour)
Distance from site:	Adjacent to site (to west)
Elevation drop from site:	None
Direct Drainage from site:	
	

BARENCO INC. 06043

Table 2

DARCY'S LAW CALCULATIONS

2202 3rd Avenue East Owen Sound, Ontario September, 2007

v=ki/n

Hydraulic

Conductivity k (m/sec) = 1E-07

(cm/sec) = 1.00E-05

Gradient i (m/m) = 0.0100

Porosity* n = 0.35

* (from Freeze & Cherry, 1979)

Hydraulic conductivity for sandy silt in test

Velocity v (m/sec) = 2.86E-09

(feet/sec) = 9.37E-09

(feet/day) = 0.001

(feet/year) = 0.30

(metres/year) = 0.0901

BARENCO INC.

06043

SOIL CHEMICAL ANALYSIS - BTEX and Petroleum Hydrocarbon Parameters	YSIS - B	TEX and	Petroleu	m Hydro	carbon Pa	arameters	ı,			Table 3
2202 3rd Avenue East, Owen Sound, On	nd, Ontario			5			,			Page 1 of 3
Sample ID	MW8	TH1	TP10	TH2-1	TH2-2	TH3-2	TP23	TH4-2	MOEE	Ontario
Depth (m)	¥	9.0-0	0.14-0.7	9.0-0	0.8-1.4	0.8-1.4	1.5	1.5-2.1	Table B	Reg 153/04
Consultant	CG&S	Barenco	CG&S	Barenco	Barenco	Barenco	CG&S	Barenco	Standards	Table 3
Maxxam ID		P15669		P15670	P15671	P15674		P15677	(1996)	Soil
Sample Date	15-Jul-97	23-Oct-06	15-Jul-97	23-Oct-06	23-Oct-06	23-Oct-06	16-Jul-97	23-Oct-06		Standards**
	200 0	ç		30		30				ı.
Renzene	<0.025	<0.02	¥	<0.02	<0.02	<0.02	<0.025	<0.02	22	52
Toluene	<0.025	<0.02	¥	0.21	<0.02	<0.02	0.044	<0.02	200	200
Ethylbenzene	<0.025	<0.02	¥	60:0	<0.02	<0.02	<0.025	<0.02	150	150
Xylenes	<0.029	<0.04	¥	96:0	<0.04	0.27	0.139	\$0.0 5	210	210
F1 (C6 to C10 - BTEX)		¢10	,	21	<10	ح10	<10	10		260
F2 (C10 to C16)		<10		56	40	40	09	4	1	006
F3 (C16 to C34)	•	38	,	530	<10	=	•	270	ı	800
F4 (C34 to C50)		43	,	092	<10	<10	ı	24		2600
TPH (gas/diesel)	43	,	¥	,	_		09	•	1000	
TPH (heavy oil)	1500		2700		_		2000		100	

| 1500 | ... | 2700 | ... | ..

		_		_	_		_	_	_	_		-	_	_	_			_
Table 3		Page 2 of 3	Ontario	Reg 153/04	Table 3	Soil	Standards**		52	200	150	210	260	006	800	2600	,	-
			MOEE	Table B	Standards	(1996)			52	200	150	210	,		•		1000	1000
			HH8	0.3-0.6	Barenco	T62520	20-Jul-07		<0.02	<0.02	<0.02	0.19	۲٠ د	×10	89	25	,	
			MW1	3.0-3.7	CG&S	-	16-Jul-97		<0.25	0.512	<0.25	6.614	45	56	1	,	7.	001
	ırameters		TH7	1.5-2.1	Barenco	P15653	24-Oct-06		<0.02	99.0	0.19	6.1	24	19	150	13	1	
	arbon Pa		MW5	2.3-2.9	CG&S	-	15-Jul-97		<0.025	<0.025	<0.025	<0.05	<10	18	,	,	18	,
	m Hydroc		TH6	1.5-2.1	Barenco	P15649	24-Oct-06		<0.02	<0.02	<0.02	<0.0×	<10	<10	99	190		
	Petroleul		MW3	1.5-2.1	CG&S		14-Jul-97		<0.025	<0.025	<0.025	<0.05			ı	,	24	4300
	TEX and		TH5	0.8-1.4	Barenco	P15647	24-Oct-06		<0.02	<0.02	<0.02	\$0.0 \$	<10	<10	210	470	ı	
	YSIS - B		MW11	0.6-1.2	CG&S	,	14-Jul-97		<0.025	<0.025	<0.025	0.033	1	,			142	0000
	SOIL CHEMICAL ANALYSIS - BTEX and Petroleum Hydrocarbon Parameters 2202 3rd Avenue East, Owen Sound, Onlario		Sample ID	Depth (m)	Consultant	Maxxam ID	Sample Date		Benzene	Toluene	Ethylbenzene	Xylenes	F1 (C6 to C10 - BTEX)	F2 (C10 to C16)	F3 (C16 to C34)	F4 (C34 to C50)	TPH (gas/diesel)	1101-101-101-

Analysis of Barenco samples done by Maxxam Analytics Inc.

Analysis of Barenco samples done by Maxxam Analytics Inc.

All results in ppm (ug/g) and based on dry weight basis. "ND" means "not detected" at reporting detection limit (RDL). "." means "not applicable". "NA" means "not analyzed".

"Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils.

Exceedances of applicable standard is shown in bold.

BARENCO INC.

06043

SOIL CHEMICAL ANALYSIS - BTEX and Petroleum Hydrocarbon Parameters	YSIS - B	TEX and	Petroleu	m Hydroc	arbon Pa	ırameters	40	Table 3
Sample ID	TP114 (SS1)	TP114A	TP15	TP15-B	MW4	HH7	MOEE	Ontario
Depth (m)	0.3-0.6	0.3-0.6	0.45-1.4	0.5-2.1	1.5-2.1	0-1.5	Table B	Reg 153/04
Consultant	Rubicon	Barenco	CG&S	Barenco	CG&S	Barenco	Standards	Table 3
Maxxam ID		V75573		W04220	•	T62521	(1996)	Soil
Sample Date	20-Jul-01	07-Nov-07	15-Jul-97	21-Nov-07	76-InC- 4 1	20-Jul-07		Standards**
Benzene	<0.005	ΑN	<0.5	<0.02	<0.025	<0.02	25	25
Tolliene	<0.005	Ą	<0.5	5.7	<0.25	<0.02	200	200
Ethylbenzene	<0.005	¥	0.585	<0.02	<0.25	<0.02	150	150
Xylenes	<0.005	Ą	1.87	37	<0.05	<0.04	210	210
F1 (C6 to C10 - BTEX)	,	۲٠ د	,	270	410	×10	•	260
F2 (C10 to C16)	1	<10	,	1200	29	410	ı	900
F3 (C16 to C34)	,	130	,	450	ı	8	,	800
F4 (C34 to C50)	ı	¥		×10	ŀ	460	,	2600
TPH (gas/diesel)	2570	ı	2800	ı	29	,	1000	•
TPH (heavy oil)	895	•	5600		900	,	1000	-

Analysis of Barenco samples done by Maxxam Analytics inc.
All results in ppm (ug/g) and based on dry weight basis. "ND" means "not applicable". "NA" means "not applicable". "NA" means "not analyzed".

" Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils.

Exceedances of applicable standard is shown in bold.

BARENCO INC.

Table 4

SOIL CHEMICAL ANALYSIS - VOCs

2202 3rd Avenue East, Owen Sound, Ontario

Page 1 of 1

<u> </u>	· · · · · · · · · · · · · · · · · · ·			·				1 age 1 of 1
Sample ID	MW1	BH1R-SS2	BH1R	MW11-\$\$3	MW11	TP5	TP5	MOEE
Depth (m)	1.5-2.1	0.8-1.4	1.0	1.2-1.8	1.5	0.5-1.5	1.0	Table B
Consultant	CG&S	CG&S	Barenco	CG&S	Barenco	CG&S	Barenco	Standards
Maxxam iD	-	-	X97843	-	X97862	-	X97913	(1996)
Sample Date	16-Jul-97	16-Jui-97	07-Apr-08	14-Jui-97	07-Apr-08	16-Jul-97	07-Apr-08	
Acetone (2-Propanone)	<u><50</u>	<0.1	NA	<0.1	NA	<0.1	NA	3.8
Benzene	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA NA	25
Bromodichloromethane	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA NA	14
Bromoform	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA NA	14
Bromomethane	<u><5</u>	<0.025	NA.	<0.025	NA	<0.025	NA NA	0.38
Carbon Tetrachloride	<0.5	<0.0025	NA NA	<0.0025	NA	<0.0025	NA NA	0.64
Chlorobenzene	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA NA	30
Chloroform	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA NA	4.9
Dibromochloromethane	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA	10
1,2-Dichlorobenzene	<0.5	<0.0025	NA.	<0.0025	NA	<0.0025	NA NA	30
1,3-Dichlorobenzene	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA NA	30
1,4-Dichlorobenzene	<0.5	<0.0025	NA NA	<0.0025	NA	<0.0025	NA NA	30
1,1-Dichloroethane	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA.	100
1,2-Dichloroethane	<u><0.5</u>	<0.0025	NA	<0.0025	NA NA	<0.0025	NA.	0.14
1,1-Dichloroethylene	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA NA	100
cis-1,2-Dichloroethylene	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	l na	2.3
trans-1,2-Dichloroethylene	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA NA	4.1
1,2-Dichloropropane	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA.	0.12
cis-1,3-Dichloropropene	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA NA	
trans-1,3-Dichloropropene	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA.	0.041
Ethylbenzene	55.7	0.0059	NA NA	0.0063	NA	0.004	NA.	500
Ethylene Dibromide	<u><0.5</u>	<0.0025	NA NA	<0.0025	NA	<0.0025	NA	0.01
Methylene Chloride (Dichloromethane)	<1	<0.005	NA NA	<0.005	NA	<0.005	NA NA	120
Methyl isobutyl Ketone	NA	NA NA	NA NA	NA	NA	NA NA	NA	69
Methyl Ethyl Ketone (2-Butanone)	<5	<0.025	NA NA	<0.025	NA	<0.025	NA	38
Methyl-t-Butyl Ether (MTBE)	NA	NA	NA NA	NA NA	NA	NA NA	NA NA	100
Styrene	<0.5	<0.0025	NA NA	<0.0025	NA	<0.0025	NA	7.7
1,1,1,2-Tetrachioroethane	NA	NA NA	NA NA	NA NA	NA	NA	NA	0.12
1,1,2,2-Tetrachloroethane	<u><0.5</u>	<0.0025	NA NA	<0.0025	NA	<0.0025	NA	0.23
Tetrachloroethylene (Perchloroethylene)	<u><0.5</u>	<0.0025	NA	<0.0025	NA	<0.0025	NA	0.45
Toluene	1.57	0.0041	NA	0.0054	NA	<0.0025	NA	150
1,1,1-Trichloroethane	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA	34
1,1,2-Trichloroethane	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA	2.3
Trichloroethylene	<0.5	<0.0025	NA	<0.0025	NA	<0.0025	NA	3.9
Vinyl Chloride	<u><5</u>	<0.025	<0.002	<0.025	<0.002	<0.025	<0.002	0.0075
Xylenes (Total)	173.9	0.0053	NA	0.009	NA	0.0052	NA NA	210

Analysis of Barenco samples done by Maxxam Analytics Inc.
All results in ppm (ug/g) and based on dry weight basis.

use and fine/medium textured soils.

[&]quot;NA" means "not analyzed".

^{*} Analytical RDLs are shown except as indicated in brackets.

** Standards shown are for Residential/Parkland/Institutional land

Exceedances of applicable standard due to detection limit issues are shown as underlined BARENCO INC.

SOIL CHEMICAL ANALYSIS - PAHs	YSIS - P	AHs								Table 5
										Page 1 or 3
Sample ID	TH2-3	MW5	TH7-3	SM2	TP103	SM4	TP5	SM6	MOEE	Ontario
Depth (m)	1.5-2.1	1.5-2.1	1.5-2.1	0-0.5	unknown	0-0.5	0-0.3	0-0.3	Table B	Reg 153/04
Consultant	Barenco	SYSO	Barenco	Barenco	Rubicon	Barenco	CRA	Barenco	Standard	Table 3
Maxxam ID	P15672	•	P15653	T62575	•	T62517	-	T62519	(1996)	Soil
Sample Date	23-Oct-06	15-Jul-97	24-Oct-06	20-Jul-07	20-Jul-01	20-Jul-02	01-Nov-00	20-Jul-07		Standards**
Acenaphthene	<0.029	<0.05	0.02	0.02	9.0	<0.1	<0.5	<0.1	1000	1000
Acenaphthylene	<0.01	<0.05	0.032	0.026	0.28	<0.05	3.91	0.05	100	100
Anthracene	<0.01	<0.05	0.025	990:0	2.46	0.13	2.26	90.0	28	78
Benzo(a)anthracene	0.03	0.1	0.07	0.21	5.53	4.7	9.77	0.1	40	40
Benzo(a)pyrene	0.03	0.0666	0.046	0.18	5.99	6,2	25.8	0.11	1.2	1.2
Benzo(b/j)fluoranthene	0.04	0.0562	0.063	0.24	8.08	#	30.6	0.24	12	12
Benzo(g,h,l)perylene	<0.04	0.0401	0.03	0.11	3.25	7.3	21.4	<0.2	40	9
Benzo(k)fluoranthene	<0.02	<0.012	0.02	90:08	2.65	4.1	16.9	<u>^0</u> .	12	12
Chrysene	0.03	0.111	0.07	0.17	5.12	S.	13.9	0.1	12	12
Dibenzo(a,h)anthracene	<0.04	<0.012	<0.02	0.02	1.04	71	4.98	<0.2	1.2	1.2
Fluoranthene	90.0	0.139	0.11	0.42	12.3	3.6	7.84	0.16	40	40
Fluorene	<0.01	<0.05	0.014	0.021	1.24	<0.05	<0.5	<0.05	350	320
Indeno(1,2,3-cd)pyrne	<0.04	0.0297	0.02	0.12	3.99	7.7	22.3	<0.2	12	12
1-Methylnaphthalene	0.03	0.548	0.5	0.15	0.28	60.0	0.7	99.0	1000	000
2-Methylnepthalene	0.05	0.58	0.59	0.16	0.38	0.13	0.85	0.76	200	3
Naphthalene	0.03	0.447	0.31	0.097	0.64	0.2	0.61	0.52	40	9
Phenantherene	0.04	0.331	0.36	0.33	9.38	0.71	1.11	0.33	40	9
Pyrene	0.04	0.137	0.09	0.38	9.79	3.6	10.30	0.17	250	250

Analysis of Barenco samples done by Maxam Analytics Inc.
All results in ppm (ugg) and based on dry weight basis. "ND" means "not detected" at reporting detection limit (RDL). "-" means "not applicable".
"NA" means "not analyzed".
"* Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils.

Exceedances of applicable standard is shown in **bold**.

BARENCO INC.

SOIL CHEMICAL ANA	ANALYSIS - PAHs	AHs						Table 5
2202 3rd Avenue East, Owen Sou	ven Sound, Ontario							0
Cl closes	TD7	OME	NATA (2)	LANAIS D	TO40	0 0701		Page 2 of 3
Sallpie ID	/ 1	CIMIC	CAAM	G-CANN	21.1	מקה מים	M C I	Critario
Depth (m)	0-0.2	0-0.3	0-0.8	0-1.0	0.1-1	0.5-3	Table B	Reg 153/04
Consultant	CRA	Barenco	CG&S	Barenco	CG&S	Barenco	Standard	Table 3
Maxxam ID	-	T62518	-	W04213	-	W04248	(1996)	Soil
Sample Date	01-Nov-00	20-Jul-07	01-Nov-00	21-Nov-07	15-Jul-97	21-Nov-07		Standards**
Acenaphthene	0.11	<0.01	<0.2	ΑN	<0.05	ΝA	1000	1000
Acenaphthylene	1.23	<0.005	9.0	¥	<0.05	Ϋ́	100	100
Anthracene	0.82	0.013	0.42	¥	<0.05	Ϋ́	28	28
Benzo(a)anthracene	1.87	0.02	9.1	¥	1.43	Ϋ́	40	40
Benzo(a)pyrene	4.01	0.015	4.11	0.016	2.04	0.87	1.2	1.2
Benzo(b/j)fluoranthene	6.36	0.023	6.64	¥	2.48	٧×	12	12
Benzo(g,h,l)perylene	3.26	<0.02	2.84	¥ Z	1.82	Ϋ́	40	40
Benzo(k)fluoranthene	3.39	<0.01	4.08	¥	0.229	Ϋ́	12	12
Chrysene	2.84	0.01	2.99	¥	1.88	Ϋ́	12	12
Dibenzo(a,h)anthracene	0.98	<0.02	96.0	¥ Z	0.376	Ϋ́	1.2	1.2
Fluoranthene	2.7	0.04	1.45	¥	1.14	¥	40	40
Fluorene	60.0	0.008	<0.2	¥	<0.05	Ϋ́	350	320
Indeno(1,2,3-cd)pyrne	6.64	<0.02	3.37	¥	1.71	Ϋ́	12	12
1-Methylnaphthalene	1.55	900'0	0.79	¥	<0.05	Ϋ́	000	1,000
2-Methylnepthalene	1.88	900.0	0.95	¥	<0.05	Ϋ́	3	1,000
Naphthalene	1.29	0.011	0.58	Ϋ́	0.21	Ϋ́	40	40
Phenantherene	1.58	0.053	0.72	¥	0.24	Ϋ́	4	40
Pyrene	3.53	0.032	2.13	Ϋ́	1.15	Ϋ́	250	250

Analysis of Barenco samples done by Maxxam Analytics Inc.

All results in ppm (ug/g) and based on dry weight basis. "ND" means "not detected" at reporting detection limit (RDL). "." means "not applicable".

"NA" means "not analyzed".

" Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils.

Exceedances of applicable standard is shown in **bold**.

BARENCO INC.

06043

									Table 5
SOIL CHEMICAL ANALYSIS - PAHS 2202 3rd Avenue East, Owen Sound, Ontario	LYSIS - P	AHs							
									Page 3 of 3
Sample ID	TP3	TP4	TP6	TP104	TP104-B	TP1	TP2	MOEE	Ontario
Depth (m)	0-0.3	0-0.2	0-0.5	0.2-0.6	0.2-1	0-0.3	0-0.4	Table B	Reg 153/04
Consultant	CRA	CRA	CRA	Rubicon	Barenco	CRA	CRA	Standard	Table 3
Maxxam ID	-		-		W04231	,		(1996)	Soil
Sample Date	01-Nov-00	01-Nov-00	01-Nov-00	20-Jul-01	21-Nov-07	01-Nov-00	01-Nov-00		Standards**
Acenaphthene	<0.2	<0.2	<0.5	<0.05	ΑN	<0.05	0.10	1000	
Acenaphthylene	1.12	0.85	1.05	<0.05	Ϋ́	08.0	0.58	100	100
Anthracene	0.68	0.42	0.52	0.07	Ϋ́	0.47	0.79	28	28
Benzo(a)anthracene	1.91	1.34	1.49	1.19	Ϋ́	1.08	3.58	9	40
Benzo(a)pyrene	3.69	2.98	3.18	2.04	8.	2.05	4.73	12	1.2
Benzo(b/j)fluoranthene	5.24	4.68	4.42	3.62	Įξ	3.60	8.09	12	12
Benzo(g,h,l)perylene	3.39	2.35	3.18	2.01	Ϋ́	1.69	2.71	40	9
Benzo(k)fluoranthene	3.85	3.11	2.87	1.20	Ϋ́	1.81	4.14	12	12
Chrysene	3.15	2.19	2.37	1.60	¥	1.69	4.93	12	12
Dibenzo(a,h)anthracene	0.87	0.65	0.84	0.61	¥	0.54	0.72	1.2	1.2
Fluoranthene	2.31	1.92	1.65	1.21	Ą	1.72	4.25	40	4
Fluorene	<0.2	<0.2	<0.5	<0.05	Ą	0.05	90.0	350	350
Indeno(1,2,3-cd)pyrne	3.71	2.83	3.57	2.24	Ϋ́	1.97	3.44	12	12
1 -Methylnaphthalene	0.81	0.99	06:0	<0.05	Ϋ́	2.69	2.44		1,000
2-Methylnepthalene	1.02	1.23	<u>5</u> .	90.0	Ϋ́Z	3.39	3.08	0001	1,000
Naphthalene	0.80	0.71	69:0	0.05	Ą	2.16	1.88	4	4
Phenantherene	1.02	0.81	0.77	0.37	Ą	1.48	1 96.	40	4
Pyrene			1.82	1.13	Ϋ́	1.90	7.63	250	250
Analysis of Barenco samples done by Maxxam	exam Analytics Inc	ن							

06043

All results in ppm (ug/g) and based on dry weight basis. "ND" means "not detected" at reporting detection limit (RDL). "-" means "not applicable". "NA" means "not analyzed".

** Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils.

Exceedances of applicable standard is shown in **bold**.

BARENCO INC.

:	SM2	0-0.5	ľ
	TP114	9.3-0.6	Ribicon
	TH10-2	0.8-1.4	Barenco
/etals	TH9-2	0.8-1.4	Barenco
YSIS - N	TH8-3	1.5-2.1	Barenco
SOIL CHEMICAL ANALYSIS - Metals 2202 3rd Avenue East, Owen Sound, Ontario	Sample ID	Depth (m)	Consultant

									Page 1 of 4
Sample ID	TH8-3	TH9-2	TH10-2	TP114	SM2	TP103	SM4	MOEE	Ontario
Depth (m)	1.5-2.1	0.8-1.4	0.8-1.4	9.0-6.0	0-0.5	unknown	0-0.5	Table B	Red 153/04
Consultant	Barenco	Barenco	Barenco	Rubicon	Barenco	Rubicon	Barenco	Standard	Table 3
Maxxam ID	P15942	P15945	P15952	1	T62575		T62517	(1996)	Soil
Sample Date	24-Oct-06	24-Oct-06	24-Oct-06	20-Jul-01	20-Jul-07	20-Jul-01	20-Jul-07		Standards**
Antimony (Sb)	Q	Q	QN	1.5	¥N	1.2	ΑM	13	13
Arsenic (As)	2	က	7	101	9	3.8	4	52	25
Barium (Ba)	16.7	18.7	13.6	38	¥	222	¥	1000	1000
Berytlium (Be)	0.2	0.4	0.3	₹	¥	⊽	¥	1.2	1.2
Boron (B)	ž	¥	¥	Ϋ́	0.39	ž	0.27	1.5	1.5
Cadmium (Cd)	2	Q	2	<0.5	¥	<0.5	¥	12	12
Chromium (Cr)	<u>_</u>	13	12	4	6	26	31	1000	1000
Chromium (VI)	2	Q	Ð	¥	¥	Ϋ́	ž	10	10
Cobalt (Co)	6.7	6.7	7.1	4	¥	4	ž	20	20
Copper (Cu)	12.8	11.6	12.1	21	18	114	150	300	300
Lead (Pb)	4	4	4	14	27	103	8	200	200
Mercury (Hg)	0.37	Q	Q	0.11	¥	0.13	¥	10	10
Molybdenum (Mo)	Q	Q	QN	7	9.0	4	1.4	40	40
Nickel (Ni)	13.6	16.2	15.1	51	7.8	4	38	200	200
Selenium (Se)	2	2	Q	0.7	¥	2	¥	10	10
(Silver (Ag)	2	ᄋ	Q	₹	¥	₹	¥	25	52
hallium (TI)	2	2	Q	¥	Ϋ́	¥	¥	1,4	1.4
Vanadium (V)	4	16	15	œ	¥	12	¥	250	250
Zinc (Zn)	8	33	30	31	Ϋ́	127	¥	800	800

Analysis of Barenco samples done by Maxam Analytics Inc.

All results in ppm (ug/g) and based on dry weight basis. "ND" means "not detected" at reporting detection limit (RDL). "-" means "not applicable". "NA" means "not analyzed".

** Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils.

Exceedances of applicable standard is shown in **bold**.

BARENCO INC.

										Table 6
SOIL CHEMICAL ANALYSIS 2202 3rd Avenue East, Owen Sound, Ontario	1	Metals								
										Page 2 of 4
Sample ID	TP7	SM5	MW1	HH8	TP115-Paint	TP115	EMM	MW3-B	MOEE	Ontario
Depth (m)	0-0.2	0-0.5	9.0-0	9.0-6.0	0-0.5	0-0.5	0-0.8	0-1.0	Table B	Rea 153/04
Consultant	CRA	Barenco	CG&S	Barenco	Rubicon	Barenco	CRA	Barenco	Standard	Table 3
Maxxam ID	,	T85524	-	T62520		X97911		W04213	(1996)	Soil
Sample Date	01-Nov-00	20-Jul-07	16-Jul-97	20-Jul-07	20-Jul-01	07-Apr-08	01-Nov-00	21-Nov-07		Standards**
Antimony (Sb)	3	¥	4.4	ΑN	NA	NA	2.7	Ϋ́	13	13
Arsenic (As)	220	S.	શ	6	¥	¥	74.6	23	25	25
Barium (Ba)	94	ž	120	¥	¥	ž	46	¥	1000	1000
Beryllium (Be)	8.0	¥	<0.5	Ϋ́	¥	¥	0.5	¥	1.2	1.2
Boron (B)	₹	¥	<0.5	0.21	¥	¥	Ą	¥	5.	1.5
Cadmium (Cd)	0.3	¥	1.2	¥	¥	¥	0.3	¥	12	12
Chromium (Cr)	17	¥	150	140	₹	¥	. 13	¥	1000	1000
Chromium (VI)	₹	Ϋ́	Ϋ́	¥	ž	¥	۲	ž	10	10
Cobalt (Co)	7	¥	13	Ϋ́	¥	¥	œ	¥	20	90
Copper (Cu)	101	¥	420	180	₹	Ϋ́	78	¥	300	300
Lead (Pb)	91	¥	360	410	1,880	50	98	¥	200	200
Mercury (Hg)	60:0	¥	0.18	Ϋ́	ž	¥	0.13	¥	10	10
Molybdenum (Mo)	13	¥	91	15	¥	¥	ო	ž	40	40
Nickel (Ni)	36	¥	22	33	¥	¥	22	¥	200	200
Selenium (Se)		¥	3.7	Š	₹	Ą	8.0	¥	10	10
Silver (Ag)	8.0	ž	₹	¥	¥	¥	<0.8	¥	52	52
Thallium (TI)	ž	¥	4	¥	ž	¥	₹	¥	4.1	1.4
Vanadium (V)	53	¥	31	¥	₹	¥	18	¥	250	250
Zinc (Zn)	9/	¥	450	¥	≨	¥	55	¥.	800	800

Analysis of Barenco samples done by Maxxam Analytics Inc.
All results in ppm (ug/g) and based on dry weight basis. "ND" means "not detected" at reporting detection limit (RDL). "." means "not applicable". "NA" means "not analyzed".

** Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils.

Exceedances of applicable standard is shown in **bold**.

BARENCO INC.

										Table 6
SOIL CHEMICAL ANALYSIS 2202 3rd Avenue East, Owen Sound, Ontario	Ŧ .	Metals								0200
Sample ID	SP7	SP7-B	TP1	TP2	TP3	TP4	TP5	TP6	MOEE	Ontario
Depth (m)	0.5-0.8	0-1.5	0-0.3	0-0.5	0-0.3	0-0.2	0-0.3	0-0.4	Table B	Reg 153/04
Consultant	CRA	Barenco	CRA	CRA	CRA	CRA	CRA	CRA	Standard	Table 3
Maxxam ID	-	W04283	-		-	•	-		(1996)	Soil
Sample Date		21-Nov-07	01-Nov-00	01-Nov-00	01-Nov-00	01-Nov-00	01-Nov-00	01-Nov-00		Standards**
Antimony (Sb)	Ϋ́	ΨX	4.4	5.9	5.1	4.9	5.8	6.2	13	13
Arsenic (As)	220	15	113	158	188	188	178	201	25	25
Barium (Ba)	ž	¥	70	114	73	20	47	53	1000	1000
Beryllium (Be)	ž	Š	7.0	0.7	0.7	8.0	0.7	6:0	1.2	1.2
Boron (B)	Š	Ą	¥	₹	¥	ž	ž	¥	1.5	1.5
Cadmium (Cd)	¥	Ą	9.0	0.7	0.3	0.3	0.5	0.3	12	12
Chromium (Cr)	Š	∢ Z	22	28	4	13	15	15	1000	1000
Chromium (VI)	Š	¥ Z	₹		7	₹	₹	₹	9	10
Cobalt (Co)	ž	¥ Z	7	10	10	11	1	12	20	20
Copper (Cu)	ž	ž	117	168	132	163	157	146	300	300
Lead (Pb)	ž	ž	168	356	159	169	184	179	200	200
Mercury (Hg)	ž	₹ Z	80.0	0.12	0.13	0.14	0.16	0.16	10	9
Molybdenum (Mo)	ž	₹ Z	4	4	က	4	4	4	40	40
Nickel (Ni)	ž	ž	36	4	30	30	35	35	200	200
Selenium (Se)	Ϋ́	Ϋ́	4.1	8.0	0.7	8.0	8.0	8.0	5	9
Silver (Ag)	Ϋ́	Ą Z	<0.8	×0.8	×0.8	<0.8	×0.8	×0.8	25	25
Thallium (TI)	¥ Z	Ϋ́	¥	ž	Ϋ́	¥	¥	ž	4,	1.4
Vanadium (V)	¥	¥	30	59	24	24	26	59	250	250
Zinc (Zn)	ΝA	Ϋ́	174	215	99	70	81	72	800	800

Analysis of Barenco samples done by Maxam Analytics Inc.

All results in ppm (ug/g) and based on dry weight basis. "ND" means "not detected" at reporting detection limit (RDL). "." means "not applicable". "NA" means "not analyzed".

** Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils.

Exceedances of applicable standard is shown in bold.

BARENCO INC.

SOIL CHEMICAL ANALYSIS - Metals 2202 3rd Avenue East Owen Sound Ontario	YSIS - N	/letals					Table 6
-							Page 4 of 4
Sample ID	TP17	TP108	SM1	MW7	MW7-B	MOEE	Ontario
Depth (m)	0-0.35	0-0.2	0-0.35	9.0-0	0.2-1.5	Table B	Reg 153/04
Consultant	CG&S	Rubicon	Barenco	CG&S	Barenco	Standard	Table 3
Maxxam ID	-	•	P16178		W04259	(1996)	Soil
Sample Date	15-Jul-97		25-Oct-06	16-Jul-97	21-Nov-07		Standards**
Antimony (Sb)	<.ا	9.7	AN	, >	ΑN	13	13
Arsenic (As)	8	23	13	25	¥	25	25
Barium (Ba)	100	650	Ą	25	Š	1000	1000
Beryllium (Be)	<0.5	⊽	¥	<0.5	Ą	1.2	1.2
Boron (B)	<0.5	ΑN	0.44	<0.5	AN	5.	5.
Cadmium (Cd)	2.6	<0.5	AN	3.6	Ϋ́	12	12
Chromium (Cr)	1,000	744	AN	170	¥	1000	1000
Chromium (VI)	∀	Ϋ́	Ą	ΑN	¥	10	10
Cobalt (Co)	33	ጀ	AN	12	Š	200	20
Copper (Cu)	280	457	251	220	¥	300	300
Lead (Pb)	260	1010	398	100	Ą	200	200
Mercury (Hg)	0.02	0.1	¥	0.11	Ą	10	10
Molybdenum (Mo)	<u>290</u>	151	57.9	99	4	40	40
Nickel (Ni)	<u>620</u>	449	170	91	Ą	200	200
Selenium (Se)	₹	<0.5	Ą	4.2	Ą	10	10
Silver (Ag)	₹	₹	Ϋ́	۲	Ą	52	22
[hallum (TI)	4	Ϋ́	Ϋ́	2	Ϋ́	4	1.4
Vanadium (V)	47	30	¥	31	Ą	250	250
Zinc (Zn)	170	504	NA	230	ΑN	800	800

Analysis of Barenco samples done by Maxxam Analytics Inc.
All results in ppm (ug/g) and based on dry weight basis. "ND" means "not detected" at reporting detection limit (RDL). "-" means "that applicable." "NA" means "not analyzed".
** Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils.

Exceedances of applicable standard is shown in bold.

BARENCO INC.

				Table 7
SOIL CHEMICAL ANALYSIS - PCBs	YSIS - P	CBs		
2202 3rd Avenue East, Owen Sound, Ontario	nd, Ontario			
				Page 1 of 1
Sample ID	TP121	SM3	MOEE	Ontario
Depth (m)	0-0.4	0-0.4	Table B	Reg 153/04
Consultant	Rubicon	Barenco	Standard	Table 3
Maxxam ID	•	T62516	(1996)	Soil
Sample Date	20-Jul-01	20-Jul-07		Standards**
Total PCBs	<u>6.7</u>	1.2	2	5
Analysis of Barenco samples done by Maxxam Analytics Inc.	xxam Analytics In	JC.		
All results in ppm (ug/g) and based on dry weight basis.	weight basis.			
** Standards shown are for Residential/Parkland/Institutional land use and	arkland/Institutio	nal land use and	-	
fine/medium textured soils.				
Exceedances of applicable standard is shown in bold	nown in bold .			
BARENCO INC.				06043

Table 8

GROUND WATER CHEMICAL ANALYSIS - VOCs

2202 3rd Avenue East, Owen Sound, Ontario

Page 1 of 1

	i i	TH8	TH9	TH10	MW4	MW5	MW6	MW7	MW10	MW11	MW101	MW103	MW104	MW107	MW109	Ontario Reg 153/04
Sample ID	•								L							Table 3
Consultant		Barenco	Barenco	Barenco	CH2M Gore & Storrie	CH2M Gore & Stome	CH2M Gore & Storrie	CH2M Gore & Storrie	CH2M Gore & Storrie	CH2M Gore & Storrie	Rubicon	Rubicon	Rubicon	Rubicon	Rubicon	Ground Water
Maxxam ID		P15906	P15907	P15908	U25695	U25696	U25697	U25698	U25726	U25699	U25727	U25700	U25701	U25702	U25730	Standards
Sample Date	RDL*	26-Oct-06	26-Oct-06	26-Oct-06	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	1 ** [
Acetone (2-Propanone)	<10	ND	24	12	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	3300
Benzene	<0.1	0.1	0.3	0.2	ND	ND	ND	ND	ND	ND	ND	ND ND	ND	ND .	ND	12000
Bromodichloromethane	<0.1	ND	ND	ND ND	ND .	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50000
Bromoform	<0.2	ND.	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5200
Bromomethane	<0.5	ND	ND	ND	ND	ND	ND	ND	ND	ND:	ND .	ND	ND	ND	ND	16
Carbon Tetrachloride	<0.1	ND.	ND	ND	ND	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	100
Chlorobenzene	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	0.2	ND	500
Chloroform	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	2700
Dibromochloromethane	<0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	50000
1,2-Dichlorobenzene	<0.2	ND	ND	ND	ND ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7600
1,3-Dichlorobenzene	<0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7600
1,4-Dichlorobenzene	<0.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	7600
1,1-Dichloroethane	<0.1	ND	ND	ND	0.8	ND	ND	ND	ND	ND	ND	0.1	ND	ND	0.9	50000
1,2-Dichloroethane	<0.1	ND	ND	ND	0.2	ND	ND	ND	ND ND	ND ND	ND	ND ND	ND	ND	ND	110
1,1-Dichloroethylene	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	4.1
cis-1,2-Dichloroethylene	<0.1	ND	ND	ND	0.5	ND	ND	ND	ND	ND	ND	0.4	ND	ND	ND	70
rans-1,2-Dichloroethylene	<0.1	ND	ND	ND	1.2	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	100
1,2-Dichloropropane	<0.1	ND	ND I	ND	ND	ND I	ND	ND	ND	ND	* ND	ND	ND	ND	ND	58
cis-1,3-Dichloropropene	<0.2	ND	ND I	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	ND	ND	24
trans-1,3-Dichloropropene	<0.2	ND	ND	ND	ND -	ND	ND	ND	ND ,	ND	ND	ND	ND	ND	ND	24
Ethylbenzene	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND ND	50000
Ethylene Dibromide (1,2-Dibromoethane)	<0.2	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND	∥ ND	21
Methylene Chloride (Dichloromethane)	<0.5	ND I	ND	ND	ND I	ND	ND	ND	ND	ND	ND .	ND	ND	ND	ND	50000
Methyl Isobutyl Ketone (MIBK)	<5	ND	ND	ND	ND	ND	ND	ND '	ND	ND	ND	ND	ND	ND	ND	50000
Methyl Ethyl Ketone (2-Butanone)	<5	ND	ND	ND	ND	ND	ND '	ND	ND	ND	ND	ND	ND	ND	ND	50000
vlethyl-t-Butyl Ether (MTBE)	<0.2	ND	ND	ND	ND	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND	50000
Stvrene	<0.1	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	5900
,1,1,2-Tetrachloroethane	<0.1	ND	ND I	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	38
,1,2,2-Tetrachloroethane	<0.2	(<0.1) ND	(<0.1) ND	(<0.1) ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND	ND	ND	ND	140
etrachloroethylene (Perchloroethylene)	<0.1	ND	ND	ND ND	ND	2.2	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	5
oluene	<0.2	ND ND	6.7	2.1	ND ND	ND	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	37000
,1,1-Trichloroethane	<0.1	ND	ND ND	ND	ND ND	0.2	ND	ND	ND ND	ND ND	ND	ND	ND	ND	ND	200
,1,2-Trichloroethane	<0.2	ND	ND ND	ND	ND ND	ND I	ND ND	ND	ND ND	ND ND	ND ND	ND	ND	ND	ND	50000
nchloroethylene (Trichloroethene)	<0.1	ND	ND ND	ND ND	ND ND	ND	ND	ND ND	ND ND	ND ND	ND	0.5	ND	ND	ND	50
inyl Chloride	<0.2	ND	ND	ND	ND ND	ND	ND	ND ND	ND	ND ND	ND ND	ND	ND	ND	ND	1.3
ylenes (Total)	<0.1	ND	0.1	ND	ND	ND	ND ND	ND	ND '	ND ND	ND	ND	ND	ND	ND	35000

Analysis by Maxxam Analytics Inc.

BARENCO INC.

All results in ppb (ug/l). ND means "not detected" at reporting detection limit (RDL).

* Analytical RDLs are shown except as indicated in brackets.

^{**} Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils and a non-potable ground water condition.

Exceedances of the MOE Table 3 standards are shown in bold.

5

1.9

7

0.2

0.4

3

0.25

130

290

0.27

13000

13000

6200

63

40

GROUND WATER CHEMICAL ANALYSIS - PAHs

0.05

0.01

0.05

0.1

0.05

0.05

0.1

0.05

0.05

0.1

0.05

0.05

0.05

0.05

2202 3rd Avenue East, Owen Sout	nd, Ontario																Page 1 of 1
Sample ID		MW4	MW5	MW6	MW7	MW11	MW101	MW101	MW103	MW104	MW107	MW109	MW109	TH8	TH9	TH10	Ontario
Consultant	7	CH2M Gore & Storrie	Rubicon	Barenco	Barenco	Barenco	Reg 153/04 Table 3										
Maxxam ID	1	U25695	U25696	U25697	U25698	U25699	M08374	P15909	U25700	U25701	U25702	M08375	P15910	U25703	U25704	U25705	Ground Water
Sample Date	RDL*	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	16-May-06	25-Oct-06	22-Aug-07	22-Aug-07	22-Aug-07	16-May-06	25-Oct-06	22-Aug-07	22-Aug-07	22-Aug-07	Standards**
Acenaphthene	0.05	ND	ND	ND	ND	ND	0.4	ND	ND	ND	0.06	ND	ND	ND	ND	ND	1700
Acenaphthylene	0.05	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	ND	∥ ND	2000
Anthracene	0.05	ND	ND	ND	ND	ND	0.7	ND	12								

ND

0.08

0.04

0.07

ND

ND

ND

ND

0.08

ND

ND

ND

ND

ND

ND

0.08

ND

0.01

ND

0.07

ND

NΠ

ND

0.02

ND

0.2

ND

ND

ND

0.3

ND

ND

ND

ND

0.05

0.2

0.3

ND

0.2

0.2

0.3

0.1

0.08

0.1

ND

0.2

ND

0.1

ND

ND

ND

0.08

0.3

0.07

0.02

ND

ND

ND

ND

ND

0 1

0.06

ND

ND

ND

ND

0.08

0.09

ND

0.01

ND

<u>10</u> 20

20

<u>20</u> <u>7</u>

10

3

10

0.2

<u>10</u>

0.2

0.2

0.3

10

2-Methylnepthalene Naphthalene Phenantherene

Pyrene Analysis by Maxxam Analytics Inc.

All results in ppb (ug/l). ND means "not detected" at reporting detection limit (RDL).

* Analytical RDLs are shown except as indicated in brackets.

** Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils and a non-potable ground water condition

ND

ND

ND

NΠ

ND

ND

ND

NĎ

ND

ND

ND

ND

ND

ND

ND

0.06

0.02

ND

ND

ND

ND

ND

ND

ND

ND

0.05

0.07

0.08

0.08

ND

0.05

0.03

0.06

ND

ND

ND

ND

0.1

ND

ND

ND

ND

ND

0.09

0.09

ND

0.01

ND

ND

ND

ND

ND

0.06

ND

ND

ND

ND

ND

0.08

0.06

Exceedances of the MOE Table 3 standards are shown in bold.

BARENCO INC.

Chrysene

Fluorene

Fluoranthene

Benzo(a)anthracene

Benzo(b/j)fluoranthene

Benzo(g,h,l)perylene

Benzo(k)fluoranthene

Dibenzo(a,h)anthracene

Indeno(1,2,3-cd)pyme

1-Methylnaphthalene

Benzo(a)pyrene

Table 10

GROUND WATER CHEMICAL ANALYSIS - Metals

2202 3rd Avenue East, Owen Sound, Ontario

Page 1 of 1 MW109 Ontano MW103 MW104 MW107 Sample ID TH8 TH9 TH10 MW4 MW5 MW6 MW7 MW11 MW101 MW101 Reg 153/04 CH2M Gore & CH2M Gore & CH2M Gore & CH2M Gore & Table 3 H2M Gore & Stor Rubicon Rubicon Rubicon Rubicon Rubicon Rubicon Barenco Barenco Storrie Consultant Barenco Stome Storrie Storrie Ground TH location (Zone) Zone 2 Water P15907 P15908 U66998 U25696 U25697 U25698 U25699 M08374 U66995 U25700 U25701 U25702 M08375 Maxxam ID P15906 Standards 26-Oct-06 26-Oct-06 26-Oct-06 13-Sep-07 13-Sep-07 RDL* 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 16-May-06 22-Aug-07 22-Aug-07 22-Aug-07 22-Aug-07 Sample Date ND ÑΑ NA ND NA 16000 Antimony (Sb) 0.5 (<1) ND (<1) ND (<1) ND ND ND ND ND 28 NA 480 Arsenic (As) ND NA NA 2 ND ND ND ND 2 23000 Barium (Ba) 5 99 310 120 69 24 140 66 190 NA NA 93 150 64 NA Bervilium (Be) 0.5 ND ND ND ND ND ND ND NA NA ND ND ND NA 53 ND 610 490 130 1200 50000 10 220 270 55 200 140 590 320 NA Boron (B) 140 490 ND 11 0.1 NA NA ND ΝD NA Cadmium (Cd) 0.1 ND ND ND ND ND ND ND ND 2000 ND ND NA Chromium (Cr) 5 ND ND ND ND ND ND ND ND NA NA 100 ND ND 0.9 ND ND Cobalt (Co) 0.5 3.1 18 3.6 1.1 ND ND ND 0.6 1.4 23 Copper (Cu) 3 ND ND 3 5 ND 3 ND 2 32 ND NA ND ND ND ND Lead (Pb) 0.5 ND ND ND ND ND ND ND ND 7300 ND ND NA Molybdenum (Mo) ND ND ND ND ND NA NA 3 3 Nickel (Ni) NA ND ND NA 1600 ND ND ND NA 3 ND ND 50 Selenium (Se) ND ND ND NA NA NA 2 ND ND ND ND ND ND ND ND 1.2 ND NA ND Silver (Ag) 0.1 ND ND ND ND ND ND ND ND NA NA ND 400 ND Thallium (TI) 0.05 ND ND ND (<0.1) ND ND ND ND ND NA NA ND ND NA 200 Vanadium (V) NΑ ND ND NA ND ND ND ND ND ND ND NA ND 1100 Zinc (Zn) 860 ND 35 NA NA 16 ND 13 ND 16

Analysis by Maxxam Analytics Inc.

All results in ppb (ug/l). ND means "not detected" at reporting detection limit (RDL)

* Analytical RDLs are shown except as indicated in brackets.

** Standards shown are for Residential/Parkland/Institutional land use and fine/medium textured soils and a non-potable ground water condition.

APPENDIX A

Terms and Conditions

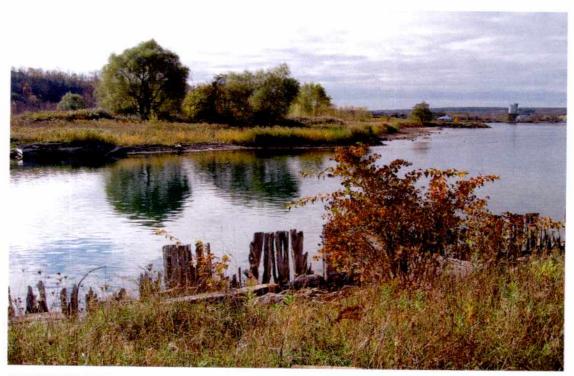
Terms and Conditions

- 1. SERVICES TO BE PROVIDED AND STANDARD OF CARE. Barenco Inc. ("Barenco") agrees to provide Client for its sole benefit and exclusive use, services set forth in Barenco's Proposal. Barenco's offer to perform shall be terminated if not accepted within sixty (60) days of the date of the Proposal. Barenco's services shall be performed in accordance with the standard of care of its profession which means generally accepted professional practices, related to the nature of the work accomplished, at the time and place the services are performed. Subject to this standard of care, Barenco makes no express or implied warranties regarding its services except as otherwise expressly stated herein and all other representations and warranties, express or implied, are hereby expressly excluded. Both parties agree that no third-party beneficiaries are intended by this Agreement.
- 2. PAYMENT. Invoices will be submitted once a month for services performed during the prior month, or upon completion of the work, whichever is earlier. Payment terms are due upon receipt. Interest will be added to accounts thirty (30) days in arrears at the rate of two per cent (2%) of the arrears for each month of delinquency, not to exceed the maximum percentage rate allowed by law. In addition, Barenco may, after giving seven (7) days written notice, suspend services under this or any other Agreement with Client without liability until all past due accounts (including fees and accrued interest) have been paid. Timely payment is an essential requirement of Client's performance of any Agreement between Barenco and Client. All expenses incurred by Barenco for liening or collecting any delinquent amount including, without limitation, legal and other third-party fees and filing fees, shall be paid to Barenco by Client.
- 3. RIGHT OF ENTRY AND PROPERTY RESPONSIBILITY. Client has responsibility for obtaining a right of entry to the property which is the subject of the services. The right of entry shall allow Barenco, its agents, subcontractors and employees to enter the property, including buildings if required to complete the services as proposed, from time to time, as necessary to perform the agreed services. Barenco has responsibility for its own activities on the property including the safety of its employees; it does not assume control of nor responsibility for the property, the person in charge of the property, nor the safety of persons not in Barenco's employ.
- 4. INSURANCE. Barenco maintains Workers' Compensation insurance for its employees as required by provincial law. In addition, Barenco maintains the following insurance policies: Commercial General Liability, Pollution Liability and Professional Liability (\$1,000,000) each occurrence, \$1,000,000 Policy Aggregate) and Automobile Third Party Liability (\$2,000,000).
- 5. DOCUMENTS. Barenco will furnish Client the agreed upon number of written reports and supporting documents. All such reports and documents are furnished for Client's exclusive internal use and reliance, use of Client's counsel, and for regulatory submission as expressly contemplated in connection with the services provided for in the Agreement, but not for advertising or other type of distribution, and are subject to the following: All documents generated by Barenco under this Agreement shall remain the sole property of Barenco. Any unauthorized use or distribution of Barenco's work shall be at Client's and recipient's sole risk and without liability to Barenco. Barenco retains a confidential file copy of its work product and related documents. If Client desires to release, or for Barenco to provide, its report to a third party, which is not entitled to receive or use the reports and documents as set out above, for that third party's reliance, Barenco will agree to such release provided it receives written acceptance from such third party to be bound by acceptable terms and conditions similar to this Agreement, and provided payment by such third party of Barenco's standard fee. Reports provided for disclosure of information only will not require separate agreement. Client acknowledges and agrees to inform such third party that Barenco's report reflects conditions only at the time of the report and may not reflect conditions at a later time. Client further acknowledges that such request for release creates a potential conflict of interest for Barenco and by making any such request Client waives any such claim if Barenco complies with the request. Client agrees that all documents furnished to Client or Client's agent or designees, if not paid for, will be returned upon demand and will not be used by Client or any other person or entity for any purpose whatsoever. Client further agrees that documents produced by Barenco pursuant to this Agreement will not be used for any purpose not expressly provided for in this Agreement without Barenco's prior written approval. Client shall furnish documents or other information reasonably within Client's control and deemed necessary by Barenco for proper performance of its services. Barenco may rely, without independent investigation or enquiry, upon Client-provided documents in performing the services required under this Agreement; however, Barenco assumes no responsibility or liability for their accuracy. Client-provided documents will remain the property of Client but Barenco may retain one confidential file copy as needed to support its report.
- 6. CONFIDENTIALITY. Barenco will maintain as confidential any documents or information provided by Client and will not release, distribute or publish same to any third party without prior permission from Client, unless compelled by law or by order of a court or regulatory authority of competent jurisdiction.
- 7. INTELLECTUAL PROPERTY. All concepts, products, processes, inventions, trade-marks, works, designs and improvements to, and derivatives of, the foregoing, resulting from the services rendered by Barenco in connection with the project, or which are invented, authored, developed or first used or reduced to practise by Barenco in the performance of the services shall be and remain the property of Barenco. Client shall have a personal non-exclusive, royalty-free, non-assignable, non-sublicensable licence to use the Intellectual Property in connection with the project, for the life of the project, and for no other purpose or project. Barenco does not make any representation or warranty that such Intellectual Property does not violate the rights of any other person.
- 8. WASTE. Client warrants that, if it knows or suspects that "waste" (within the meaning of the Ontario Environmental Protection Act) may exist on the property, it has so informed Barenco. Client also agrees that Barenco accepts no ownership of any waste and has no responsibility as a generator of any waste found or identified at the project property.
- 9. LIMITATION OF LIABILITY. CLIENT EXPRESSLY AGREES THAT, TO THE FULLEST EXTENT PERMIT TED BY LAW, ITS MAXIMUM AGGREGATE RECOVERY AGAINST BARENCO, ITS DIRECTORS, EMPLOYEES, SUB-CONTRACTORS AND REPRESENTATIVES, FOR ANY AND ALL CLAIMS BY CLIENT FOR ALL CAUSES INCLUDING, BUT NOT LIMITED TO, CLAIMS OF BREACH OF CONTRACT, BREACH OF WARRANTY AND/OR NEGLIGENCE, SHALL BE THE AMOUNT OF THE FEE PAID TO BARENCO FOR ITS PROFESSIONAL SERVICES RENDERED UNDER THE AGREEMENT WITH RESPECT TO THE PARTICULAR SITE WHICH IS THE SUBJECT OF THE CLAIM BY CLIENT. PROVIDED THAT, IF THERE IS AN EVENTUAL FINAL DETERMINATION BY A COURT OF COMPETENT JURISDICTION OF GROSS NEGLIGENCE OR WILLFUL MISCONDUCT BY BARENCO, THEN THE MAXIMUM AGGREGATE RECOVERY SHALL BE LIMITED AS FOLLOWS: THE GREATER OF (A) THE FEE OR (B) THE LESSER OF TWO TIMES (2x) THE FEE AND \$25,000.

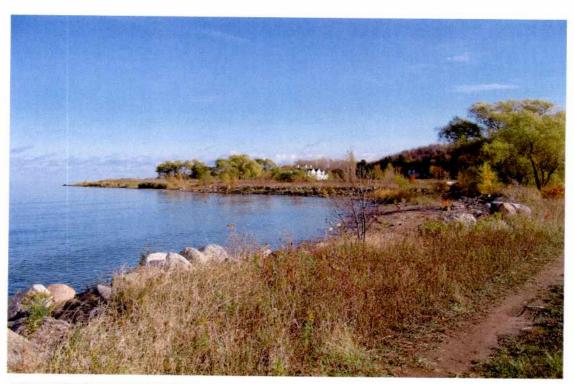
Terms and Conditions (cont.)

- 10. INDEMNIFICATION. To the fullest extent permitted by law, Client agrees to defend, indemnify, and hold Barenco, its agents, subcontractors, and employees harmless from and against any and all claims, defence costs, including legal fees, damages and other liabilities arising out of or in any way related to Barenco's reports or recommendations concerning this Agreement, Barenco's presence on the project property, or the presence, release or threatened release of contaminants on or from the project property provided that Client shall not indemnify Barenco against liability for damages caused by or resulting from the sole negligence of Barenco, its agents, subcontractors or employees or against penalties or fines resulting from violations by Barenco of its own Certificates of Approval; and provided further that Client shall indemnify Barenco against liability for damages caused by or resulting from the concurrent or contributory negligence of (a) Client, its agents, or employees and (b) Barenco, its agents, subcontractors, or employees, only to the extent of Client's negligence or the negligence of Client's agents or subcontractors. Provided further that Barenco's obligation hereunder shall not extend to indemnification or holding harmless for any claims of loss of profits or any other indirect, special, incidental, or consequential damages of any nature whatsoever.
- 11. UNFORESEEN OCCURRENCES. If any unforeseen conditions or occurrences are encountered which, in Barenco's judgement, significantly affect or may affect the original services as proposed, then Barenco will promptly notify Client. After such notification, the parties agree that Barenco has the unilateral right to complete the original services as proposed, if appropriate, or agree with Client to modify the Agreement, or terminate the Agreement.
- 12. TERMINATION AND RESTART. In the event that Client requests termination of work prior to completion or Barenco terminates work under Paragraph 11, a final invoice will be rendered. Where the method of payment is based on time and materials, Barenco will be paid for all work performed up to notice of termination and for all expenses incurred or committed to that cannot be cancelled. Where the method of payment is based on a fixed price, the final invoice will be based on the percentage of work completed by the date of termination. Barenco also has the right to complete at client's expense the analyses and records Barenco considers necessary to protect its professional reputation.
- 13. WELL ABANDONMENT. Any monitoring wells installed as part of Barenco's work may later need to be abandoned in accordance with applicable law. Unless expressly provided for in the proposal, well abandonment is not included in the work.
- 14. DISPOSAL OF SAMPLES. Samples not submitted for analysis will be discarded 90 days after sampling unless different arrangements are agreed to in writing.
- 15. SUBSURFACE RISKS AND SITE DAMAGE. Client recognizes that special risks occur and guarantees cannot be expected whenever professional consulting services are applied to determine the composition of a site's subsurface or the existence or non-existence of waste materials. Barenco cannot eliminate these risks altogether, but Barenco can apply professional techniques to reduce the risks to a level deemed tolerable and Client agrees to accept that level of risk. Whenever Barenco is providing field services, Client recognizes that the use of exploration and test equipment may unavoidably damage or alter the property surface or subsurface. Barenco will not be responsible for personal and property damages due to its interference with subterranean structures, such as pipes, tanks, and utility lines that are not called to Barenco's attention in writing or correctly shown on plans provided by Client, or for which clearances cannot be obtained from utility owners or their agents, or which are incorrectly cleared by utility owners or their agents.
- 16. SEVERABILITY AND SURVIVAL. Any element of this Agreement later held to violate a law shall be deemed void, and all remaining provisions shall continue in force. However, Client and Barenco will in good faith attempt to replace any invalid or unenforceable provision with one that is valid and enforceable, and which comes as close as possible to expressing the intent of the original provision. All terms and conditions of this Agreement allocating liability between Client and Barenco shall survive the completion of the services hereunder and the termination of the Agreement.
- 17. DISPUTES RESOLUTION. All matters in dispute howsoever caused may with the consent of both parties be referred to arbitration. The award of the arbitrator shall be final and binding upon the parties. The provisions of the Ontario Arbitrations Act, 1991, shall apply. Alternatively, if the dispute requires litigation, (a) Client assents to exclusive jurisdiction of the courts of the Province of Ontario (b) the claim will be brought and tried in the judicial jurisdiction where Barenco's principal place of business is located and Client waives the right to move the action to any other judicial jurisdiction and (c) the prevailing party will be entitled to recovery of all reasonable costs incurred, including staff time, court costs, legal fees and other claim-related expenses.
- 18. PRECEDENCE. These terms and conditions shall take precedence over any inconsistent or contradictory provisions contained in any proposal, contract, purchase order, requisition, or like document concerning Barenco's services.
- 19. GOVERNING LAW. This Agreement shall be governed in all respects by the laws of the Province of Ontario.
- 20. ENTIRE AGREEMENT. This Agreement, together with Barenco's Proposal, constitutes the entire agreement between Client and Barenco pertaining to the subject matter of this Agreement and supersedes all other agreements, understandings, negotiations and discussions, whether oral or written. There are no conditions, warranties, representations or other agreements between the parties in connection with the subject matter of this Agreement (whether oral or written, express or implied, statutory or otherwise) except as specifically set out in this Agreement. Barenco shall not be bound or deemed to be bound by any other document or instrument issued by the Client, including without limitation, purchase orders, requisitions, or contracts unless a duly authorized officer of Barenco express ly agrees in writing to be bound by the terms of such documents or instruments, notwithstanding that documents or instruments may state otherwise.
- 21. PREPARATION OF AGREEMENT. Notwithstanding any rule or maxim of law or construction to the contrary, the parties agree that any ambiguity or uncertainty contained in this Agreement shall not be construed against Barenco merely because this Agreement was drafted or prepared by or on behalf of Barenco.

FORM TC1 -JANUARY 2007

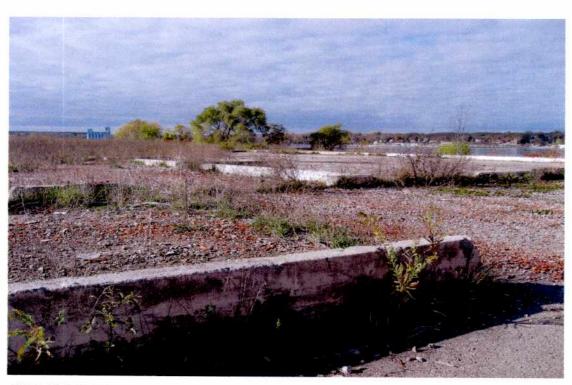

APPENDIX B

Site Photographs


VIEW FROM SPIT ON SUBJECT SITE, FACING EAST (OCTOBER 23, 2006)

VIEW FROM SPIT ON SUBJECT SITE, FACING SOUTH (OCTOBER 23, 2006)

VIEW FROM SUBJECT SITE TOWARDS WATER TREATMENT PLANT (SOUTH ADJACENT PROPERTY) (OCTOBER 23, 2006)



VIEW FROM SUBJECT PROPERTY, FACING NORTH (OCTOBER 23, 2006)

VIEW OF ADJACENT PROPERTIES TO THE EAST (NORTH OF THE SITE) (OCTOBER 23, 2006)

VIEW OF SUBJECT SITE, FACING SOUTHWEST (OCTOBER 23, 2006)

APPENDIX C

Aerial Photographs

SCALE:

1:6000

SOURCE:

NATIONAL AIR PHOTO LIBRARY

AIR PHOTO 1966

2202 3RD AVENUE EAST OWEN SOUND, ONTARIO

BARENCO JOB NUMBER: 06043

BARENCO

SCALE:

1:20000

SOURCE:

NATIONAL AIR PHOTO LIBRARY

AIR PHOTO 1973

2202 3RD AVENUE EAST OWEN SOUND, ONTARIO

BARENCO JOB NUMBER: 06043

SCALE:

SOURCE:

1:6000

BARENCO

NATIONAL AIR PHOTO LIBRARY

AIR PHOTO 1987

2202 3RD AVENUE EAST OWEN SOUND, ONTARIO

BARENCO JOB NUMBER: 06043

APPENDIX D

Fire Insurance Plan (1946)

CGI Information Systams and Management Consultants Inc.

90 Allstate Parkway 5[™] Floor Markham, Ontario **L3R 6H3**

Tel. (905) 474-0003 Fax. (905) 474-5604 www.cai.com

CGI Environmental Services Historical Environmental Reporting System (HEIRS™)

Kathryn Shaw-Edmond **ECOLOG ERIS** 12 Concorde Pl., Suite 800 Toronto, ON M3C 4J2

November 9, 2006

Regarding: 3rd Avenue East, Owen Sound - 20061107021

As requested, we have searched our records concerning the above site and the following information as listed below is appended hereto:

Information

Date(s)

Fire Insurance Plan(s)

1946

Property Underwriters' Report(s) NO

Property Underwriters' Plan(s)

NRF: No Records Found

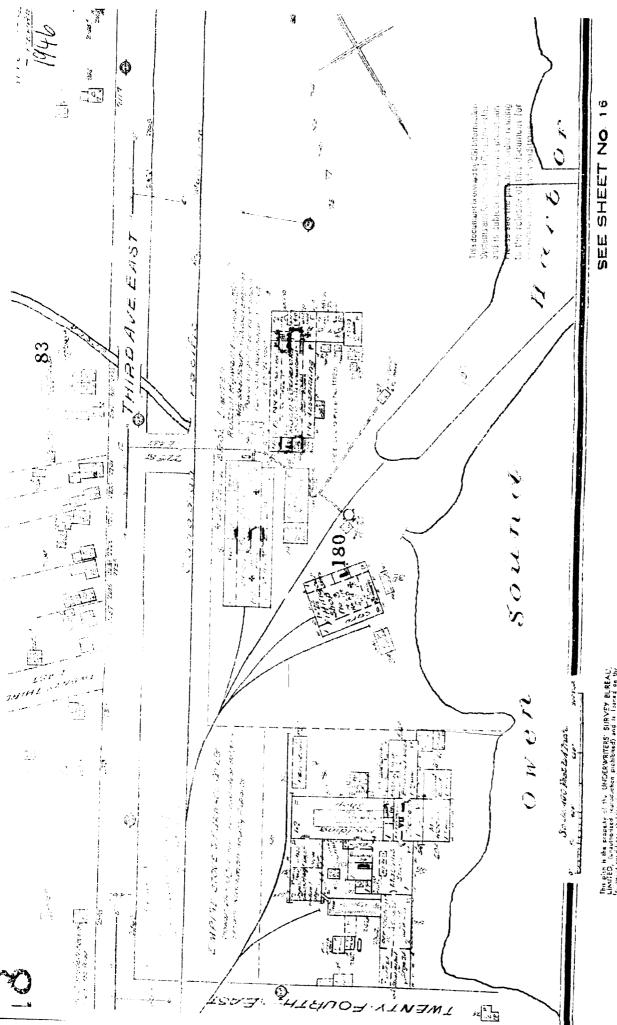
Our invoice in the amount of \$125.00 (+ GST) for the information provided will follow in due course.

Thank you for employing the services of CGI.

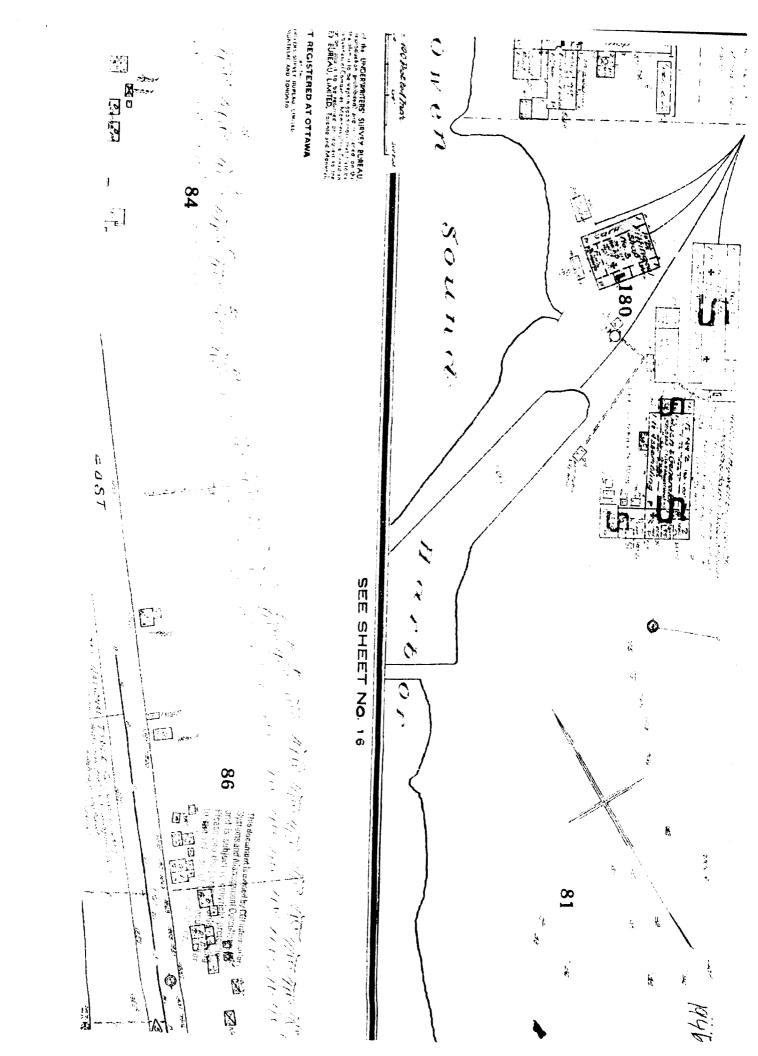
Shazeeda Allv.

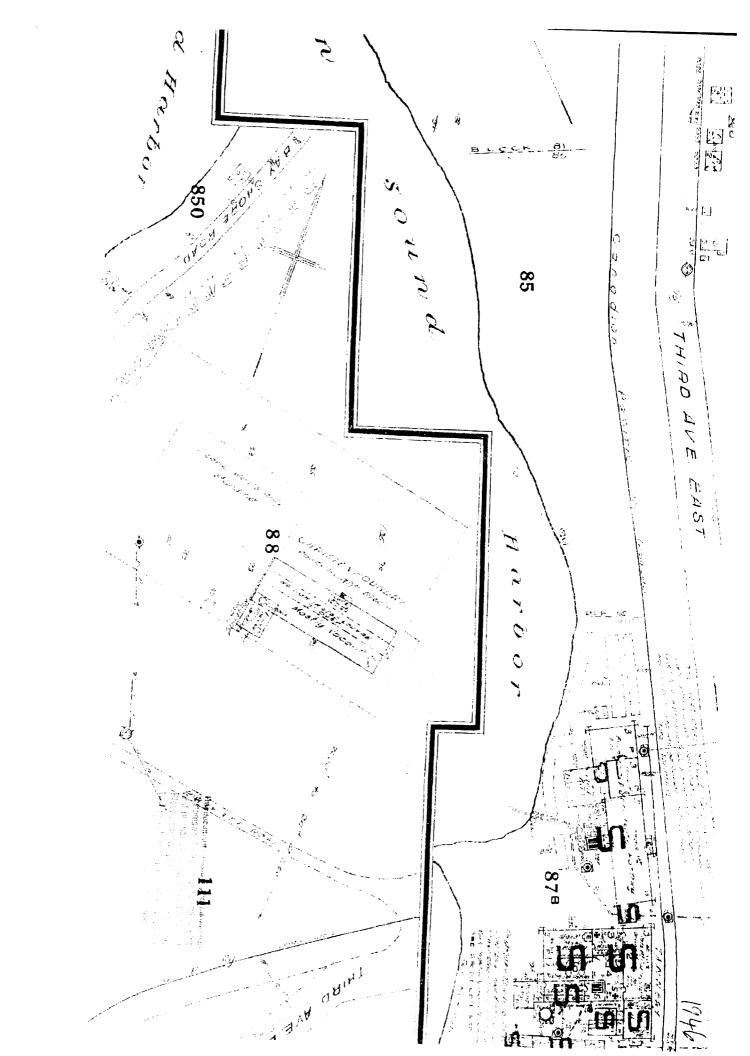
Environmental Services

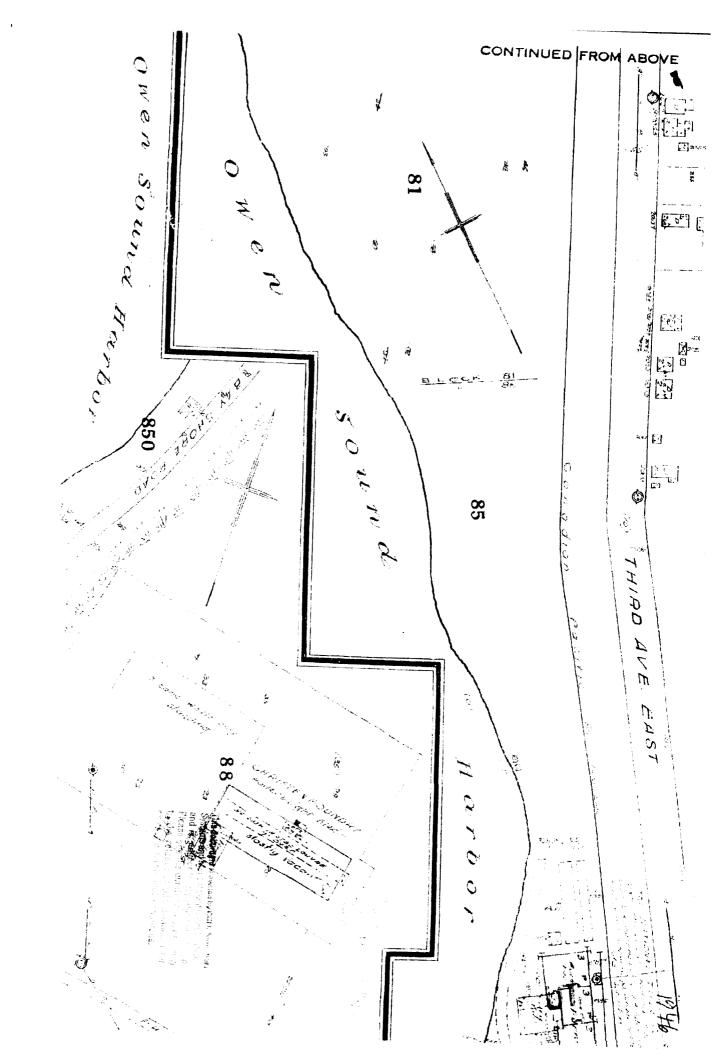
TERMS AND CONDITIONS

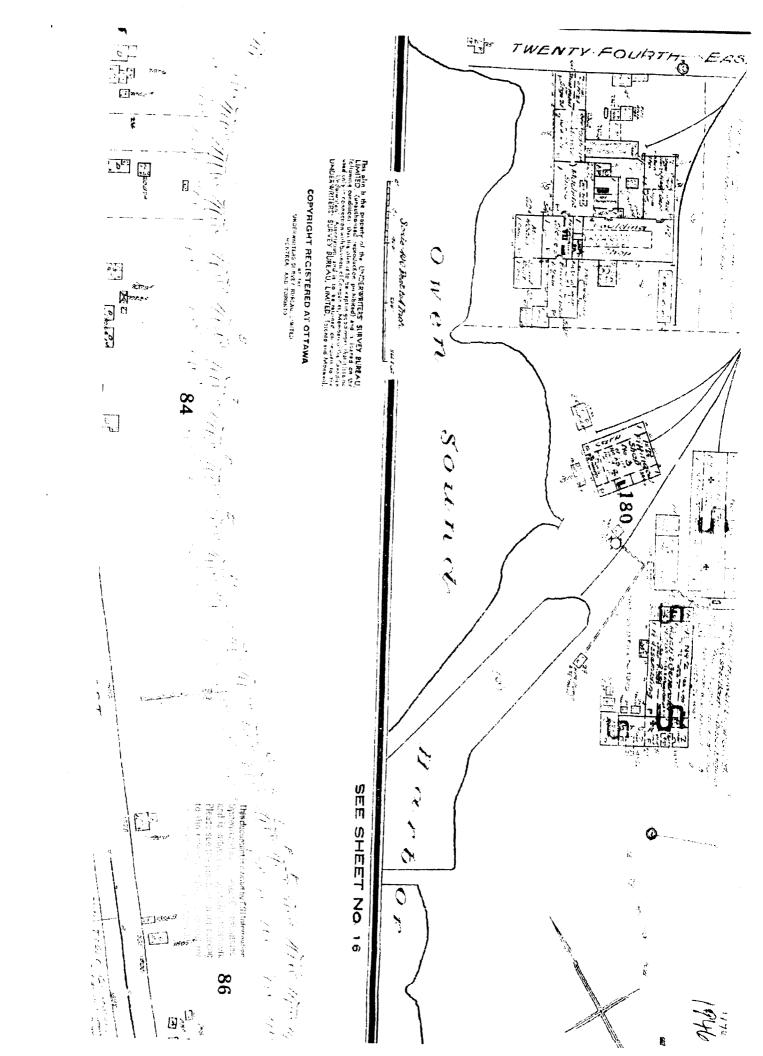

Report. The documents (hereinafter referred to as the "Documents") to be released as part of the report (hereinafter referred to as the "Report") to be delivered to the purchaser, as set out above are documents in CGI's respond to the described property thereinafter referred to as the Property'). CGI make no representations or warranties respecting the Documents whatsoever including, without huntarion, with respect to the completeness, accuracy in usefulness of the Documents, and does not represent or warrant that these are the only plans and reports prepared in association with the Property. The Documents are current as of the date(s) indicated on them. Interpretation of the Documents are current as of the date(s) indicated on them. Interpretation of the Documents only. CGI does not represent, warrant or guarantee that interpretations of the referred too do not exist from other sources. The Report will be prepared for use by the purchaser of the services as shown above hereuf only.

Disclaimer, CGI disclaims responsibility for any losses or damages of any kind what soever, whether consequential or other, however caused, incurred or suffered, acissing directly or indirectly as a result of the services twhich services include, but are not limited to, the preparation of the Report provided hereunder), including but not limited to, any losses or damages arising directly or indirectly from any breach of contract, fundamental or otherwise, from reliance on CGI Reports or from any tortious acts or omissions of CGI's agents, employees or representatives.

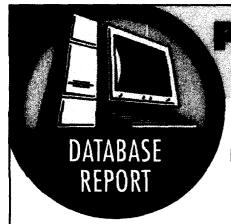

Entire Agreement. The parties hereto acknowledge and agree to be bound by the terms and conditions hereof. The request form constitutes the entire agreement between the parties pertaining to the subject matter hereof.


and supersedes all prior and concemporaneous agreements, negotiations and discussions, whether oral or written, and there are no representations or watauties, or other agreements between the parties in connection with the subject matter hereoffexcept as specifically set forth herein. No supplement, modification, waiver, or termination of the request shall be binding, unless confirmed in writing by the parties herein. Governing Document. In the event of any conflicts or inconsistencies between the provisions hereof and the Reports, the rights and obligations of the parties shall be decried to be governed by the request form. which shall be the paramount document


haw. This agreement shall be governed by and construed in accordance with the laws of the Province of * and the laws of Canada applicable therein



More in the reserve of the UNDERVAITERS SHRVEY BURKLU, LIMITED CENTRES SHRVEY BURKLU, LIMITED CENTRE OF THE SHRVEY BURKLU, CONST. CONSTRUCTION DATA CONTROL OF THE SHRVEY SOUTHOUSE OF THE CONTROL OF THE



APPENDIX E

EcoLog ERIS Report

inpointing Your Environmental Risks

Environmental Risk Information Service

Project Site:

Un-Named Site

3 AVE E && 24 ST E

Owen Sound, ON

Client:

Tanya Fernandes

Barenco Inc.

2561 Stouffville Rd.

Ste. 202

Gormley, ON LOH 1G0

ERIS Project No:

20070226016

Report Type:

Custom Report - 0.25km Search Radius

Prepared By:

Matt Thompson

mthompson@ecologeris.com

Date:

April 03, 2007

DISCLAIMER AND COPYRIGHT NOTICE

The information contained in this report has been produced by EcoLog ERIS Ltd. using various sources of information, including information provided by Federal and Provincial government departments. Although EcoLog ERIS Ltd. has endeavoured to present you with information that is accurate, EcoLog ERIS Ltd. disclaims, except as set out below, any and all liability for any errors, omissions, or inaccuracies in such information and data, whether attributable to inadvertence or otherwise, and for any consequences arising therefrom. Liability on the part of EcoLog ERIS Ltd. is limited to the monetary value paid for this report. The report applies only to the address specified on the cover of this report, and any alterations or deviation from this description will require a new report. This report and the data contained herein does not purport to be and does not constitute a guarantee of the accuracy of the information contained herein and does not constitute a legal opinion nor medical advice. This report is solely intended to be used to focus further investigation and is not intended to replace a full Phase 1 Environmental Site Assessment. No page of this report should be used without this cover page, this disclaimer and the project property identifier.

The contents of this Service are protected by copyright. Copyright in the Service is owned by EcoLog ERIS Ltd. Copyright in data obtained from private sources is owned by EcoLog ERIS Ltd. or its licensors. The Service and its contents may not be copied or reproduced in whole or in any substantial part without prior written consent of EcoLog ERIS Ltd.

12 Concorde Place, Suite 800 Toronto, Ontario M3C 4J2
Phone: (416) 510-5204 Fax: (416) 510-5133 Toll Free: 1-877-512-5204
www.ecologERIS.com info@ecologeris.com

Table of Contents

Order Number:

20070226016

Site Name:

Un-Named Site

Site Address: Report Type: 3 AVE E && 24 ST E Owen Sound, ON

Custom Report, 0.25 km Search Radius

	Section
Report Summary	i
This outlines the number of records from each database that fall on the site, and within various distances from the site.	
Site Diagram	ii
The records that were found within a specified distance from the project property (the primary search radius) have been plotted on a diagram to provide you with a visual representation of the information available. Sites will be plotted on the diagram if there is sufficient information from the database source to determine accurate geographic coordinates. Each plotted site is marked with an acronym identifying the database in which the record was found (i.e., WDS for Waste Disposal Sites). These are referred to as "Map Keys". A variety of problems are inherent when attempting to associate various government or private source records with locations. EcoLog ERIS has attempted to make the best fit possible between the available data and their positions on the site diagram.	
Site Profile	iii
This table describes the records that relate directly to the property that is being researched.	
Detail Report	iv
This section represents information, by database, for the records found within the primary search radius. Listed at the end of each database are the sites that could not be plotted on the locator diagram because of insufficient address information. These records will not have map keys. They have been included because they may be found to be relevant during a more detailed investigation.	
	Paα

	raye
Certificates of Approval	1
ERIS Historical Searches	4
Ontario Regulation 347 Waste Generators Summary	5
Mineral Occurrences	8
National PCB Inventory	9
National Pollutant Release Inventory	10
Inventory of PCB Storage Sites	11
Occurrence Reporting Information System	14
Ontario Regulation 347 Waste Receivers Summary	15

Appendix: Database Descriptions

Report Summary

Order Number: 20070226016 Site Name: Un-Named Site

Site Address 3 AVE E && 24 ST E Owen Sound, ON Report Type: Custom Report, 0.25 km Search Radius

Number of Mappable Records Surrounding the Site

Database		Selected	On-site	Within 0.25	0.25km to 2.00km	Tota
AAGR	Abandoned Aggregate Inventory	Y	0	0	0	0
AGR	Aggregate Inventory	Υ	0	0	0	0
AMIS	Abandoned Mine Information System	Υ	0	0	0	0
ANDR	Anderson's Waste Disposal Sites	Υ	0	0	0	0
AUWR	Automobile Wrecking & Supplies	Υ	0	0	0	0
CA	Certificates of Approval	Υ	1	10	0	10
CFOT	Commercial Fuel Oil Tanks	Υ	0	0	0	0
CHEM	Chemical Register	Υ	0	0	0	0
COAL	Coal Gasification Plants	Υ	0	0	0	0
CONV	Compliance and Convictions	Υ	0	0	0	0
DRL	Drill Hole Database	Υ	0	0	0	0
EBR	Environmental Registry	Υ	0	0	0	0
EEM	Environmental Effects Monitoring	Υ	0	0	0	0
EHS	ERIS Historical Searches	Υ	1	2	0	2
EIIS	Environmental Issues Information System	Υ	0	0	0	0
FCON	Federal Convictions	Υ	0	0	0	0
FCS	Contaminated Sites on Federal Land	Υ	0	0	0	0
FOFT	Fisheries & Oceans Fuel Storage Tanks	Υ	0	0	0	0
GEN	Ontario Regulation 347 Waste Generators Summary	Υ	7	17	0	17
IAFT	Indian & Northern Affairs Fuel Tanks	Υ	0	0	0	0
MINE	Canadian Mine Locations	Υ	0	0	0	0
MNR	Mineral Occurrences	Υ	0	1	0	1
NATE	National Analysis of Trends in Emergencies System (NATES)	Υ	0	0	0	0
NCPL	Non-Compliance Reports	Υ	0	0	0	0
NDFT	National Defence & Canadian Forces Fuel Storage Tanks	Υ	0	0	0	0
NDSP	National Defence & Canadian Forces Spills	Y	0	0	0	0
NDWD	National Defence & Canadian Forces Waste Disposal Sites	Υ	0	0	0	0
NEES	National Environmental Emergencies System (NEES)	Y	0	0	0	0
NPCB	National PCB Inventory	Υ	0	4	0	4
NPRI	National Pollutant Release Inventory	Υ	3	3	0	3
ogw	Oil and Gas Wells	Υ	0	0	0	0
oogw	Ontario Oil and Gas Wells	Υ	0	0	0	0
орсв	Inventory of PCB Storage Sites	Υ	0	6	0	6
ORD	Orders	Y	0	0	0	0
ORIS	Occurrence Reporting Information System	Y	3	4	0	4
PAP	Canadian Pulp and Paper	Y	0	0	0	0
PCFT	Parks Canada Fuel Storage Tanks	Y	0	0	0	0
PES	Pesticide Register	Y	0	0	0	0
PST	Private Fuel Storage Tanks	Y	0	0	0	0
REC	Ontario Regulation 347 Waste Receivers Summary	Y	1	1	0	1
RSC	Record of Site Condition	Υ	0	0	0	0
RST	Retail Fuel Storage Tanks	Y	0	0	-	U

Report Summary

Order Number: 20070226016 Site Name: Un-Named Site

Site Address 3 AVE E && 24 ST E Owen Sound, ON Report Type: Custom Report, 0.25 km Search Radius

Database		Selected	On-site	Within 0.25	0.25km to 2.00km	Total
SCT	Scott's Manufacturing Directory	Υ	0	0	0	0
SRDS	Wastewater Discharger Registration Database	Υ	0	0	0	0
TANK	Anderson's Storage Tanks	Υ	0	0	0	0
TCFT	Transport Canada Fuel Storage Tanks	Υ	0	0	0	0
WDS	Waste Disposal Sites - MOE CA Inventory	Υ	0	0	0	0
WDSH	Waste Disposal Sites - MOE 1991 Historical Approval Inventory	Υ	0	0	0	0
wwis	Water Well Information System	Υ	0	0	0	0
		TOTAL	16	48	0	48

The databases chosen by the client as per the submitted order form are denoted in the 'Selected' column in the above table. Counts have been provided outside the primary buffer area for cursory examination only. These records have not been examined or verified, therefore, they are subject to change.

12 Concorde Pl, Suite 800 North York, ON M3C 4J2 416-510-5204 Environmental Risk Information Service Project Property: Un-Named Site 3 AVE E && 24 ST E Owen Sound, ON ERIS Project #: 20070226016 Date: APR-03-2007 LEGEND Project Property

SITE DIAGRAM

Database Location Points of Interest

Landuse Classifications

Open Area Residential

> Chimney Silo

Commercial

Pipe & Transmission Lines ---- Pipeline

Waterbody

Transmission Tower ----- Transmission Line

Recreation

Transformer Station Ø

₽ E

Railway - Abandoned Railway - Sidetrack Reilway - Main †

Other Recreation Area Sports/Race Track

Park/Sports Field

Transportation - Other Tunnel Bridge

Wooded Area

Vegetation

Campground

Cemetery

Embankment Runway Trait

Industrial Resources

Vineyard Orchard

Conveyor

5

Intermittent Waterway Permanent Waterway **Hydrographic Features**

Crane: Moveable Crane: Stationary

> Open Reservoir Dyke/Levee

Rock Cut

Tank

Breakwall

Auto Wrecker Lumber Yard

This diagram is to be used solely for relative street location purposes. It may not accurately portray street or site positions.

Section ii

Site Report

20070226016 Order Number: 2 Site Name: L Site Address 3 Report Type: (

Un-Named Site 3 AVE E && 24 ST E Owen Sound, ON Custom Report, 0.25 km Search Radius

FOR COMPLETE INFORMATION, REFER TO DETAIL REPORT

Map Key	Certificates of Approval Map Key Company Name	Address		City	Postal Code
CA-3	OWEN SOUND CITY	2050-3RD AVE.E.SLUDGE STOR.FAC		OWEN SOUND CITY	
ERIS Historical Searches	al Searches				
Map Key	Company Name	Address		City	Postal Code
EHS-1		3rd Avenue East		Owen Sound	
tional Pollu	National Pollutant Release Inventory				
Map Key	Company Name	Address		City	Postal Code
NPRI-1	Ontario Clean Water Agency	P. O. Box 760, Anglesia Street N		Owen Sound	N4K 2M6
		2050 Third Avenue; East			
NPRI-2	City of Owen Sound	2050 3rd Avenue East		Owen Sound	
NPRI-3	City of Owen Sound	2050 3rd Avenue East		Owen Sound	
urrence R	Occurrence Reporting Information System				
Map Key	Company Name	Address		City	Postal Code
ORIS-2	MOE			OWEN SOUND CITY	
		OWEN SOUND WPCP 205	2050 THIRD AVENUE EAST		
ORIS-3	ONTARIO CLEAN WATER AGENCY	POTTAWATOMI RIVER		OWEN SOUND CITY	
		OWEN SOUND WPCP 205	2050 THIRD AVENUE EAST		
ORIS-4	MOE	PARAGON PUMPING STATION		OWEN SOUND CITY	
		OWEN SOUND WPCP 205	2050 THIRD AVENUE EAST		
ario Regul	Ontario Regulation 347 Waste Receivers Summary				
Map Key	Company Name	Address		City	Postal Code
REC-1	ONTARIO CLEAN WATER AGENCY	OWEN SOUND WASTE WATER TREATMENT PLANT 2050 THIRD AVENUE EAST	AENT PLANT	OWEN SOUND	N4K 2M6
ario Regul	Ontario Regulation 347 Waste Generators Summary				
Map Key	Company Name	Address		City	Postal Code
GEN-11	MINISTRY OF THE ENVIRONMENT	1		OWEN SOUND	N4K 2M6
		2050 THIRD AVE. E.			

Section iii

Site Report

Order Number: 20070226016
Site Name: Un-Named Site
Site Address 3 AVE E && 24 S
Report Type: Custom Report, C

Un-Named Site 3 AVE E && 24 ST E Owen Sound, ON Custom Report, 0.25 km Search Radius

ļ	H			
1				
1	ļ			
1				
1	_			
:				
•			Ī	
ı				
ı		ļ	į	
1				
1	ĺ		1	
ì			•	
			,	
i		i		
i	Ì	i		
i	j	į	Ì	
1	1	į		
į		į		
1		•		
İ				
•	ŧ		ĺ	
:	ì		į	
1	1	Ì		
1	١		١	١
1	j	į		
	ì	ĺ		
i		•		
i				
i		ı		
			ļ	ı
1		Ì		
:	3	ĺ	į	
(١	
(١	
1			,	,
			١	
ì		i		
•				

GEN-12 Veolia Water Canada Incorporated 2050-3rd Avenue East Owen Sound NAK 2M6 GEN-13 Ontario Clean Water Agency 2050 Third Avenue East Owen Sound NAK 2M6 GEN-14 Ontario Clean Water Agency 2050 THIRD AVENUE EAST Owen SOUND NAK 2M6 GEN-15 ONTARIO CLEAN WATER AGENCY 2050 THIRD AVENUE EAST Owen SOUND NAK 2M6 GEN-16 MINISTRY (SEE & USE ON1808623) 27-213 2050 THIRD AVE. E. Owen SOUND NAK 2M6 GEN-17 MINISTRY (SEE & USE ON1808623) 2050 THIRD AVE. E. Owen SOUND Owen SOUND NAK 2M6	Map Key	Company Name	Address	City	Postal Code
Ontario Clean Water Agency 2050 Third Avenue East Owen Sound ONTARIO CLEAN WATER AGENCY 2050 3RD AVENUE EAST OWEN SOUND ONTARIO CLEAN WATER AGENCY 2050 THIRD AVENUE EAST OWEN SOUND MINISTRY (SEE & USE ON1808623) 27-213 2050 THIRD AVE. E. MINISTRY (SEE & USE ON1808623) 2050 THIRD AVENUE EAST OWEN SOUND	GEN-12	Veolia Water Canada Incorporated	2050-3rd Avenue East	Owen Sound	N4K2M6
ONTARIO CLEAN WATER AGENCY ONTARIO CLEAN WATER AGENCY ONTARIO CLEAN WATER AGENCY ONTARIO CLEAN WATER AGENCY MINISTRY (SEE & USE ON1808623) 2050 THIRD AVE. E. MINISTRY (SEE & USE ON1808623) 2050 THIRD AVE. E. OWEN SOUND OWEN SOUND	GEN-13	Ontario Clean Water Agency	2050 Third Avenue East	Owen Sound	
ONTARIO CLEAN WATER AGENCY 2050 THIRD AVENUE EAST OWEN SOUND MINISTRY (SEE & USE ON1808623) 27-213 MINISTRY (SEE & USE ON1808623) 2050 THIRD AVE. E. MINISTRY (SEE & USE ON1808623) 2050 THIRD AVENUE EAST OWEN SOUND	GEN-14	ONTARIO CLEAN WATER AGENCY	2050 3RD AVENUE EAST	OWEN SOUND	N4K 2M6
MINISTRY (SEE & USE ON1808623) 27-213 2050 THIRD AVE. E. MINISTRY (SEE & USE ON1808623) 2050 THIRD AVENUE EAST OWEN SOUND	GEN-15	ONTARIO CLEAN WATER AGENCY	2050 THIRD AVENUE EAST	OWEN SOUND	N4K 2M6
2050 THIRD AVE. E. MINISTRY (SEE & USE ON1808623) 2050 THIRD AVENUE EAST OWEN SOUND	GEN-16	MINISTRY (SEE & USE ON1808623) 27-213		OWEN SOUND	N4K 2M6
MINISTRY (SEE & USE ON1808623) 2050 THIRD AVENUE EAST			2050 THIRD AVE. E.		
	GEN-17	MINISTRY (SEE & USE ON1808623)	2050 THIRD AVENUE EAST	OWEN SOUND	N4K 2M6

Section iv

Detail Report

Order Number: 20070226016

Site Name: Un-Named Site

Site Address: 3 AVE E && 24 ST E Owen Sound ON

Report Type: Custom Report, 0.25 km Search Radius

If information is required for sites located beyond the selected address, please contact your ERIS representative.

Certificates of Approval

ERIS Historical Searches

Ontario Regulation 347 Waste Generators Summary

Mineral Occurrences

National PCB Inventory

National Pollutant Release Inventory

Inventory of PCB Storage Sites

Occurrence Reporting Information System

Ontario Regulation 347 Waste Receivers Summary

Certificates of Approval

Мар Кеу	Company	Address	Certificate # Application Year	tssue Date	Approval Type	Status	Application Type
CA-1	806372 ONTARIO LTD RIDGECREST ESTATES	8TH AVE. E/22ND ST. E/23RD ST. OWEN SOUND CITY	3-0282-91- 91 Client Name: Client Address: Client Clty: Client Postal Code: Project Description: Contaminants: Emission Control:	4/25/1991	Municipal sewage	Approved	
CA-2	806372 ONTARIO LTD RIDGECREST ESTATES	8TH AVE.E/22ND ST. E/23RD ST.E OWEN SOUND CITY	7-0255-91- 91 Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants:	4/25/1991	Municipal water	Approved	
CA-3	OWEN SOUND CITY	2050-3RD AVE.E. SLUDGE STOR,FAC OWEN SOUND CITY	3-0045-96- 96 Client Name: Client Address: Client Clty: Client Postal Code: Project Description: Contaminants:	2/21/1996	Municipal sewage	Approved	
ÇA 4	P.U.C. OWEN SOUND	21ST ST. E., 3RD AVE. E. OWEN SOUND CITY	7-0267-90- 90 Client Name: Client Address: Client City: Cllent Postal Code: Project Description: Contaminants: Emission Control:	4/18/1990	Municipal water	Approved	

Certificates of Approval

Map Key	Company	Address	Certificate #	Application Year	Issue Date	Approval Type	Status	Application Type	
CA-5	OWEN SOUND MUNICIPAL NON-PROFIT HOUSING	6TH AVE. E./21ST ST. E. OWEN SOUND CITY	3-0182-90-	06	6/12/1990	Municipal sewage	Approved		
			Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants: Emission Control:	s: Code: iption: itrol:					
CA-6	OWEN SOUND CITY	6TH AVE. E./21ST STREET E. OWEN SOUND CITY	7-0846-90-	06	7/11/1990	Municipal water	Approved		
			Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants: Emission Control:	s: Code: iption: :: irrol:					
CA-7	OWEN SOUND MUNICIPAL	6TH AVE. E./21ST ST. E. OWEN SOLIND CITY	7-0135-90-	06	6/12/1990	Municipal water	Approved		
			Client Name: Client Address: Client City: Client City: Client Postal Code: Project Description: Contaminants: Emission Control:	s: Code: iption: irrol:					
CA-8	OWEN SOUND CITY	6TH AVE. E21ST ST. EAST OWEN SOUND CITY	3-1038-90-	06	7/11/1990	Municipal sewage	Approved		
			Client Name: Client Address: Client City: Clent Postal Code: Project Description: Contaminants: Emission Control:	s: Code: iption: irrol:					

Certificates of Approval

Map Key	Company	Address	Certificate #	Application Issue Date Year	Issue Date	Approval Type	Status	Application Type
6-Y)	OWEN SOUND CITY	21ST ST.E./6TH AVE.E/5TH AVE.E OWEN SOUND CITY	3-0293-95-	95	4/3/1995	Municipal sewage	Approved	
			Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants:	·· ode: stion: rol:				
CA-10	CAN-RESCO SERVICES INC.	6TH AVE. E/20TH & 21ST ST. E OWEN SOUND CITY	7-1779-90-	06	6/11/1991	Municipal water	Approved in 1991	
			Client Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants:	rintion:				
n/a	CAN-RESCO SERVICES INC.	6TH AVENUE EAST OWEN SOUND CITY	3-2189-90-	06	6/11/1991	Municipal sewage	Approved in 1991	
			Cient Name: Client Address: Client City: Client Postal Code: Project Description: Contaminants: Emission Control:	rition:				

ERIS Historical Searches

Map Key	Map Key Company	Address	Order No.	Report Date	Report Type	Search Radius (km)
EHS-1		3rd Avenue East Owen Sound	20061107021	11/16/2006	Complete Report	0.25
			Addit. Info Ordered:	Fire Insur. Maps And /or Site Plans	SU	
EHS-2		Owen Sound	20000705005	7/7/00	Complete Report	3.50
			Addit. Info Ordered:			

Ontario Regulation 347 Waste Generators Summary

Мар Кеу	Company	Address	SIC Code	SIC Description	Waste Code Waste Description	ste Description
GEN-1	RUSSEL BROTHERS	(DIV. OF PACCAR OF CANADA LTD.)	3022	PLATE WORK INDUSTRY	145 PAI	PAINT/PIGMENT/COATING
		2202 THIRD AVE. E. OWEN SOUND	Generator #:	ON0218000	211 AR(RESIDUES AROMATIC SOLVENTS
		N4K 5P7	Approvar rrs.	66,67,66,69	213 PE1	PETROLEUM DISTILLATES
					252 WA	WASTE OILS & LUBRICANTS
GEN-2	RUSSEL BROTHERS 33-039	DIV. OF RT1 LEYLAND INC. 2202 THIRD AVE. E.	3022	PLATE WORK INDUSTRY	145 PAII	PAINT/PIGMENT/COATING
		OWEN SOUND N4K 5P7	Generator #:	ON0218000	Z11 ARC	RESIDUES AROMATIC SOLVENTS
			Approval Yrs:	94,95,96	213 PET	PETROLEUM DISTILLATES
					243 PCB'S	S:
					252 WA	WASTE OILS & LUBRICANTS
GEN-3	OWEN SOUND, CORPORATION OF THE CITY OF	2202 THIRD AVENUE EAST OWEN SOUND				
			Generator #: Approval Yrs:	ON0393505 02,03		
GEN.4	OWEN SOUND, CORPORATION OF THE CITY OF	2202 THIRD AVENUE EAST OWEN SOUND	8373	ENVIRON. ADMIN.	243 PCB'S	ý
			Generator #: Approval Yrs:	ON0393505 99,00,01	251 OIL	OIL SKIMMINGS & SLUDGES
GEN-5	RUSSEL BROTHERS	DIV. OF RT1 LEYLAND INC. 2202 THIRD AVE F	3022	PLATE WORK INDUSTRY	145 PAIN	PAINT/PIGMENT/COATING
		OWEN SOUND N4K 5P7	Generator #:	ON0218000	RES 211 ARO	RESIDUES AROMATIC SOLVENTS
			Approval 118.	30,32,32,32	213 PET	PETROLEUM DISTILLATES
					243 PCB'S	S
					252 WAS	WASTE OILS & LUBRICANTS
GEN-6	RUSSEL BROTHERS	2202 THIRD AVENUE EAST OWEN SOUND	3022	PLATE WORK INDUSTRY	145 PAIN	PAINT/PIGMENT/COATING PERINJES
		N4K 2M6	Generator #:	ON0218000	211 ARO	AROMATIC SOLVENTS
					213 PETF	PETROLEUM DISTILLATES
					243 PCB'S	S
					252 WAS	WASTE OILS & LUBRICANTS

Ontario Regulation 347 Waste Generators Summary

Map Key	Company	Address	SIC Code	SIC Description	Waste Cod	Waste Code Waste Description
GEN-7	982435 (SEE & USE ON0393505)	2202-3RD AVENUE EAST OWEN SOUND	3241	TRUCK & BUS BODY	243	PCB'S
		N4K 2H4	Generator #: Approval Yrs:	ON1924400 96,97,98		
GEN-8	OWEN SOUND, CORPORATION OF THE CITY OF	2202 THIRD AVENUE EAST OWEN SOUND				
			Generator #: Approval Yrs:	ON0393505 04		
GEN-9	982435 ONTARIO LTD.	2202-3RD AVENUE EAST OWEN SOUND	3241	TRUCK & BUS BODY	243	PCB'S
			Generator #: Approval Yrs:	ON1924400 94,95		
GEN-10	OWEN SOUND, CORPORATION OF THE CITY OF	2202 3RD AVENUE EAST OWEN SOUND	8373	ENVIRON. ADMIN.	243	PCB'S
			Generator #: Approval Yrs:	ON0393505 96,97,98	251	OIL SKIMMINGS & SLUDGES
GEN-11	MINISTRY OF THE ENVIRONMENT	2050 THIRD AVE. E. OWEN SOUND	4999	OTHER UTILITY IND.	213	PETROLEUM DISTILLATES
			Generator #: Approval Yrs:	ON0199835 86,87,88,89,90	252	WASTE OILS & LUBRICANTS
GEN-12	Veolia Waler Canada Incorporated	2050-3rd Avenue East Owen Sound	221320	Sewage Treatment Facilities	213	PETROLEUM DISTILLATES
			Generator #: Approval Yrs:	ON3452287 05	252	WASTE OILS & LUBRICANTS
GEN-13	Ontario Clean Water Agency	2050 Third Avenue East Owen Sound	221320	Sewage Treatment Facilities		
			Generator #: Approval Yrs:	ON3433302 03,04		
GEN-14	ONTARIO CLEAN WATER AGENCY	2050 3RD AVENUE EAST OWEN SOUND	4899	OTHER UTILITY IND.	213	PETROLEUM DISTILLATES
			Generator #:	ON1808623	251	OIL SKIMMINGS & SLUDGES
			Approval Yrs:	99,00,01	252	WASTE OILS & LUBRICANTS

Ontario Regulation 347 Waste Generators Summary

Map Key	Map Key Company	Address	SIC Code	SIC Description	Waste Cod	Waste Code Waste Description
GEN-15	ONTARIO CLEAN WATER AGENCY	2050 THIRD AVENUE EAST OWEN SOUND	4999	OTHER UTILITY IND.	213	PETROLEUM DISTILLATES
		N4K 2M6	Generator #: Approval Yrs:	ON1808623 94,95,96,97,98	252	WASTE OILS & LUBRICANTS
GEN-16	MINISTRY (SEE & USE ON1808623) 27-213	2050 THIRD AVE. E. OWEN SOUND	4999	OTHER UTILITY IND.	213	PETROLEUM DISTILLATES
		N4K 2M6	Generator #: Approval Yrs:	ON0199835 92,93,94,95,96,97	252	WASTE OILS & LUBRICANTS
GEN-17	MINISTRY (SEE & USE ON1808623)	2050 THIRD AVENUE EAST OWEN SOUND	4999	OTHER UTILITY IND.	213	PETROLEUM DISTILLATES
		N4K 2M6	Generator #: Approval Yrs:	ON0199835 98	252	WASTE OILS & LUBRICANTS

Mineral Occurrences

Kev	Man Key Company	Ardraes	Feeting	Morthing	Zone		Danceli Chatus	ı
,				9			entro recepto	
MNR-1			505550.00 4936647.00 17	4936647.00	17	MDI41A10SW00002	PAST PRODUCING MINE WITHOUT RESERVES	
			Mining Division: Geological District: SOUT Claim Map: Access Description: NA	n: :trict: SOUTH! otion: N/A	Mining Division: Geological District: SOUTHWESTERN ONTARIO Claim Map: Access Description: N/A	ARIO		
			Year	Name	Twp/Area	Con/Lot/Sec	Commodity Deposit Characteristic	
			1990	CONTINEN TAL BRÍCK OWEN SOUND				
			1990	OWEN SOUND BRICK				
					SYDENHAM			
							SHALE (STRUCTURAL MATERIALS)	

Federal Source Database

National PCB Inventory

Map Key	Company	Address	Company	Transaction Date	Inspection	Industry	Site Status	
NPCB-1	RUSSEL BROTHERS - A DIVISION OF PACCAR	P.O. BOX 427; 2202 3RD AVE. E. OWEN SOUND NAK 5P7	F0185					
			State	Status	<u>-</u> ,	<u>ltem</u>	Pcb Type/Code	Location
NPCB-2	FORMER RUSSELL BROS. PLANT SITE	2202 3RD AVE. E. 3RD AVE. E. OWEN SOUND NAK 2M6	F0202					
			State	Status	=1	<u>Item</u>	Pcb Type/Code	Location
				In-Storage				
NPCB-3	FORMER RUSSELL BROS. PLANT SITE	P.O. BOX 427; 2202 3RD AVE. E. OWEN SOUND N4K 5P7	F0200	1/29/1996				
			State	Status	=1	<u>item</u>	Pcb Type/Code	Location
NPCB.4	FORMER RUSSELL BROS. PLANT Site	2202 3RD AVE. E. P. O. BOX 427 OWEN SOUND	F0199	30/12/1995		Undefined	Stored for Disposal	
			State	Status	픠	<u>Item</u>	Pcb Type/Code	Location
			Full	Stored for disposal	ά	Barrel Mineral Oil	Mineral Oil/Unknown	
			Full	Stored for disposal		Transformer	Mineral Oil/Unknown	

National Pollutant Release Inventory

Federal Source Database

Inventory of PCB Storage Sites

						Adda
Мар Кеу	Company	Address	Year	Site Number	Quantity	Description
OPCB-1	FORMER RUSSELL BROS. PLANT SITE	P.O. BOX 427 2202 3RD AVE. E.	1998	10488AG12	12.00	Number of Capacitors with
		OWEN SOUND N4K 5P7			289.00	High Level PCEs (>1000 ppm) Weight of Bulk Liquid with Low
					1400.00	Lever Pocs (* 1000 ppm.) kg Weight of Liquid in Transformers with Low Level
					2.00	PCBs (< 1000 ppm) kg Number of Transformers with Low Level PCBs (< 1000 ppm)
					1.00	kg Number of Drums of Other Material with Low Level PCBs (< 1000 pmm) kn
					150.00	Calculated Weight of Drums of Other Material with Low Level PCBs (< 1000 ppm) kg
OPCB-2	FORMER RUSSELL BROS. PLANT SITE	P.O. BOX 427 2202 3RD AVE. E. OWEN SOUND	2003	10488AG12	2.00	Number of Transformers with Low Level PCBs (< 1000 ppm) kg
		N4K 5P7			289.00	 Weight of Bulk Liquid with Low Level PCBs (< 1000 ppm) kg
					1400.00	Weight of Liquid in Transformers with Low Level PCRs (< 1000 npm) kg
					1.00	Number of Drums of Other Material with Low Level PCBs (< 1000 pnm) kg
					150.00	Calculated Weight of Drums of Calculated Weight Low Level Other Material with Low Level PCBs (< 1000 ppm) kg
					12.00	Number of Capacitors with High Level PCBs (>1000 ppm)
OPCB-3	FORMER RUSSELL BROS. PLANT SITE	P.O. BOX 427 2202 3RD AVE. E.	2004	10488AG12	289	Weight of Bulk Liquid with Low Level PCBs (< 1000 nom) ka
		OWEN SOUND N4K 5P7			1400	Weight of Liquid in Transformers with Low Level PCRs (< 4.000 pcm) kg
					2	Number of Transformers with Low Level PCBs (< 1000 ppm)
					-	Number of Drums of Other Material with Low Level PCBs
					150	Calculated Weight of Drums of Other Material with Low Level
					12	Number of Capacitors with High Level PCBs (>1000 ppm)

Inventory of PCB Storage Sites

	TO 100 100 100 100 100 100 100 100 100 10					
Map Key	Company	Address	Year	Site Number	Quantity	Description
OPCB-4	FORMER RUSSELL BROS. PLANT SITE	P.O. BOX 427 2202 3RD AVE. E. OWEN SOUND	1995	10488AG12	1.00	Number of Drums of Ballasts with High Level PCBs (>1000 with)
		74K 577			200.00	Fr, Weight of Drums of Ballasts with High Level PCBs (>1000 nnm) kg
					12.00	Print, my Vumber of Capacitors with High Level PCRs (>1000 nom)
					90.06	Weight of Capacitors with High Level PCSs (> 1000 pcm) kg
					1520.00	Weight of Liquid in Transformers with Low Level PCBs (< 1000 ppm) kg
					2.00	Number of Transformers with Low Level PCBs (< 1000 ppm) ka
					1.00	Number of Drums of Other Material with Low Level PCBs (< 1000 pnm) kn
					150.00	Weight of Drums of Other Material with Low Level PCBs
					2.00	Weight of Other Material Not in Drums with Low Level PCBs (<
OPCB-5	FORMER RUSSELL BROS. PLANT SITE	P.O. BOX 427 2202 3RD AVE E. OWEN SOUND NAK 5P7	2000	10488AG12	289.00 1400.00	Weight of Bulk Liquid with Low Level PCBs (< 1000 ppm) kg Weight of Liquid in Transformers with Low Level
					2.00	PCBs (< 1000 ppm) kg Number of Transformers with Low Level PCBs (< 1000 ppm)
					12.00	Number of Capacitors with High Level PCBs (>1000 nom)
					1.00	Number of Drums of Other Material with Low Level PCBs (< 1000 ppm) kg
					150.00	Calculated Weight of Drums of Other Material with Low Level PCBs (< 1000 ppm) kg

Inventory of PCB Storage Sites

Description	Number of Capacitors with High Level PCBs (< 1000 ppm) Weight of Bulk Liquid with Low Level PCBs (< 1000 ppm) kg Weight of Liquid in Transformers with Low Level PCBs (< 1000 ppm) kg Number of Transformers with Low Level PCBs (< 1000 ppm) kg Number of Drums of Other Material with Low Level PCBs (< 1000 ppm) kg Calculated Weight of Drums of Other Material with Low Level PCBs (< 1000 ppm) kg Calculated Weight of Drums of Other Material with Low Level PCBs (< 1000 ppm) kg
Quantity	12.00 289.00 1400.00 2.00 1.00
Site Number	10488AG12
Year	1999
Address	P.O. BOX 427 2202 3RD AVE. E. OWEN SOUND N4K 5P7
Map Key Company	FORMER RUSSELL BROS. PLANT SITE
Мар Кеу	OPCB-6

Occurrence Reporting Information System

-						
Map Key	Company	Address	Spill ID	Medium	Environmental Impact Date of C	Date of Occurrence Nature of Impact
ORIS-1	RUSSEL BROTHERS	ELECTRICAL CAPACITATOR OWEN SOUND PLANT	19351	LAND	"	
		2202 THIRD AVENUE EAST OWEN SOUND CITY	Synopsis: Cause:		BACKENTRY - RUSSEL BROS. LTD SMAL OTHER CONTAINER LEAK MATERIAL FAILURE	BACKENTRY - RUSSEL BROS. LTD SMALL AMOUNT OF CAPACITATOR OIL TO LAND. OTHER CONTAINER LEAK MATERIAL FAILURE
ORIS-2	MOE	OWEN SOUND WPCP 2050 THIRD AVEN IF FAST	10948	LAND	10/27/1988	88
		OWEN SOUND CITY	Synopsis: Cause:		MOE-500 L FERRIC CHLORIDETO GROUND AND CATCH BASIN PIPE/HOSE LEAK UNKNOWN) AND CATCH BASIN
ORIS-3	ONTARIO CLEAN WATER AGENCY	POTTAWATOMI RIVER OWEN SOUND WPCP	124092	WATER	POSSIBLE 3/4/1996	Water course or lake
		2050 THIRD AVENUE EAST OWEN SOUND CITY	Synopsis: Cause:		O.C.W.ARAW SEWAGE TO POTTAWATOMI R WASTEWATER DISCHARGE TO WATERCOURSE EQUIPMENT FAILURE	POTTAWATOMI RIVER DUE TO MECHANICAL FAILURE.) WATERCOURSE
ORIS4	MOE	PARAGON PUMPING STATION OWEN SOUND WPCP	16194	WATER	NOT ANTICIPATED 3/23/1989	
		2050 THIRD AVENUE EAST OWEN SOUND CITY	Synopsis: Cause:		MOE-RAW UNCHLORINATED SEWAGE TO SYDENHAM RIVER WASTEWATER DISCHARGE TO WATERCOURSE EQUIPMENT FAILURE	O SYDENHAM RIVER URSE
n/a	AUTOMOTIVE REPAIR SHOP	HWY 6 & 20TH AVENUE. OWEN SOUND CITY	86312	LAND	CONFIRMED //	Soil contamination
			Synopsis: Cause:		BACKENTRY, ARCHIE'S SER- VICE CENTRE UNDERGROUND TANK LEAK CORROSION	BACKENTRY, ARCHIE'S SER- VICE CENTRE- CONTAMINATEDSOIL FROM UNDERGRND TANKS UNDERGROUND TANK LEAK CORROSION

Ontario Regulation 347 Waste Receivers Summary

	The state of the s			
Waste Code Waste Description				
Receiver #: Facility Type	 WATER POLLUTION	CONTROL PLANT	Approval Yrs: 98,99,00,01,02,03,04,05	
Receiver #:	W110551		Approval Yrs:	
Address	WATER	2050 THIRD AVENUE CAST	OWEN SOUND	N4K 2M6
 Map Key Company	ONTARIO CLEAN WATER			
Map Key	REC-1			

Appendix: Ontario Database Descriptions

EcoLog Environmental Risk Information Services Ltd can search the following databases. The extent of historical information varies with each database and current information is determined by what is publicly available to EcoLog ERIS at the time of update. Note: Databases denoted with "*" indicates that the database will no longer be updated. See the individual database descriptions for more information.

Federal Government Source Databases:

Diagram Identifier:

Environmental Effects Monitoring 1992-2004

EEM

The Environmental Effects Monitoring program assesses the effects of effluent from industrial or other sources on fish, fish habitat and human usage of fisheries resources. Since 1992, pulp and paper mills have been required to conduct EEM studies under the Pulp and Paper Effluent Regulations. This database provides information on the mill name, geographical location and sub-lethal toxicity data.

Environmental Issues Inventory System 1992-2001

EIIS

The Environmental Issues Inventory System was developed through the implementation of the Environmental Issues and Remediation Plan. This plan was established to determine the location and severity of contaminated sites on inhabited First Nation reserves, and where necessary, to remediate those that posed a risk to health and safety; and to prevent future environmental problems. The EIIS provides information on the reserve under investigation, inventory number, name of site, environmental issue, site action (Remediation, Site Assessment), and date investigation completed.

Federal Convictions 1988-Jan 2002

FCON

Environment Canada maintains a database referred to as the "Environmental Registry" that details prosecutions under the Canadian Environmental Protection Act (CEPA) and the Fisheries Act (FA). Information is provided on the company name, location, charge date, offence and penalty.

Contaminated Sites on Federal Land June 2000-2005

FCS

The Treasury Board of Canada Secretariat maintains an inventory of all known contaminated sites held by various Federal departments and agencies. This inventory does not include properties owned by Crown corporations, but does contain nonfederal sites for which the Government of Canada has accepted some or all financial responsibility. All sites have been classified through a system developed by the Canadian Council of Ministers of the Environment. The database provides information on company name, location, site ID #, property use, classification, current status, contaminant type and plan of action for site remediation.

Fisheries & Oceans Fuel Tanks 1964-Sept 2003

FOFT

Fisheries & Oceans Canada maintains an inventory of all aboveground & underground fuel storage tanks located on Fisheries & Oceans property or controlled by DFO. Our inventory provides information on the site name, location, tank owner, tank operator, facility type, storage tank location, tank contents & capacity, and date of tank installation.

Indian & Northern Affairs Fuel Tanks 1950-Aug 2003

IAFT

The Department of Indian & Northern Affairs Canada (INAC) maintains an inventory of all aboveground & underground fuel storage tanks located on both federal and crown land. Our inventory provides information on the reserve name, location, facility type, site/facility name, tank type, material & ID number, tank contents & capacity, and date of tank installation.

National Analysis of Trends in Emergencies System (NATES) 1974-1994*

NATE

In 1974 Environment Canada established the National Analysis of Trends in Emergencies System (NATES) database, for the voluntary reporting of significant spill incidents. The data was to be used to assist in directing the work of the emergencies program. NATES ran from 1974 to 1994. Extensive information is available within this database including company names, place where the spill occurred, date of spill, cause, reason and source of spill, damage incurred, and amount, concentration, and volume of materials released.

National Defence & Canadian Forces Fuel Tanks Up to May 2001

NDFT

The Department of National Defence and the Canadian Forces maintains an inventory of all aboveground & underground fuel storage tanks located on DND lands. Our inventory provides information on the base name, location, tank type & capacity, tank contents, tank class, date of tank installation, date tank last used, and status of tank as of May 2001. Please note that due to the September 2001 terrorist attack, new National Security protocols have prohibited any release of updates to this database.

National Defence & Canadian Forces Spills March 1999-Feb 2005

NDSP

The Department of National Defence and the Canadian Forces maintains an inventory of spills to land and water. All spill sites have been classified under the "Transportation of Dangerous Goods Act - 1992". Our inventory provides information on the facility name, location, spill ID #, spill date, type of spill, as well as the quantity of substance spilled & recovered.

National Defence & Canadian Forces Waste Disposal Sites 2001, 2003

NDWD

The Department of National Defence and the Canadian Forces maintains an inventory of waste disposal sites located on DND lands. Where available, our inventory provides information on the base name, location, type of waste received, area of site, depth of site, year site opened/closed and status.

National Environmental Emergencies System (NEES) 1974-2003

NEES

In 2000, the Emergencies program implemented NEES, a reporting system for spills of hazardous substances. For the most part, this system only captured data from the Atlantic Provinces, some from Quebec and Ontario and a portion from British Columbia. Data for Alberta, Saskatchewan, Manitoba and the Territories was not captured. However, NEES is also a repository for all previous Environment Canada spill datasets. NEES is composed of the historic datasets – or Trends – which dates from approximately 1974 to present. NEES Trends is a compilation of historic databases, which were merged and includes data from NATES (National Analysis of Trends in Emergencies System), ARTS (Atlantic Regional Trends System), and NEES. In 2001, the Emergencies Program determined that variations in reporting regimes and requirements between federal and provincial agencies made national spill reporting and trend analysis difficult to achieve. As a consequence, the department has focused efforts on capturing data on spills of substances which fall under its legislative authority only (CEPA and FA). As such, the NEES database will be decommissioned in December 2004.

National PCB Inventory 1988-June 2004

NPCB

Environment Canada's National PCB inventory includes information on in-use PCB containing equipment in Canada including federal, provincial and private facilities. All federal out-of-service PCB containing equipment and all PCB waste owned by the federal government or by federally regulated industries such as airlines, railway companies, broadcasting companies, telephone and telecommunications companies, pipeline companies, etc. are also listed. Although it is not Environment Canada's mandate to collect data on non-federal PCB waste, the National PCB inventory includes some information on provincial and private PCB waste and storage sites.

National Pollutant Release Inventory 1993-2005

NPRI

Environment Canada has defined the National Pollutant Release Inventory ("NPRI") as a federal government initiative designed to collect comprehensive national data regarding releases to air, water, or land, and waste transfers of 178 specified substances.

Parks Canada Fuel Storage Tanks 1920-Jan 2005

PCFT

Canadian Heritage maintains an inventory of all known fuel storage tanks operated by Parks Canada, in both National Parks and at National Historic Sites. The database details information on site name, location, tank install/removal date, capacity, fuel type, facility type, tank design and owner/operator.

Transport Canada Fuel Storage Tanks 1970- May 2003

TCFT

Within the provinces of BC, MB, NB, NF, ON, PE, and QC; Transport Canada currently owns and operates 90 fuel storage tanks. Our inventory provides information on the site name, location, tank age, capacity and fuel type.

Provincial Government Source Databases:

Abandoned Aggregate Inventory Up to Sept 2002

AAGR

The MAAP Program maintains a database of all abandoned pits and quarries. Please note that the database is only referenced by lot and concession and city/town location. The database provides information regarding the location, type, size, land use, status and general comments.

Aggregate Inventory Up to May 2005

AGR

The Ontario Ministry of Natural Resources maintains a database of all active pits and quarries. Please note that the database is only referenced by lot\concession and city/town location. The databases provides information regarding the registered owner/operator, location, status, licence type, and maximum tonnage.

Abandoned Mines Information System 1800-2005

AMIS

The Abandoned Mines Information System contains data on known abandoned and inactive mines located on both Crown and privately held lands. The information was provided by the Ministry of Northern Development and Mines (MNDM), with the following disclaimer: "the database provided has been compiled from various sources, and the Ministry of Northern Development and Mines makes no representation and takes no responsibility that such information is accurate, current or complete". Reported information includes official mine name, status, background information, mine start/end date, primary commodity, mine features, hazards and remediation.

Certificates of Approval 1985-Sept 2002

CA

This database contains the following types of approvals: Certificates of Approval (Air) issued under Section 9 of the Ontario EPA; Certificates of Approval (Industrial Wastewater) issued under Section 53 of the Ontario Water Resources Act ("OWRA"); and Certificates of Approval (Municipal/Provincial Sewage and Waterworks) issued under Sections 52 and 53 of the OWRA.

Coal Gasification Plants 1987, 1988*

COAL

This inventory of all known and historical coal gasification plants was collected by the Ministry of Environment. It identifies industrial sites that produced and continue to produce or use coal tar and other related tars. Detailed information is available and includes: facility type, size, landuse, soil condition, site operators/occupants, site description, and potential environmental impacts. This information is effective to 1988, but the program has since been discontinued.

Compliance and Convictions 1989-2003

CONV

This database summarizes the fines and convictions handed down by the Ontario courts beginning in 1989. Companies and individuals named here have been found guilty of environmental offenses in Ontario courts of law.

Drill Holes 1886-2005 DRL

The Ontario Drill Hole Database contains information on more than 113,000 percussion, overburden, sonic and diamond drill holes from assessment files on record with the department of Mines and Minerals. Please note that limited data is available for southern Ontario, as it was the last area to be completed. The database was created when surveys submitted to the Ministry were converted in the Assessment File Research Image Database (AFRI) project. However, the degree of accuracy (coordinates) as to the exact location of drill holes is dependent upon the source document submitted to the MNDM. Levels of accuracy used to locate holes are: centering on the mining claim; a sketch of the mining claim; a 1:50,000 map; a detailed company map; or from submitted a "Report of Work".

Environmental Registry 1994-July 2003*

EBR

The Environmental Registry lists proposals, decisions and exceptions regarding policies, Acts, instruments, or regulations that could significantly affect the environment. Through the Registry, provincial ministries notify the public of upcoming proposals and invite their comments. For example, if a local business is requesting a permit, licence, or certificate of approval to release substances into the air or water; these are notified on the registry.

Ontario Regulation 347 Waste Generators Summary 1986-2005

GEN

Regulation 347 of the Ontario EPA defines a waste generation site as any site, equipment and/or operation involved in the production, collection, handling and/or storage of regulated wastes. A generator of regulated waste is required to register the waste generation site and each waste produced, collected, handled, or stored at the site. This database contains the registration number, company name and address of registered generators including the types of hazardous wastes generated. This information is a summary of all years from 1986 including the most currently available data. Some records may contain, within the company name, the phrase "See & Use..." followed by a series of letters and numbers. This occurs when one company is amalgamated with or taken over by another registered company. The number listed as "See & Use", refers to the new ownership and the other identification number refers to the original ownership. This phrase serves as a link between the 2 companies until operations have been fully transferred.

Mineral Occurrences 1846-Oct 2004

MNR

In the early 70's, the Ministry of Northern Development and Mines created an inventory of approximately 19,000 mineral occurrences in Ontario, in regard to metallic and industrial minerals, as well as some information on building stones and aggregate deposits. Please note that the "Horizontal Positional Accuracy" is approximately +/- 200 m. Many reference elements for each record were derived from field sketches using pace or chain/tape measurements against claim posts or topographic features in the area. The primary limiting factor for the level of positional accuracy is the scale of the source material. The testing of horizontal accuracy of the source materials was accomplished by comparing the planimetric (X and Y) coordinates of that point with the coordinates of the same point as defined from a source of higher accuracy.

Non-Compliance Reports 1992(water only), 1994-2005

NCPL

The Ministry of the Environment provides information about non-compliant discharges of contaminants to air and water that exceed legal allowable limits, from regulated industrial and municipal facilities. A reported non-compliance failure may be in regard to a Control Order, Certificate of Approval, Sectoral Regulation or specific regulation/act.

Ontario Oil and Gas Wells 1800-Oct 2006

OOGW

In 1998, the MNR handed over to the Ontario Oil, Gas and Salt Resources Corporation, the responsibility of maintaining a database of oil and gas wells drilled in Ontario. Information available for all wells in the ERIS database include well owner/operator, location, permit start date, well cap date, licence number, status, depth and the primary target (rock unit) of the well being drilled.

Ontario Inventory of PCB Storage Sites 1987-Oct 2004

OPCB

The Ontario Ministry of Environment, Waste Management Branch, maintains an inventory of PCB storage sites within the province. Ontario Regulation 11/82 (Waste Management - PCB) and Regulation 347 (Generator Waste Management) under the Ontario EPA requires the registration of inactive PCB storage equipment and/or disposal sites of PCB waste with the Ontario Ministry of Environment. This database contains information on: 1) waste quantities; 2) major and minor sites storing liquid or solid waste; and 3) a waste storage inventory.

Ministry Orders 1995-1996

ORD

Control Orders/Documents are enforcement actions issued by the Ministry of the Environment to deal with environmental violations. They clarify and allocate individual/joint liability when issuing clean-up orders for contaminated sites.

Occurrence Reporting Information System 1988-2002

ORIS

This database identifies sources, effects/actions and approximate locations of spills and occurrences within Ontario. The locations identified on the locator diagram refer to the facility responsible for the spill. The actual location of the spill can be derived from the descriptions provided in the detailed report.

Pesticide Register 1988-Oct 2006

PES

The Ontario Ministry of Environment maintains a database of all manufacturers and vendors of registered pesticides.

Private Fuel Storage Tanks 1989-1996*

PST

The Fuels Safety Branch of the Ontario Ministry of Consumer and Commercial Relations maintained a database of all registered private fuel storage tanks. Public records of private fuel storage tanks are only available since the registration became effective in September 1989. This information is now collected by the Technical Standards and Safety Authority.

Ontario Regulation 347 Waste Receivers Summary 1986-2005

REC

Part V of the Ontario Environmental Protection Act ("EPA") regulates the disposal of regulated waste through an operating waste management system or a waste disposal site operated or used pursuant to the terms and conditions of a Certificate of Approval or a Provisional Certificate of Approval. Regulation 347 of the Ontario EPA defines a waste receiving site as any site or facility to which waste is transferred by a waste carrier. A receiver of regulated waste is required to register the waste receiving facility. This database represents registered receivers of regulated wastes, identified by registration number, company name and address. This information is a summary of all years from 1986 including the most currently available data.

Record of Site Condition 1997-Sept 2001

RSC

The Record of Site Condition (RSC) provides a summary of the final environmental condition of a site, once an environmental site assessment and/or restoration approach has been undertaken. The database provides information on the site restoration approach used (Background, Generic, Site Specific Risk Assessment), location of contaminated site, whether contamination extends past 1.5m from the surface thereby requiring "stratified restoration", soil type, and the date when RSC was submitted/acknowledged/ responded to by the Ministry of the Environment. A site restoration approach involves the use of soil and groundwater quality criteria, which have been developed to provide protection against adverse effects to human/ecological health and the natural environment. These criteria may be applied to agricultural, residential/parkland, industrial/commercial land uses; as well as potable (source of drinking water) and nonpotable groundwater use.

Wastewater Discharger Registration Database 1990-1998

SRDS

Information under this heading is combination of the following 2 programs. The Municipal/Industrial Strategy for Abatement (MISA) division of the Ontario Ministry of Environment maintained a database of all direct dischargers of toxic pollutants within nine sectors including: Electric Power Generation; Mining; Petroleum Refining; Organic Chemicals; Inorganic Chemicals; Pulp & Paper; Metal Casting; Iron & Steel; and Quarries. All sampling information is now collected and stored within the Sample Result Data Store (SRDS).

Waste Disposal Sites - MOE CA Inventory 1970-Sept 2002

WDS

The Ontario Ministry of Environment, Waste Management Branch, maintains an inventory of known open (active or inactive) and closed disposal sites in the Province of Ontario. Active sites maintain a Certificate of Approval, are approved to receive and are receiving waste. Inactive sites maintain Certificate(s) of Approval but are not receiving waste. Closed sites are not receiving waste. The data contained within this database was compiled from the MOE's Certificate of Approval database. Locations of these sites may be cross-referenced to the Anderson database described under ERIS's Private Source Database section, by the CA number.

Waste Disposal Sites - MOE 1991 Historical Approval Inventory Up to Oct 1990*

WDSH

In June 1991, the Ontario Ministry of Environment, Waste Management Branch, published the "June 1991 Waste Disposal Site Inventory", of all known active and closed waste disposal sites as of October 30st, 1990. For each "active" site as of October 31st 1990, information is provided on site location, site/CA number, waste type, site status and site classification. For each "closed" site as of October 31st 1990, information is provided on site location, site/CA number, closure date and site classification. Locations of these sites may be cross-referenced to the Anderson database described under ERIS's Private Source Database section, by the CA number.

Water Well Information System 1955-2005

wwis

This database describes locations and characteristics of water wells found within Ontario in accordance with Regulation 903. Geographic coordinates are reliable according to the given percentage. Wells that are identified with lot and concession only are available upon request and would be provided as a separate report.

Private Source Databases:

Anderson's Waste Disposal Sites 1930-2004

ANDR

The information provided in this database was collected by examining various historical documents which aimed to characterize the likely position of former waste disposal sites from 1860 to present. The research initiative behind the creation of this database was to identify those sites that are missing from the *Ontario MOE Waste Disposal Site Inventory*, as well as to provide revisions and corrections to the positions and descriptions of sites currently listed in the MOE inventory. In addition to historic waste disposal facilities, the database also identifies certain auto wreckers and scrap yards that have been extrapolated from documentary sources. *Please note that the data is not warranted to be complete, exhaustive or authoritive. The information was collected for research purposes only*.

Automobile Wrecking & Supplies 2001-Feb 2007

AUWR

This database provides an inventory of all known locations that are involved in the scrap metal, automobile wrecking/recycling, and automobile parts & supplies industry. Information is provided on the company name, location and business type.

Commercial Fuel Oil Tanks 1948-Sept 2006

CFOT

Since May 2002, Ontario developed a new act where it became mandatory for fuel oil tanks to be registered with TSSA. This data would include all commercial underground fuel oil tanks in Ontario with fields such as location, registration number, tank material, age of tank and tank size.

Chemical Register 1992, 1999-Feb 2007

CHEM

This database includes information from both a one time study conducted in 1992 and private source and is a listing of facilities that manufacture or distribute chemicals. The production of these chemical substances may involve one or more chemical reactions and/or chemical separation processes (i.e. fractionation, solvent extraction, crystallization, etc.).

ERIS Historical Searches 1999-2006

EHS

EcoLog ERIS has compiled a database of all environmental risk reports completed since March 1999. Available fields for this database include: site location, date of report, type of report, and search radius. As per all other databases, the ERIS database can be referenced on both the map and "Statistical Profile" page.

Canadian Mine Locations 1998-2005

MINE

This information is collected from the Canadian & American Mines Handbook. The Mines database is a national database that provides over 290 listings on mines (listed as public companies) dealing primarily with precious metals and hard rocks. Listed are mines that are currently in operation, closed, suspended, or are still being developed (advanced projects). Their locations are provided as geographic coordinates (x, y and/or longitude, latitude). As of 2002, data pertaining to Canadian smelters and refineries has been appended to this database.

Oil and Gas Wells Oct 2001-2006

OGW

The Nickle's Energy Group (publisher of the Daily Oil Bulletin) collects information on drilling activity including operator and well statistics. The well information database includes name, location, class, status and depth. The main Nickles' database is updated on a daily basis, however, this database is updated on a monthly basis. More information is available at www.nickles.com.

Canadian Pulp and Paper 1999, 2002, 2004, 2005

PAP

This information is part of the Pulp and Paper Canada Directory. The Directory provides a comprehensive listing of the locations of pulp and paper mills and the products that they produce.

Retail Fuel Storage Tanks 1989-Feb 2007

RST

The Fuels Safety Branch of the Ontario Ministry of Consumer and Commercial Relations maintained a database of licensed retail fuel outlets. The MCCR no longer collects this information. Current information is now collected from private sources. This database includes an inventory of retail fuel outlet locations that have on their property gasoline, oil, waste oil, natural gas and / or propane storage tanks.

Scott's Manufacturing Directory 1992-Jan 2007

SCT

Scott's Directories is a data bank containing information on over 70,000 manufacturers in Ontario. Even though Scott's listings are voluntary, it is the most comprehensive database of Ontario manufacturers available. Information concerning a company's address, plant size, and main products are included in this database. This database begins with 1992 information and is updated annually.

Anderson's Storage Tanks 1915-1953*

TANK

The information provided in this database was collected by examining various historical documents, which identified the location of former storage tanks, containing substances such as fuel, water, gas, oil, and other various types of miscellaneous products. Information is available in regard to business operating at tank site, tank location, permit year, permit & installation type, no. of tanks installed & configuration and tank capacity. Data contained within this database pertains only to the city of Toronto and is not warranted to be complete, exhaustive or authoritative. The information was collected for research purposes only.

GROUND WATER CHEMICAL ANALYSIS - VOCa	MICA	ANAI VSIS	NOO'S													
2202 3rd Avenue East Owen Sound, Dritano	Dutario	200	200												•	
Sample ID		TH8	TH9	TH1D	MW4	MW5	MW6	MW7	MW10	MW11	MW101	MW103	MW104	MW107	WW109	Ontario
Cookultant		O area	-		CH2M Gore &	CH2M Gore &					Т	Table 3				
1600000		Darenco	Dareilo	parenco	Storne	Storrie	Storne	Storne	Storrie	Storne	Rubicon	Rubicon	Rubicon	Rubicon	Rubicon	Ground
Maxxam (D	-1	P15906	P 15907	P15908	U25695	025696	U25697	U25698	U25726	U25699	U25727	U25700	U257D1	U25702	U25730	Standards
Sample Date	ROL.	26-Dct-06	26-Dct-06	26-Dct-06	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-D7	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	Т	
Acetone (2-Propanone)	<10	Q	24	12	ON	ş	Ę.	QN	S _S	P	2	QV V	₽	2	Ę	3300
Benzene	ç		03	0.2	Q	Q	QN	9	Q	Q	Q	Ş	Ş	Ş	Ę	12000
Bromodichloromethane	0	ą	9	ą	Q	Q	QN	ą	Q	Q	S	Ę	ž	Ę	9	20000
Вготобогт	<0.2	Q	ą	S	QN	Q	Q	Q	S	Ş	Ş	2	2 2	2	2 5	2200
Bromomethane	<0.5	2	ð	Q	QV	Q	Q	Q	2	2	2	2	2 2	2 2	2 2	9
Carbon Tetrachlonde	ô	2	9	Q	Q	QV	Q	QN	Q	Ę	Ę	2	2	Ş	2	2 5
Chlorobernzene	0.0	₽	Q	ą	Q	Q	Q	Q	S	2	2	2	2	02	2 5	3 5
Chloroforth	6	Q	g	QN	Q	ą	Q	Q	QN	Q	QN	Ş	Š	S	2	2200
Dibromochloromethane	<0.2	Q	ą	2	Q	Q	QV	Q	Q	8	Q	2	9	9	9	20000
1.2-Dichiorobenzene	ф Ф	Q	g	ON	Q	Q	Q	QN	Q	Q.	Ş	Š	Ş	Ş	Ş	7600
1.3-Dichiorobenzene	<0.2	Q	Q	9	Q	Q	QN	Q	S	Q	Ş	Ş	ž	2	2	2600
1.4-Dichiorobenzene	<0.2	Q	æ	Š	Q	9	Q	Q	S	Š	Ş	2	Ş	9	9	2600
1.1-Dichloroethane	0,	Q	ą	2	9.0	Q	Q	Q	Š	2	Ş	5	2	2	, g	2000
1.2-Dichioroethane	÷	Q	2	QV	0.2	QV	QN	9	Q	Ş	Ş	Ş	Š	Ş	2	110
1.1-Dichloroethylene	ô -	ą	ð	Q	QV.	Q	QN	2	Q	Q	8	Ş	9	2	2	. 4
icis-12-Di-chloroethylene	<u></u>	Q	Q	Q	90	ð	QN	æ	Q	Q	QV	04	Q	Ş	2	2
trans-1.2-Dichloroethylene		Q	2	Q	12	Q	Q	Q	Q	£	ę	2	Q	£	Q	9
1.2-Dichioropropane	ô	Q	2	2	Q	ð	Q	Q	Q	g	ON	Q	S	£	2	8
CIS-1.3-Di-Chloropropene	0.5	2	ð	Q	ð	Q	2	ð	2	ð	Q	ð	Ð	Q	ą	24
Charles 1.3-Dichordpropere	705	2	2	2	9	9	g	ğ	2	2	Q	ş	Q	Q	2	24
Catalogue O bear 1 (2 0 C	0,0	2	2	2	Q.	9	2	ş	Q	Q	QN	Q	₽	g	Q	20000
Emiriene Cloromide (1.2-Updomoetnane)	707	2	2	2	2	9	Q.	Q	2	2	Q	Q	Q	ş	₽	51
mentyrene Chicago (Dichorometriane)	çņ,	2	2	ş	Q	S.	Q	2	2	Q	Q	₽	Q	Z	2	20000
Metry ISCOUNT RECOILE (MIDA)	ů.	2	2	2	Q	2	Q	Q	2	ջ	Q	ş	9	Ş	Q	20000
Methyl Ethyl Ketone (2-Butanone)	\$	Q	Ş	Q	Q	2	Q	Q	Q	Ş	QN	Ş	QV	Z	2	20000
Methyl-t-Butyl Ether (MTBE)	0.5	Q	S	Q	Q	Q	Q	Q	Q	Q	Q	QN	Q	QX	Q	20000
Styrene	6	Q	ą	Q	ą	Q	Q	QV	Q	Q	Š	CX	2	Ş	Š	2800
1.1.1 2-Tetrachioroethane	ć0 1	Q	2	Ş	9	GN	Q	Q	S	Ç	Ş	Ş	Ş	Ş	2	8
1,12,2-Tetrachloroethane	<02	(<0 1) ND	(<d 1)="" nd<="" td=""><td>ON(t O>)</td><td>Q</td><td>Q</td><td>Q</td><td>Q</td><td>Q</td><td>2</td><td>S</td><td>2</td><td>S</td><td>2</td><td>2</td><td>140</td></d>	ON(t O>)	Q	Q	Q	Q	Q	2	S	2	S	2	2	140
letrachioroethylene (Perchloroethylene)	ç	2	2	g	Q	22	Q	Q	Q	Q	Q	Ş	Q	2	Q	S
l oluene	<0.2	S	67	2.1	Q	Q	Q	Q	Q	Q	Q	₽	Q	Q	Q	37000
1.1.1 nchloroethane	0	Q	g	2	Q	0.2	Q	Q	Q	Q.	ð	2	Q	ş	Q	500
1. L.Z-1 richiloroethane	Z 0.5	2	2	Q	Q	Q	Q.	Q	Q	S	Q	Q	g	ą	2	20000
Vind Chizzida	0.0	2	2	2	Q	Q	Q	9	S	2	ON.	90	Q	Ð	Q	S
Vilorioe	ç 0.5	Q	2	2	Q	9	Q	Q.	2	Q	ð	g	Q	Ž	2	13
Ayenes (Total)	- O	QN	ī	QV	Q	Q	Q	Q	물	2	QV	Ş	Q	2	2	35000

Face Straights by Maxam Analytics inc.

Afficiently ND means root detected at reporting detection limit (RDL).

Analytical RDLs are shown except as included in packets.

Standards shown are for Residential/Parkinardinsfluctoral land use and inhelmedium textured soits and a non-potable ground water condition.

Exceptions of the MDE Table 3 standards are shown in bold.

BARENCO INC.

PAHs	
TASIS -	
AL AN	
CHEMIC	
VATER	
GROUND WATER CHEMICAL A	
g R	

2202 3rd Avenue East, Owen Sound, Ontano

Sample ID		MW4	MW5	MW6	WW7	MW11	MW101	MW101	MMM103	101/01/0	1010107					0,775	1986
Consultant		CH2M Gore &	Rubicon	Rubicon	Rubicon	Ruthcoo	Rubicon	Dishicon	Publica Dubica	SH C	61 19	T	Ontano Reg 153/04				
Ol maxxeM	_	30000	2005	DI GIO	Sione	Sione								Sale	3	Daleico	Table 3
		269570	053630	025697	025698	U25699	M08374	P15909	U25700	U25701	U25702	M08375	D15010	1,25703	1125704	ř	Fround Wat
Acces by the care	¥	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-07	16-May-06	25-0ct-06	22-Aug-07	22-Aug-07	22-Aug-07	16-May-06	25.04.05	22. Aug. 07	-	ī.	Standards*
arain independent	0.05	2	9	QV	S S	CZ	[Ş	٤	٤	90.0	١			t		
Acenaphthylene	900	Š	Ş	2	2	9 9		9	2 !	2	8	2	2	2	_	2	1700
Anthracene	900	2	9	2	2 9	2	2.5	2 :	2	2	2	2	2	9	_	ş	2000
Benzo(a)anthracene		2 9	2 5	2 !	2	2	`	₹	2	2	9	2	Q	2	_	Q	12
Doorse (a) Commercial	3	2	9 5	2	900	9	위	2	900	Q	Q	2	Q	0.0	_	ç	ı.
all	0.01	2	0 02	Q	0 03	001	20	2	200	.00	Ş	200	9		_	2 2	, ;
Benzo(b/) Muoranthene	900	Q	Ş	Ş	90.0	Ç	15					5	2	7	_	5	b
Benzo(g.h.i)perylene	c	Ş	9	9	3 4	9	3) 3	2 5	3	2	2	⊋	2	0.3	_	2	^
Benzo(k) fluoracthene	, ,	2 5	2 !	2	2	2	21	2	2	2	Q	0.5	Q	-		Q	0 2
Charges	8	2	₹	2	2	9	~	9	2	2	Q	9	Q	0.08		ç	0.4
Since of Contract	9	2	2	2	2	2	위	2	Q	QX	Q	Q	ç		_	2	ď
Cioenzo(a. ri)animi acene	-	2	2	2	S	Q	m	2	g	S	5	Ş	2	2	-	2	4
Fluorantnene	0.05	Q	9	2	01	900	5	S	80.0	Ş	9 9	2 2	9	2	2	2 2	230
r ingrene	900	Q	CZ	Ş	S	S		9	-		2 9	3 9	2 9	7 .	_	2	3 5
Indeno(1.2,3-cd)pyrne	Ċ	ç	Ş	1 9	2 4	2 1	; ;	2 :	2 !	2	2	2	2	2	_	2	280
1-Methylnaphthalene		2	2 6	2 :	2	Q.	≃	2	₹	2	2	2	Q	-5		2	027
- Market of the second of the	2	2	8	2	2	Q	0.2	2	2	2	Q	Q	Q	g		S	13000
c-wenymentmene	900	2	0.07	2	S	2	0.2	2	Q	Q	CN.	Ş	Ş	Ş	-	9	000
Naphthalene	0 05	Q	0.08	2	2	Q	60	Ş	Ş	9	200	30	2 9	2 9	_	2 9	3
Phenantherene	900	Q	0.08	S	900	BUU		Ş	2	2	5 9	3 5	2 2	2 6		2 9	9 6
Pyrene	909	Q	S	Ş	000	900	. :	2	2 8	9 9	2 9	> 6	2 9	9 6	-	2	2
Analysis by Maxxam Analytics for	2		CM	CM	800	90.0	?	Q	0.08	Q	QN	03	2	٥		200	0000

Analyse by Maxama Analysis inc.
All results in good togily the Analysis inc.
Analysical RDIs are shown except as indicated in bradeas
"Standards shown are for Residential/Parkland/Institutional and tise and finemedium textured soils and a non-potable ground water condition.

Exceedances of the WOE Table 3 standards are shown in bold

BARENCO INC.

_		
0, 1, 1	and	Page 1 of 1
		MW107
		MW104
		MW103
		MW101
		MW101
		MW11
		MW7
!		MW6
		MW5
		MW4
		10
	S	F
	SIS - Metals	TH9
	L ANALYS	1148
	HEMICA Sound, Ontario	
	OUND WATER CHEN 2202 3rd Avenue East, Owen Sound, C	e iO
	ROUND 2202 3rd Ave	Sample 1D
_	<u></u>	

Comple ()															4	age 1 of 1
O Sidnings	Ţ	2	2	21.10	MW4	MW5	MW6	MW7	MW11	MW101	MW101	MW103	MW104	MW107	MW109	1000
The state of	_	,				CH2M Gore &	CH2M Gore &	CH2M Gore &	CH2M Gore &							Table 3
Consurant	T	Barenco	Barenco	Barenco	H2M Gore & Storm	Storrie	Storne	Storne	Storne	Rubicon	Rubicon	Rubicon	Rubcon	1±8	Rubicon	2000
Maxxam ()	7	P15906	P15907	P15908	0.66998	U25696	U25697	U25698	025699	M08374	066995	U25700	U25701	U25702		Water
Sample Date	ROL	26-Oct-06	26-Oct-06	26-Oct-06	13-Sep-07	22-Aug-07	22-Aug-07	22-Aug-07	22-Aug-67	16-May-06	13-Sep-07	22-Aug-07	22-410-07	22.Aug-07	1	Standards
Antimony (Sb)	9.0	QN (1>)	QN (1>)	QN (1>)	QN	Ş	Ð	QN	QX	ΑN	NA	ş	QN	Q	ϯ	16000
Arsenic (As)	_	2	~	Q	_	Q	Q	-	2	A.	Ā	7	Q	38	-	460
Danium (Da)	vo ¦	8	310	120	69	24	140	98	56	Ą	Ϋ́	63	55	8	¥.	23000
Berymun (be)	6.2	Q	2	2	Q	9	Q	QV	Q	Ą	ΑN	QV	Q	Q	-	53
Boron (B)	٥	140	96	520	270	32	200	140	280	320	Ϋ́	610	490	130	_	20000
Cadimium (Cd)	- -	0	9	2	2	Q	2	Q	Q	Ą	Ā	Q	Q	Q	_	=
Carloman (Ca)	'n	Q	2	9	ş	9	Q	9	9	Ą	¥	Q	Q	Q	-	2000
Coogul (Co)	0.5	3.1	18	36	Ξ	ð	Q	Q	90	4	Q	Ş	60	Q		8
Copper (Cu)	-	m	-	2	Q	65	2	Q		φ	Q	4	۲.	-		23
(Gal) Dear	69	9	g	9	9	Q	Q	9	Q	QN	¥	Q	Q	S	_	33
Molybdenum (Mo)	_	-		4	2	Q	Q	QN	Q	Ą	ž	2		Ş	_	2300
Nickel (Ni)	-	eo	4	-	Q	ş	2	QN	Q	¥	¥	Q	4	S		1600
Selenium (Se)	~	9	g	9	Q	Q	Q	9	QV	ΑN	Ą	g	Ç	S	_	52
Silver (Ag)	-0.	2	Q	Q	ð	9	Q	Q	Q	Ą	Ą	£	Ş	Ş		12
Dallion (T)	90.0	9	ð	Q	ON (1.0>)	Ş	Q	QN	QN	ΑN	¥	Ş	S	Ş	_	400
Vanadium (V)	-	2	QN	2	Q	Q	QV	QN	Q¥	Ą	AN	g	Ş			200
(uz) oury	2	960	45	Q	2	13	35	8	9	AN	Ą	19	2	. 2		0011
Analysis by Maxxam Analytics Inc															i	

All results in rope (upil). No means "not detected" at reporting detection limit (RDL).

"Analytical RNLs are shown except as indicated in bracker."

"Standard RS shown are for Resistantian Parkers and the standard shown are for Resistantian Parkers and a mon-potable ground water condition.

Exceptions from an ion Resistantian Parkers and the shown in **pold**BARRENCO INC.

APPENDIX F

Qualifications of Assessors

Jim Phimister, P.Eng., P.Geo. (Principal, Hydrogeologist)

Jim Phimister is a hydrogeologist and Professional Engineer with over 35 years experience in environmental assessment and remediation. Mr. Phimister was employed as a contaminant hydrogeologist by Provincial Governments in Ontario and Manitoba and has worked as a consultant to industry and government in all the provinces and territories of Canada. To date, Mr. Phimister has conducted over 4,000 environmental assessments or remediations. Mr. Phimister is a founding principal of Barenco Inc., a firm that provides environmental engineering and site remediation services.

Carolyn Singer, B.Sc. (Hons.), A.Ag. (Environmental Scientist)

Carolyn Singer obtained an Honours degree in Environmental Science at Queen's University in 2000. Ms. Singer has managed environmental assessment projects through the proposal, implementation and reporting phases. She has conducted numerous Phase I and II environmental assessment programs at industrial, commercial, institutional and residential properties.

APPENDIX G

Test Hole Logs

TECHNICIAN CSI

TEST HOLE LOG TH1

DRILL DATE: October 23, 2006

SHEET# ONE of ONE

WEATHER: 0 C, Rain

EQUIPMENT: CME 75

TOP OF GROUND ELEVATION: NA

TOP OF MONITOR ELEVATION: NA

GROUND WATER DEPTH: ▼ NA (Date NA)

SITE: Russel Bros Property

ADDRESS: 3rd Avenue East, Owen Sound ON

UTM: Northing 493 71 23 **Easting** 50 55 47

SAMPLE #	TYPE	BLOW COUNT (Blows per ft)	VAPOUR READING	RECOVERY %	ANALYSIS REQUESTED	DEPTH (M)	STRATAPLOT	DESCRIPTION OF STRATIGRAPHY	DEPTH (M)	MONITOR
1	SS	04/02/01 for 18*	25 PPM	60%	BTEX-F1toF4-Other	-	**************************************	ASPHALT: Cobbles and asphalt to 0.1m SANDY SILT: Fill, brown, some gravel and cobbles, black staining, no odour, damp	0.1	
					 	0.6	7777	SILTY CLAY: Brown, trace sand, wet : no recovery	0.6	
2	SS	08/07/05/04	NM	0%		0.8	10000000000000000000000000000000000000		- - 1	
						1.4	4444	SILTY CLAY: Brown, very soft, wet	1.4	
3	SS	0 (2')	ND	100%		1.5			-	
						2.1			_ 2	
4	SS	00/00/00/01	ND	100%		-				
						2.9 3.0 3			<u> </u> 3	
5	SS	0 (2')	ND	100%		3.7			3.7	
						- 4	,		- 4	
								3.66 m - END OF TEST HOLE		

TECHNICIAN CSI

TEST HOLE LOG TH2

DRILL DATE: October 23, 2006

SHEET# ONE of ONE

WEATHER: 0 C, Rain

EQUIPMENT: CME 75

TOP OF GROUND ELEVATION: NA TOP OF MONITOR ELEVATION: NA

GROUND WATER DEPTH: ▼ NA (Date NA)

SITE: Russel Bros Property

ADDRESS: 3rd Avenue East, Owen Sound ON

UTM: Northing 493 71 23 Easting 50 55 47

STRATAPLOT ğ RECOVERY DEPTH (M VAPOUR READING **ANALYSIS DESCRIPTION OF MONITOR** REQUESTED **STRATIGRAPHY** ASPHALT: SS 04/03/03 for 18" 25% 0.1 GRAVELY SAND: Fill, light brown, some cobbles, 0.6 0.6 SANDY SILT: Fill from 0.6 to 2.1m, brown to 1.2m, grey with black staining from 1.2 to 2.9m, 2 03/06/05/03 60% BTEX-F1toF4-Other SS ND some cobbles, trace brick and black ash, loose from 2.1 to 2.9m, damp to wet SS 08/06/07/08 100% BTEX-F1toF4-PAHs SS 0 (2') ND 100% 2.9 2.9 3 2.9 m - END OF TEST HOLE

TECHNICIAN CSI

TEST HOLE LOG TH3

DRILL DATE: October 23, 2006

SHEET# ONE of ONE

WEATHER: 0 C, Rain

EQUIPMENT: CME 75

TOP OF GROUND ELEVATION: NA TOP OF MONITOR ELEVATION: NA

GROUND WATER DEPTH: ▼ NA (Date NA)

Russel Bros Property SITE:

ADDRESS: 3rd Avenue East, Owen Sound ON

UTM: Northing 493 71 23 Easting 50 55 47

SAMPLE #	TYPE	BLOW COUNT (Blows per ft)	VAPOUR READING	RECOVERY %	ANALYSIS REQUESTED	DEPTH (M)	STRATAPLOT	DESCRIPTION OF STRATIGRAPHY	DEPTH (M)	MONITOR
1	SS	03/04/03/01	ND	60%	pH-Other	0.6		TOPSOIL: Brown, plant roots, some cobbles, damp SAND: Fill, black, rust coloured mottling, asphalt fragments, damp	0.1	
2	SS	03/02/01/02	25 PPM	60%	BTEX-F1toF4	0.8		SANDY SILT : Brown to 1.2m, grey, top 0.08m black staining, damp to wet	- 1	
3*	SS	02/00/00/01	ND	100%	Other	1.5			_ 2	
4	SS	0 (2')	ND	100%		2.3	\$\frac{1}{2}\frac{1}{2		2.9	
						3			_ 3 	
						- 4			_ 4 	
					NOTE (GAMPIE)	-		2.9 m - END OF TEST HOLE	_	

NOTE: [SAMPLE #3] GRAIN SIZE ANALYSIS SAMPLE TAKEN

EGEND: AU = Auger Sample SS = Split Spoon GR = Grab Sample

ND = non detect NM = not measured due to insufficient sample volume

TECHNICIAN CSI

TEST HOLE LOG TH4

DRILL DATE: October 23, 2006

SHEET# ONE of ONE

WEATHER: 0 C, Rain

EQUIPMENT: CME 75

TOP OF GROUND ELEVATION: NA TOP OF MONITOR ELEVATION: NA

GROUND WATER DEPTH: ▼ NA (Date NA)

SITE: Russel Bros Property

ADDRESS: 3rd Avenue East, Owen Sound ON

Northing 493 71 23 UTM:

SAMPLE# (TYPE	BLOW COUNT (Blows per ft)	VAPOUR READING	RECOVERY %	ANALYSIS REQUESTED	DЕРТН (M)	STRATAPLOT	DESCRIPTION OF STRATIGRAPHY	ОЕРТН (М)	MONITOR
1	SS	06/03/02/01	NM	20%	рН	0.6		SAND+GRAVEL: Fill, black, top 0.05m brick fragments SANDY SILT: Fill, brown, some clay, trace asphalt fragments from 0.8m to 1.4m, bottom 2" black sand and gravel, damp	0.1	
2	SS	01/01/01/01	ND	20%		0.8			- 1	
3*	SS	11/12/21/11	NM	10%	BTEX-F1toF4	1.4		SAND+GRAVEL : Fill, grey, red brick fragments, some cobbles, damp	1.4	
4	SS	10/12/14/11	ND	10%		2.1	Andrewsky was a state of the st	SANDY SILT: Fill from 2.1 to 2.6m, brown, some brick fragments, very stiff to firm, grey mottling from 3.1 to 3.7m, wet	2.1	
5	SS	04/03/04/04	ND	100%		2.9	A CANTENNA C		- - 3 -	
						3.7			3.7	
						-			-	
: 			L					3.66 m - END OF TEST HOLE		

TECHNICIAN CSI

TEST HOLE LOG TH5

DRILL DATE: October 24, 2006

SHEET# ONE of ONE

WEATHER: -1 C, Snow

EQUIPMENT: CME 75

TOP OF GROUND ELEVATION: NA TOP OF MONITOR ELEVATION: NA

GROUND WATER DEPTH: ▼ NA (Date NA)

SITE: Russel Bros Property

ADDRESS: 3rd Avenue East, Owen Sound ON

UTM: Northing 493 71 23 Ea

SAMPLE#	TYPE	BLOW COUNT (Blows per ft)	VAPOUR	RECOVERY %	ANALYSIS REQUESTED	DEPTH (M)	STRATAPLOT	DESCRIPTION OF STRATIGRAPHY	DEPTH (M)	MONITOR
1	SS	03/04/09/05	ND	50%	рН	 - -		SAND+GRAVEL: Brown, some plant roots, damp SILTY CLAY: Fill, grey, trace organics, damp SANDY SILT: Fill, brown with some grey mottling, trace to some sand and gravel, some wood at 0.6m, damp to wet	0.1	
2	SS	03/04/03/02	ND	60%	BTEX-F1toF4	0.6	4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4 4		_	
						1.4	A A A A A A A A A A A A A A A A A A A		1	
3	SS	01/01/02/03	ND	50%		1.5	\$\$\text{\$\tex{\$\text{\$\t		- - - 2	
4	SS	0 (2')	ND	90%	GrnSize-Other	2.3	A CANCELLA CONTRACTOR		2.9	
						3			3	
1						- 4			_ 4	
]						<u></u>			_	
						-		2.9 m - END OF TEST HOLE	-	

TECHNICIAN CSI

TEST HOLE LOG TH6

DRILL DATE: October 24, 2006

SHEET# ONE of ONE

WEATHER: -1 C, Snow

EQUIPMENT: CME 75

TOP OF GROUND ELEVATION: NA

TOP OF MONITOR ELEVATION: NA

GROUND WATER DEPTH: ▼ NA (Date NA)

SITE: Russel Bros Property

ADDRESS: 3rd Avenue East, Owen Sound ON

UTM: Northing 493 71 23

SAMPLE#	TYPE	BLOW COUNT (Blows per ft)	VAPOUR READING	RECOVERY %	ANALYSIS REQUESTED	DEPTH (M)	STRATAPLOT	DESCRIPTION OF STRATIGRAPHY	DEPTH (M)	MONITOR
1	SS	08/09/05/04	NM	5%				COBBLES : Fill, grey, some sand, wet	_	
2	SS	03/03/04/04	NM	0%		0.6	######################################	SANDY SILT : Fill to 1.4m, brown to 1.4m, grey, trace gravel from 0.6 to 1.4m, black sand layers from 1.4 to 2.1m, wet	0.6	
3	SS	0 (2')	ND	100%	BTEX-F1toF4	1.4			_ 2	
4	SS	0 (2')	ND	100%	GrnSize-Other	2.1			_	÷
						2.9	3333		2.9	
 						4			<u> </u>	
								2.9 m - END OF TEST HOLE		

TECHNICIAN CSI

TEST HOLE LOG TH7

DRILL DATE: October 24, 2006

SHEET# ONE of ONE

WEATHER: -1 C, Snow

EQUIPMENT: CME 75

TOP OF GROUND ELEVATION: NA TOP OF MONITOR ELEVATION: NA

GROUND WATER DEPTH: ▼ NA (Date NA)

SITE: Russel Bros Property

ADDRESS: 3rd Avenue East, Owen Sound ON

UTM: Northing 493 71 23

SAMPLE #	TYPE	BLOW COUNT (Blows per ft)	VAPOUR	RECOVERY %	ANALYSIS REQUESTED	DEPTH (M)	STRATAPLOT	DESCRIPTION OF STRATIGRAPHY	DEPTH (M)	MONITOR
1	SS	03/04/05/03	ND	30%	рН	_		SANDY SILT : Brown, some cobbles, wet	0.6	
2	SS	02/02/01/01	ND	50%	GrnSize-Other	0.6		SILTY SAND: Reddish brown to 1.45m, black to 1.6m, light brown to 2.1m, trace sand, gravel and cobbles, damp - wet]	
3	SS	0 (2')	ND	75%	BTEX-F1toF4-PAHs	1.4			_ _ _ 2	
4	SS	0 (2')	ND	100%		2.1	1	SANDY SILT : Grey, soft, wet	2.1	·
						2.9			2.9	
						- - 4			_ 4	
						- - -			_	
								2.9 m - END OF TEST HOLE	-	

TECHNICIAN CSI

TEST HOLE LOG TH8

DRILL DATE: October 24, 2006

SHEET# ONE of ONE

WEATHER: -1 C, Snow

EQUIPMENT: CME 75

TOP OF GROUND ELEVATION: NA

GROUND WATER DEPTH: ▼ NA (Date NA)

SITE: Russel Bros Property

ADDRESS: 3rd Avenue East, Owen Sound ON

UTM: Northing 493 71 23 Easting 50 55 47

STRATAPLOT RECOVERY DEPTH (M) VAPOUR READING **DESCRIPTION OF ANALYSIS** REQUESTED **STRATIGRAPHY** MONITOR SANDY SILT: Fill, brown, some organics, trace SS 05/07/06/10 ND 40% pH-Other cobbles, damp 0.6 0.6 SAND+GRAVEL: Fill, wet 0.8 07/07/03/02 VOCs SS ND 25% SANDY SILT : Brown, wet SILTY CLAY: Brown, trace sand and gravel, wet 3 SS 0(2')ND 100% Metals 2.1 SANDY SILT: Brown, grey sand lens at 2.9m, wet SS 0 (2') ND 100% 3.0 **3** SS 0 (2') 100% GrnSize-Other ND 3.7 3.66 m - END OF TEST HOLE

TECHNICIAN CSI

TEST HOLE LOG TH9

DRILL DATE: October 24, 2006

SHEET# ONE of ONE

WEATHER: -1 C, Snow

EQUIPMENT: CME 75

TOP OF GROUND ELEVATION: NA TOP OF MONITOR ELEVATION: NA

GROUND WATER DEPTH: ▼ NA (Date NA)

SITE: Russel Bros Property

ADDRESS: 3rd Avenue East, Owen Sound ON

UTM: Northing 493 71 23

SAMPLE #	TYPE	BLOW COUNT (Blows per ft)	VAPOUR READING	RECOVERY %	ANALYSIS REQUESTED	DEPTH (M)	STRATAPLOT	DESCRIPTION OF STRATIGRAPHY	DEPTH (M)	MONITOR
1	SS	05/15/13/06	NM	30%	pH-VOCs-Other			CLAY : Black, trace glass fragments, sand, gravel and cobbles, damp	0.6	
						0.6	7777	SANDY SILT : Fill, brown, trace cobbles from to	0.6	
2	SS	08/04/08/06	ND	90%	Metals	0.8	**************************************	1.4m, lens of grey sand and organics at 1.5m, trace glass and wood fragments from 2.1 to 2.9m, damp - wet	— 1	
3	SS	02/01/03/00	ND	100%		1.5	A CARLES AND		 2	
4	SS	0 (2')	ND			2.3	त्र के के के कि		2.9	
5	SS	0 (2)	ND	30%		3.0		GRAVELY COBBLES : bottom 0.05m shale	3,7	
						- 4 - 4 -		3.66 m - END OF TEST HOLE	- 4 	

TECHNICIAN CSI

TEST HOLE LOG TH10

DRILL DATE: October 24, 2006

SHEET# ONE of ONE

WEATHER: -1 C, Snow

EQUIPMENT: CME 75

TOP OF GROUND ELEVATION: NA

TOP OF MONITOR ELEVATION: NA

GROUND WATER DEPTH: ▼ NA (Date NA)

SITE: Russel Bros Property

ADDRESS: 3rd Avenue East, Owen Sound ON

UTM: Northing 493 71 23

SAMPLE#	TYPE	BLOW COUNT (Blows per ft)	VAPOUR READING	RECOVERY %	ANALYSIS REQUESTED	DEPTH (M)		W) HL MONITOR
1	SS	02/02/02/04	ND	60%	pH-VOCs-Other	0.6	SANDY SILT : Fill, brown, black mottling, thin lenses of grey/black sand from 1.4 to 2.1m, trace wood fragments and cobbles, trace organics from 2.1 to 2.9m, damp	
			<u> </u>			0.8		
2	SS	02/02/02/02	ND	60%	Metals	1.4		
3	SS	0 (2')	ND	100%		1.5		2
4	SS	04/03/01/01	ND	100%		2.9	I've vel SAND Grev coarse wet	2.9
5	SS	00/02/03/04	ND		GrnSize	3.0 3		3,7
						- 4		- 4
						-	3.66 m - END OF TEST HOLE	

APPENDIX H

Laboratory Certificates of Analysis

Attached are copies of the original Certificates of Analysis provided by the laboratory. The data contained in these analyses is to be read only in conjunction with the report to which it is attached. For interpretation of the chemical data, see the attached text.

All samples are submitted to and reported by the laboratory using purchase order numbers and sample location codes. These are only discernible to persons familiar with the purchase order system and the location codes. For descriptions of the locations of the samples, see the attached text.

Not all data contained in the original laboratory certificate of analysis may have been referenced in the report. Samples may have been submitted as travel or field blanks or as duplicates. Some samples may be for control purposes and represent soil that is no longer on the site and is not relevant to the report.

Since the laboratory data contains scientific terms and references, only trained persons familiar with sampling and laboratory methods should attempt to interpret the raw data.

BARENCO

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00540715

Attention: Carolyn Singer
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2008/01/04

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7C4150 Received: 2007/11/08, 14:36

Sample Matrix: Soil # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Soil	1	2007/11/08	2007/11/08	CAM SOP-00315	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	1	2007/11/08	2007/11/08	CAM SOP-00316	CCME CWS
MOISTURE	1	N/A	2007/11/08	Ont SOP-0114	MOE HANDBOOK(1983)

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

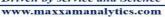
	Units	TP-114A	RDL	QC Batch
COC Number		00540715		
Sampling Date		2007/11/07		
Maxxam ID		V75573		

INORGANICS				
Moisture	%	20	0.2	1401612

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

PETROLEUM HYDROCARBONS (CCME)


Maxxam ID		V75573		
Sampling Date		2007/11/07		
COC Number		00540715		
	Units	TP-114A	RDL	QC Batch

F1 PHC and BTEX				
F1 (C6-C10)	ug/g	ND	10	1401558
F1 (C6-C10) - BTEX	ug/g	ND	10	1401558
F2-F4 PHC				
F2 (C10-C16 Hydrocarbons)	ug/g	ND	10	1401559
F3 (C16-C34 Hydrocarbons)	ug/g	130	10	1401559
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	102		1401558
4-Bromofluorobenzene	%	96		1401558
D10-Ethylbenzene	%	103		1401558
D4-1,2-Dichloroethane	%	98		1401558
o-Terphenyl	%	70		1401559

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc

Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

Results relate only to the items tested.

Barenco Inc

Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA7C4150

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1401558 DTI	MATRIX SPIKE	1,4-Difluorobenzene	2007/11/08	106	%	60 - 140
		4-Bromofluorobenzene	2007/11/08	98	%	60 - 140
		D10-Ethylbenzene	2007/11/08	111	%	30 - 130
		D4-1,2-Dichloroethane	2007/11/08	101	%	60 - 140
		F1 (C6-C10)	2007/11/08	100	%	60 - 140
	Spiked Blank	1,4-Difluorobenzene	2007/11/08	103	%	60 - 140
		4-Bromofluorobenzene	2007/11/08	98	%	60 - 140
		D10-Ethylbenzene	2007/11/08	108	%	30 - 130
		D4-1,2-Dichloroethane	2007/11/08	100	%	60 - 140
		F1 (C6-C10)	2007/11/08	92	%	60 - 140
	Method Blank	1,4-Difluorobenzene	2007/11/08	105	%	60 - 140
		4-Bromofluorobenzene	2007/11/08	99	%	60 - 140
		D10-Ethylbenzene	2007/11/08	101	%	30 - 130
		D4-1,2-Dichloroethane	2007/11/08	101	%	60 - 140
		F1 (C6-C10)	2007/11/08	ND, RDL=10	ug/g	
		F1 (C6-C10) - BTEX	2007/11/08	ND, RDL=10	ug/g	
	RPD	F1 (C6-C10)	2007/11/08	NC	%	50
		F1 (C6-C10) - BTEX	2007/11/08	NC	%	50
1401559 LSY	MATRIX SPIKE	o-Terphenyl	2007/11/08	85	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2007/11/08	93	%	60 - 130
		F3 (C16-C34 Hydrocarbons)	2007/11/08	93	%	60 - 130
	Spiked Blank	o-Terphenyl	2007/11/08	69	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2007/11/08	74	%	60 - 130
		F3 (C16-C34 Hydrocarbons)	2007/11/08	74	%	60 - 130
	Method Blank	o-Terphenyl	2007/11/08	68	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2007/11/08	ND, RDL=10	ug/g	
		F3 (C16-C34 Hydrocarbons)	2007/11/08	ND, RDL=10	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2007/11/08	NC	%	50
		F3 (C16-C34 Hydrocarbons)	2007/11/08	NC	%	50
1401612 VPA	RPD	Moisture	2007/11/08	3.4	%	50

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A7C4150

CHRISTINA NERVO, Scientific Services

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Cliptina News

MEDHAT RISKALLAH, Manager, Hydrocarbon Department

SUZANA POPOVIC, Supervisor, Hydrocarbons

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043

Site: OWEN SOUND,2202-3RD AVE EAST

Your C.O.C. #: 43134

Attention: Vinod Kella
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2008/01/04

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A790950 Received: 2007/08/23, 16:36

Sample Matrix: Water # Samples Received: 4

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Low level Benzo(a)pyrene by GC/MS (SIM)	1	2007/08/27	2007/08/27 EPA 8270	GC/MS
Dissolved Metals by ICPMS	1	N/A	2007/08/30 CAM SOP-00447	EPA 6020
PAH Compounds in Water by GC/MS (SIM)	1	2007/08/27	2007/08/27 SOP - 00318	EPA 8270
Volatile Organic Compounds in Water	4	N/A	2007/08/28 CAM SOP-00226	EPA 8260 modified

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE EAST

Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		U25729		
Sampling Date		2007/08/22		
COC Number		43134		
	Units	MW 108	RDL	QC Batch

METALS				
Dissolved Antimony (Sb)	ug/L	ND	0.5	1346298
Dissolved Arsenic (As)	ug/L	2	1	1346298
Dissolved Barium (Ba)	ug/L	220	5	1346298
Dissolved Beryllium (Be)	ug/L	ND	0.5	1346298
Dissolved Boron (B)	ug/L	1800	10	1346298
Dissolved Cadmium (Cd)	ug/L	ND	0.1	1346298
Dissolved Chromium (Cr)	ug/L	ND	5	1346298
Dissolved Cobalt (Co)	ug/L	ND	0.5	1346298
Dissolved Copper (Cu)	ug/L	ND	1	1346298
Dissolved Lead (Pb)	ug/L	0.9	0.5	1346298
Dissolved Molybdenum (Mo)	ug/L	ND	1	1346298
Dissolved Nickel (Ni)	ug/L	ND	1	1346298
Dissolved Selenium (Se)	ug/L	ND	2	1346298
Dissolved Silver (Ag)	ug/L	ND	0.1	1346298
Dissolved Sodium (Na)	ug/L	48000	100	1346298
Dissolved Thallium (TI)	ug/L	ND	0.05	1346298
Dissolved Vanadium (V)	ug/L	1	1	1346298
Dissolved Zinc (Zn)	ug/L	14	5	1346298

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE EAST

Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

COC Number	Units	43134 MW 108	RDL	QC Batch
Sampling Date		2007/08/22		
Maxxam ID		U25729		

				1
PAHs				
Acenaphthene	ug/L	ND	0.05	1343457
Acenaphthylene	ug/L	ND	0.05	1343457
Anthracene	ug/L	0.07	0.05	1343457
Benzo(a)anthracene	ug/L	0.35	0.05	1343457
Benzo(a)pyrene	ug/L	0.28	0.005	1343486
Benzo(b/j)fluoranthene	ug/L	0.40	0.05	1343457
Benzo(g,h,i)perylene	ug/L	0.2	0.1	1343457
Benzo(k)fluoranthene	ug/L	0.13	0.05	1343457
Chrysene	ug/L	0.26	0.05	1343457
Dibenz(a,h)anthracene	ug/L	ND	0.1	1343457
Fluoranthene	ug/L	0.64	0.05	1343457
Fluorene	ug/L	ND	0.05	1343457
Indeno(1,2,3-cd)pyrene	ug/L	0.2	0.1	1343457
1-Methylnaphthalene	ug/L	ND	0.05	1343457
2-Methylnaphthalene	ug/L	ND	0.05	1343457
Naphthalene	ug/L	0.05	0.05	1343457
Phenanthrene	ug/L	0.40	0.05	1343457
Pyrene	ug/L	0.57	0.05	1343457
Surrogate Recovery (%)				
D10-Anthracene	%	77		1343457
D14-Terphenyl (FS)	%	83		1343486
D7-Quinoline	%	86		1343457
D8-Acenaphthylene	%	75		1343486

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE EAST

Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		U25726	U25727	U25729	U25730		
Sampling Date		2007/08/22	2007/08/22	2007/08/22	2007/08/22		
COC Number	Units	43134 MW 10	43134 MW 101	43134 MW 108	43134 MW 109	BDI	QC Batch
	Ullits	IVIVV 10	IVIVV TOT	IVIVV 100	IVIVV 109	NDL	QC Balcii
VOLATILES							
Acetone (2-Propanone)	ug/L	ND	ND	ND	ND	10	1342800
Benzene	ug/L	ND	ND	ND	ND	0.1	1342800
Bromodichloromethane	ug/L	ND	ND	ND	ND	0.1	1342800
Bromoform	ug/L	ND	ND	ND	ND	0.2	1342800
Bromomethane	ug/L	ND	ND	ND	ND	0.5	1342800
Carbon Tetrachloride	ug/L	ND	ND	ND	ND	0.1	1342800
Chlorobenzene	ug/L	ND	ND	ND	ND	0.1	1342800
Chloroform	ug/L	ND	ND	ND	ND	0.1	1342800
Dibromochloromethane	ug/L	ND	ND	ND	ND	0.2	1342800
1,2-Dichlorobenzene	ug/L	ND	ND	ND	ND	0.2	1342800
1,3-Dichlorobenzene	ug/L	ND	ND	ND	ND	0.2	1342800
1,4-Dichlorobenzene	ug/L	ND	ND	ND	ND	0.2	1342800
1,1-Dichloroethane	ug/L	ND	ND	ND	0.9	0.1	1342800
1,2-Dichloroethane	ug/L	ND	ND	ND	ND	0.1	1342800
1,1-Dichloroethylene	ug/L	ND	ND	ND	ND	0.1	1342800
cis-1,2-Dichloroethylene	ug/L	ND	ND	ND	ND	0.1	1342800
trans-1,2-Dichloroethylene	ug/L	ND	ND	ND	ND	0.1	1342800
1,2-Dichloropropane	ug/L	ND	ND	ND	ND	0.1	1342800
cis-1,3-Dichloropropene	ug/L	ND	ND	ND	ND	0.2	1342800
trans-1,3-Dichloropropene	ug/L	ND	ND	ND	ND	0.2	1342800
Ethylbenzene	ug/L	ND	ND	ND	ND	0.1	1342800
Ethylene Dibromide	ug/L	ND	ND	ND	ND	0.2	1342800
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	ND	ND	0.5	1342800
Methyl Isobutyl Ketone	ug/L	ND	ND	ND	ND	5	1342800
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	ND	ND	5	1342800
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	ND	ND	0.2	1342800
Styrene	ug/L	ND	ND	ND	ND	0.1	1342800
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	ND	ND	0.1	1342800
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	ND	ND	0.2	1342800
Tetrachloroethylene	ug/L	ND	ND	ND	ND	0.1	1342800
Toluene	ug/L	ND	ND	ND	ND	0.2	1342800

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE EAST

Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		U25726	U25727	U25729	U25730		
Sampling Date		2007/08/22	2007/08/22	2007/08/22	2007/08/22		
COC Number		43134	43134	43134	43134		
	Units	MW 10	MW 101	MW 108	MW 109	RDL	QC Batch
			1	1	1	_	
1,1,1-Trichloroethane	ug/L	ND	ND	ND	ND	0.1	1342800
1,1,2-Trichloroethane	ug/L	ND	ND	ND	ND	0.2	1342800
Trichloroethylene	ug/L	ND	ND	ND	ND	0.1	1342800
Vinyl Chloride	ug/L	ND	ND	ND	ND	0.2	1342800
p+m-Xylene	ug/L	ND	ND	ND	ND	0.1	1342800
o-Xylene	ug/L	ND	ND	ND	ND	0.1	1342800
Xylene (Total)	ug/L	ND	ND	ND	ND	0.1	1342800
Surrogate Recovery (%)							
4-Bromofluorobenzene	%	80	80	81	80		1342800
D4-1,2-Dichloroethane	%	110	112	114	111		1342800
D8-Toluene	%	100	99	99	102		1342800

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE EAST

Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

Results relate only to the items tested.

Barenco Inc

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE EAST

Quality Assurance Report Maxxam Job Number: MA790950

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1342800 AAD	MATRIX SPIKE	4-Bromofluorobenzene	2007/08/28		93	%	70 - 130
		D4-1,2-Dichloroethane	2007/08/28		104	%	70 - 130
	D8-Toluene	2007/08/28		101	%	70 - 130	
	Acetone (2-Propanone)	2007/08/28		102	%	60 - 140	
		Benzene	2007/08/28		90	%	70 - 130
		Bromodichloromethane	2007/08/28		111	%	70 - 130
		Bromoform	2007/08/28		98	%	70 - 130
		Bromomethane	2007/08/28		85	%	60 - 140
		Carbon Tetrachloride	2007/08/28		94	%	70 - 130
		Chlorobenzene	2007/08/28		103	%	70 - 130
		Chloroform	2007/08/28		99	%	70 - 130
		Dibromochloromethane	2007/08/28		122	%	70 - 130
		1,2-Dichlorobenzene	2007/08/28		101	%	70 - 130
		1,3-Dichlorobenzene	2007/08/28		103	%	70 - 130
		1,4-Dichlorobenzene	2007/08/28		110	%	70 - 130
		1,1-Dichloroethane	2007/08/28		92	%	70 - 130
		1,2-Dichloroethane	2007/08/28		95	%	70 - 130
		1,1-Dichloroethylene	2007/08/28		88	%	70 - 130
	cis-1,2-Dichloroethylene	2007/08/28		98	%	70 - 130	
		•	2007/08/28		88	%	70 - 130
		trans-1,2-Dichloroethylene					
	1,2-Dichloropropane	2007/08/28		115	%	70 - 130	
	cis-1,3-Dichloropropene	2007/08/28		93	%	70 - 130	
	trans-1,3-Dichloropropene	2007/08/28		99	%	70 - 130	
	Ethylbenzene	2007/08/28		109	%	70 - 130	
	Ethylene Dibromide	2007/08/28		114	%	70 - 130	
	Methylene Chloride(Dichloromethane)	2007/08/28		91	%	70 - 130	
	Methyl Isobutyl Ketone	2007/08/28		131	%	60 - 140	
	Methyl Ethyl Ketone (2-Butanone)	2007/08/28		120	%	60 - 140	
	Methyl t-butyl ether (MTBE)	2007/08/28		95	%	70 - 130	
	Styrene	2007/08/28		91	%	70 - 130	
	1,1,1,2-Tetrachloroethane	2007/08/28		118	%	70 - 130	
		1,1,2,2-Tetrachloroethane	2007/08/28		118	%	70 - 130
Spiked Blank	Tetrachloroethylene	2007/08/28		96	%	70 - 130	
	Toluene	2007/08/28		104	%	70 - 130	
	1,1,1-Trichloroethane	2007/08/28		92	%	70 - 130	
	1,1,2-Trichloroethane	2007/08/28		119	%	70 - 130	
	Trichloroethylene	2007/08/28		95	%	70 - 130	
	Vinyl Chloride	2007/08/28		79	%	70 - 130	
	p+m-Xylene	2007/08/28		111	%	70 - 130	
	o-Xylene	2007/08/28		97	%	70 - 130	
	4-Bromofluorobenzene	2007/08/28		94	%	70 - 130	
	D4-1,2-Dichloroethane	2007/08/28		102	%	70 - 130	
	D8-Toluene	2007/08/28		105	%	70 - 130	
	Acetone (2-Propanone)	2007/08/28		98	%	60 - 140	
	Benzene	2007/08/28		89	%	70 - 130	
	Bromodichloromethane	2007/08/28		111	%	70 - 130	
	Bromoform	2007/08/28		98	%	70 - 130	
	Bromomethane	2007/08/28		82	%	60 - 140	
	Carbon Tetrachloride	2007/08/28		93	%	70 - 130	
	Chlorobenzene	2007/08/28		102	% %	70 - 130	
	Chloroform	2007/08/28		98	% %	70 - 130	
		2007/08/28					
	Dibromochloromethane			122	%	70 - 130	
	1,2-Dichlorobenzene	2007/08/28		97	%	70 - 130	
		1,3-Dichlorobenzene	2007/08/28		101	%	70 - 130
	1,4-Dichlorobenzene	2007/08/28		106	%	70 - 130	

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE EAST

Quality Assurance Report (Continued)

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1342800 AAD	Spiked Blank	1,1-Dichloroethane	2007/08/28	91	%	70 - 130
1342000 AAD	Spiked Dialik	1,2-Dichloroethane	2007/08/28	93	%	70 - 130 70 - 130
		1,1-Dichloroethylene	2007/08/28	86	%	70 - 130 70 - 130
		cis-1,2-Dichloroethylene	2007/08/28	96	%	70 - 130
		trans-1,2-Dichloroethylene	2007/08/28	88	%	70 - 130 70 - 130
		1,2-Dichloropropane	2007/08/28	114	%	70 - 130 70 - 130
		cis-1,3-Dichloropropene	2007/08/28	92	%	70 - 130 70 - 130
		trans-1,3-Dichloropropene	2007/08/28	99	%	70 - 130
		Ethylbenzene	2007/08/28	109	%	70 - 130
		Ethylene Dibromide	2007/08/28	115	%	70 - 130
		Methylene Chloride(Dichloromethane)	2007/08/28	90	%	70 - 130
		Methyl Isobutyl Ketone	2007/08/28	128	%	60 - 140
		, ,	2007/08/28	114	%	60 - 140
		Methyl Ethyl Ketone (2-Butanone)	2007/08/28	91	%	70 - 130
		Methyl t-butyl ether (MTBE)	2007/08/28	92	%	70 - 130 70 - 130
		Styrene			% %	
		1,1,1,2-Tetrachloroethane	2007/08/28	118		70 - 130
		1,1,2,2-Tetrachloroethane	2007/08/28	116	%	70 - 130
		Tetrachloroethylene	2007/08/28	96	%	70 - 130
		Toluene	2007/08/28	104	%	70 - 130
		1,1,1-Trichloroethane	2007/08/28	91	%	70 - 130
		1,1,2-Trichloroethane	2007/08/28	119	%	70 - 130
	Trichloroethylene	2007/08/28	93	%	70 - 130	
	Vinyl Chloride	2007/08/28	78	%	70 - 130	
		p+m-Xylene	2007/08/28	112	%	70 - 130
		o-Xylene	2007/08/28	98	%	70 - 130
	Method Blank	4-Bromofluorobenzene	2007/08/28	86	%	70 - 130
		D4-1,2-Dichloroethane	2007/08/28	110	%	70 - 130
		D8-Toluene	2007/08/28	101	%	70 - 130
		Acetone (2-Propanone)	2007/08/28	ND, RDL=10	ug/L	
		Benzene	2007/08/28	ND, RDL=0.1	ug/L	
		Bromodichloromethane	2007/08/28	ND, RDL=0.1	ug/L	
		Bromoform	2007/08/28	ND, RDL=0.2	ug/L	
		Bromomethane	2007/08/28	ND, RDL=0.5	ug/L	
		Carbon Tetrachloride	2007/08/28	ND, RDL=0.1	ug/L	
		Chlorobenzene	2007/08/28	ND, RDL=0.1	ug/L	
		Chloroform	2007/08/28	ND, RDL=0.1	ug/L	
		Dibromochloromethane	2007/08/28	ND, RDL=0.2	ug/L	
		1,2-Dichlorobenzene	2007/08/28	ND, RDL=0.2	ug/L	
		1,3-Dichlorobenzene	2007/08/28	ND, RDL=0.2	ug/L	
		1,4-Dichlorobenzene	2007/08/28	ND, RDL=0.2	ug/L	
		1,1-Dichloroethane	2007/08/28	ND, RDL=0.1	ug/L	
		1,2-Dichloroethane	2007/08/28	ND, RDL=0.1	ug/L	
		1,1-Dichloroethylene	2007/08/28	ND, RDL=0.1	ug/L	
		cis-1,2-Dichloroethylene	2007/08/28	ND, RDL=0.1	ug/L	
		trans-1,2-Dichloroethylene	2007/08/28	ND, RDL=0.1	ug/L	
		1,2-Dichloropropane	2007/08/28	ND, RDL=0.1	ug/L	
		cis-1,3-Dichloropropene	2007/08/28	ND, RDL=0.2	ug/L	
		trans-1,3-Dichloropropene	2007/08/28	ND, RDL=0.2	ug/L	
		Ethylbenzene	2007/08/28	ND, RDL=0.1	ug/L	
		Ethylene Dibromide	2007/08/28	ND, RDL=0.2	ug/L	
		Methylene Chloride(Dichloromethane)	2007/08/28	ND, RDL=0.5	ug/L	
		Methyl Isobutyl Ketone	2007/08/28	ND, RDL=5	ug/L	
		Methyl Ethyl Ketone (2-Butanone)	2007/08/28	ND, RDL=5	ug/L	
		Methyl t-butyl ether (MTBE)	2007/08/28	ND, RDL=0.2	ug/L	
		Styrene	2007/08/28	ND, RDL=0.2	ug/L	
		2.,.0.10	2001,00720	115, 1151-0.1	~9, ∟	

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE EAST

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1342800 AAD	Method Blank	1,1,1,2-Tetrachloroethane	2007/08/28	ND, RDL=0.1	ug/L	
		1,1,2,2-Tetrachloroethane	2007/08/28	ND, RDL=0.2	ug/L	
		Tetrachloroethylene	2007/08/28	ND, RDL=0.1	ug/L	
		Toluene	2007/08/28	ND, RDL=0.2	ug/L	
		1,1,1-Trichloroethane	2007/08/28	ND, RDL=0.1	ug/L	
		1,1,2-Trichloroethane	2007/08/28	ND, RDL=0.2	ug/L	
		Trichloroethylene	2007/08/28	ND, RDL=0.1	ug/L	
		Vinyl Chloride	2007/08/28	ND, RDL=0.2	ug/L	
		p+m-Xylene	2007/08/28	ND, RDL=0.2	ug/L	
		o-Xylene	2007/08/28	ND, RDL=0.1	ug/L	
		Xylene (Total)	2007/08/28	ND, RDL=0.1	ug/L ug/L	
	RPD			· ·	ug/L %	40
	RPD	Acetone (2-Propanone)	2007/08/28	NC NO		40
		Benzene	2007/08/28	NC NO	%	40
		Bromodichloromethane	2007/08/28	NC	%	40
		Bromoform	2007/08/28	NC	%	40
		Bromomethane	2007/08/28	NC	%	40
		Carbon Tetrachloride	2007/08/28	NC	%	40
		Chlorobenzene	2007/08/28	NC	%	40
		Chloroform	2007/08/28	NC	%	40
		Dibromochloromethane	2007/08/28	NC	%	40
		1,2-Dichlorobenzene	2007/08/28	NC	%	40
		1,3-Dichlorobenzene	2007/08/28	NC	%	40
		1,4-Dichlorobenzene	2007/08/28	NC	%	40
		1,1-Dichloroethane	2007/08/28	NC	%	40
		1,2-Dichloroethane	2007/08/28	NC	%	40
		1,1-Dichloroethylene	2007/08/28	NC	%	40
		cis-1,2-Dichloroethylene	2007/08/28	NC	%	40
		trans-1,2-Dichloroethylene	2007/08/28	NC	%	40
		1,2-Dichloropropane	2007/08/28	NC NC	%	40
		· ·		NC NC	% %	
		cis-1,3-Dichloropropene	2007/08/28			40
		trans-1,3-Dichloropropene	2007/08/28	NC NO	%	40
		Ethylbenzene	2007/08/28	NC	%	40
		Ethylene Dibromide	2007/08/28	NC	%	40
		Methylene Chloride(Dichloromethane)	2007/08/28	NC	%	40
		Methyl Isobutyl Ketone	2007/08/28	NC	%	40
		Methyl Ethyl Ketone (2-Butanone)	2007/08/28	NC	%	40
		Methyl t-butyl ether (MTBE)	2007/08/28	NC	%	40
		Styrene	2007/08/28	NC	%	40
		1,1,1,2-Tetrachloroethane	2007/08/28	NC	%	40
		1,1,2,2-Tetrachloroethane	2007/08/28	NC	%	40
		Tetrachloroethylene	2007/08/28	4.1	%	40
		Toluene	2007/08/28	NC	%	40
		1,1,1-Trichloroethane	2007/08/28	NC	%	40
		1,1,2-Trichloroethane	2007/08/28	NC	%	40
		Trichloroethylene	2007/08/28	NC	%	40
		Vinyl Chloride	2007/08/28	NC	%	40
		p+m-Xylene	2007/08/28	NC NC	%	40
		o-Xylene	2007/08/28	NC NC	%	40
		•				
1040457 !!!	MATRIX ORIVE	Xylene (Total)	2007/08/28	NC	%	40
1343457 JJI	MATRIX SPIKE	D10-Anthracene	2007/08/27	88		30 - 130
		D14-Terphenyl (FS)	2007/08/27	94	%	30 - 130
		D7-Quinoline	2007/08/27	86	%	30 - 130
		D8-Acenaphthylene	2007/08/27	81	%	30 - 130
		Acenaphthene	2007/08/27	77		30 - 130
		Acenaphthylene	2007/08/27	76	%	30 - 130

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE EAST

Quality Assurance Report (Continued)

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
343457 JJI	MATRIX SPIKE	Anthracene	2007/08/27	93	%	30 - 13
343437 331	WIATRIA SFIRE		2007/08/27	95 95	%	30 - 13
		Benzo(a)anthracene Benzo(b/j)fluoranthene		99	%	30 - 13
		,	2007/08/27			
		Benzo(g,h,i)perylene	2007/08/27	73	%	30 - 13
		Benzo(k)fluoranthene	2007/08/27	82	%	30 - 13
		Chrysene	2007/08/27	94	%	30 - 13
		Dibenz(a,h)anthracene	2007/08/27	86	%	30 - 13
		Fluoranthene	2007/08/27	86	%	30 - 13
		Fluorene	2007/08/27	86	%	30 - 13
		Indeno(1,2,3-cd)pyrene	2007/08/27	91	%	30 - 13
		1-Methylnaphthalene	2007/08/27	77	%	30 - 13
		2-Methylnaphthalene	2007/08/27	84	%	30 - 13
		Naphthalene	2007/08/27	74	%	30 - 13
		Phenanthrene	2007/08/27	89	%	30 - 13
		Pyrene	2007/08/27	101	%	30 - 13
	Spiked Blank	D10-Anthracene	2007/08/27	85	%	30 - 1
	Spiked Dialik	D14-Terphenyl (FS)	2007/08/27	91	%	30 - 1
		1 2 7				
		D7-Quinoline	2007/08/27	82	%	30 - 1
		D8-Acenaphthylene	2007/08/27	79	%	30 - 1
		Acenaphthene	2007/08/27	74	%	30 - 1
		Acenaphthylene	2007/08/27	72	%	30 - 1
		Anthracene	2007/08/27	91	%	30 - 1
		Benzo(a)anthracene	2007/08/27	95	%	30 - 1
		Benzo(b/j)fluoranthene	2007/08/27	99	%	30 - 1
		Benzo(g,h,i)perylene	2007/08/27	70	%	30 - 1
		Benzo(k)fluoranthene	2007/08/27	81	%	30 - 1
		Chrysene	2007/08/27	91	%	30 - 1
		Dibenz(a,h)anthracene	2007/08/27	84	%	30 - 1
		Fluoranthene	2007/08/27	84	%	30 - 1
		Fluorene	2007/08/27	83	%	30 - 1
				87	%	
		Indeno(1,2,3-cd)pyrene	2007/08/27			30 - 1
		1-Methylnaphthalene	2007/08/27	70	%	30 - 1
		2-Methylnaphthalene	2007/08/27	74	%	30 - 1
		Naphthalene	2007/08/27	67	%	30 - 1
		Phenanthrene	2007/08/27	87	%	30 - 1
		Pyrene	2007/08/27	98	%	30 - 1
	Method Blank	D10-Anthracene	2007/08/27	84	%	30 - 1
		D14-Terphenyl (FS)	2007/08/27	90	%	30 - 1
		D7-Quinoline	2007/08/27	89	%	30 - 1
		D8-Acenaphthylene	2007/08/27	74	%	30 - 1
		Acenaphthene	2007/08/27	ND, RDL=0.05	ug/L	00 1
		Acenaphthylene	2007/08/27	ND, RDL=0.05	-	
					ug/L	
		Anthracene	2007/08/27	ND, RDL=0.05	ug/L	
		Benzo(a)anthracene	2007/08/27	ND, RDL=0.05	ug/L	
		Benzo(b/j)fluoranthene	2007/08/27	ND, RDL=0.05	ug/L	
		Benzo(g,h,i)perylene	2007/08/27	ND, RDL=0.1	ug/L	
		Benzo(k)fluoranthene	2007/08/27	ND, RDL=0.05	ug/L	
		Chrysene	2007/08/27	ND, RDL=0.05	ug/L	
		Dibenz(a,h)anthracene	2007/08/27	ND, RDL=0.1	ug/L	
		Fluoranthene	2007/08/27	ND, RDL=0.05	ug/L	
		Fluorene	2007/08/27	ND, RDL=0.05	ug/L	
		Indeno(1,2,3-cd)pyrene	2007/08/27	ND, RDL=0.00	ug/L	
		1-Methylnaphthalene		ND, RDL=0.1 ND, RDL=0.05		
		•	2007/08/27		ug/L	
		2-Methylnaphthalene	2007/08/27	ND, RDL=0.05	ug/L	
		Naphthalene	2007/08/27	ND, RDL=0.05	ug/L	

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE EAST

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1343457 JJI	Method Blank	Phenanthrene	2007/08/27	ND, RDL=0.05	ug/L	
		Pyrene	2007/08/27	ND, RDL=0.05	ug/L	
	RPD	D14-Terphenyl (FS)	2007/08/27	2.3	%	N/A
		Acenaphthene	2007/08/27	NC	%	40
		Acenaphthylene	2007/08/27	NC	%	40
		Anthracene	2007/08/27	NC	%	40
		Benzo(a)anthracene	2007/08/27	NC	%	40
		Benzo(b/j)fluoranthene	2007/08/27	NC	%	40
		Benzo(g,h,i)perylene	2007/08/27	NC	%	40
		Benzo(k)fluoranthene	2007/08/27	NC	%	40
		` '	2007/08/27	NC NC	%	40
		Chrysene				
		Dibenz(a,h)anthracene	2007/08/27	NC	%	40
		Fluoranthene	2007/08/27	NC	%	40
		Fluorene	2007/08/27	NC	%	40
		Indeno(1,2,3-cd)pyrene	2007/08/27	NC	%	40
		1-Methylnaphthalene	2007/08/27	NC	%	40
		2-Methylnaphthalene	2007/08/27	NC	%	40
		Naphthalene	2007/08/27	NC	%	40
		Phenanthrene	2007/08/27	NC	%	40
		Pyrene	2007/08/27	NC	%	40
1343486 JJI	Spiked Blank	D10-Anthracene	2007/08/27	85	%	30 - 130
10-10-100-001	ориса Ванк	D14-Terphenyl (FS)	2007/08/27	91	%	30 - 130
		D8-Acenaphthylene	2007/08/27	79	%	30 - 130
		. ,		91	%	
	DDD	Benzo(a)pyrene	2007/08/27			30 - 130
	RPD	Benzo(a)pyrene	2007/08/27	0.4	%	40
	Method Blank	D10-Anthracene	2007/08/27	84	%	30 - 130
		D14-Terphenyl (FS)	2007/08/27	90	%	30 - 130
		D8-Acenaphthylene	2007/08/27	74	%	30 - 130
		Benzo(a)pyrene	2007/08/27	ND, RDL=0.005	ug/L	
1346298 JBW	MATRIX SPIKE					
	[U25728-02]	Dissolved Antimony (Sb)	2007/08/30	110	%	80 - 120
		Dissolved Arsenic (As)	2007/08/30	103	%	80 - 120
		Dissolved Barium (Ba)	2007/08/30	102	%	80 - 120
		Dissolved Beryllium (Be)	2007/08/30	105	%	80 - 120
		Dissolved Boron (B)	2007/08/30	89	%	80 - 120
		Dissolved Cadmium (Cd)	2007/08/30	106	%	80 - 120
		Dissolved Cadmidin (Cd) Dissolved Chromium (Cr)	2007/08/30	103	%	80 - 120
		` ,				80 - 120
		Dissolved Cobalt (Co)	2007/08/30	103	%	
		Dissolved Copper (Cu)	2007/08/30	99	%	80 - 120
		Dissolved Lead (Pb)	2007/08/30	101	%	80 - 120
		Dissolved Molybdenum (Mo)	2007/08/30	109	%	80 - 120
		Dissolved Nickel (Ni)	2007/08/30	98	%	80 - 120
		Dissolved Selenium (Se)	2007/08/30	104	%	80 - 120
		Dissolved Silver (Ag)	2007/08/30	103	%	80 - 120
		Dissolved Sodium (Na)	2007/08/30	105	%	80 - 120
		Dissolved Thallium (TI)	2007/08/30	102	%	80 - 120
		Dissolved Vanadium (V)	2007/08/30	104	%	80 - 120
		Dissolved Zinc (Zn)	2007/08/30	100	%	80 - 120
	Spiked Blank	Dissolved Antimony (Sb)	2007/08/30	104	%	85 - 115
	Spinou Dialik	Dissolved Aritimory (3b) Dissolved Aritimory (3b)	2007/08/30	103	%	85 - 115
		Dissolved Arsenic (As) Dissolved Barium (Ba)		103		85 - 115
			2007/08/30		%	
		Dissolved Beryllium (Be)	2007/08/30	105	%	85 - 115
		Dissolved Boron (B)	2007/08/30	106	%	85 - 115
		Dissolved Cadmium (Cd)	2007/08/30	103	%	85 - 115
		Dissolved Chromium (Cr)	2007/08/30	104	%	85 - 115

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE EAST

Quality Assurance Report (Continued)

Maxxam Job Number: MA790950

QA/QC			Date			
Batch	00 T	Danasasasas	Analyzed	Value December	L La Sta	0011:1
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1346298 JBW	Spiked Blank	Dissolved Cobalt (Co)	2007/08/30	103	%	85 - 11
		Dissolved Copper (Cu)	2007/08/30	98	%	85 - 11
		Dissolved Lead (Pb)	2007/08/30	101	%	85 - 11
		Dissolved Molybdenum (Mo)	2007/08/30	103	%	85 - 11
		Dissolved Nickel (Ni)	2007/08/30	98	%	85 - 11
		Dissolved Selenium (Se)	2007/08/30	100	%	85 - 11
		Dissolved Silver (Ag)	2007/08/30	101	%	85 - 11
		Dissolved Sodium (Na)	2007/08/30	107	%	85 - 11
		Dissolved Thallium (TI)	2007/08/30	100	%	85 - 11
		Dissolved Vanadium (V)	2007/08/30	104	%	85 - 11
		Dissolved Zinc (Zn)	2007/08/30	101	%	85 - 11
	Method Blank	Dissolved Antimony (Sb)	2007/08/30	ND, RDL=0.5	ug/L	
		Dissolved Arsenic (As)	2007/08/30	ND, RDL=1	ug/L	
		Dissolved Barium (Ba)	2007/08/30	ND, RDL=5	ug/L	
		Dissolved Beryllium (Be)	2007/08/30	ND, RDL=0.5	ug/L	
		Dissolved Boron (B)	2007/08/30	ND, RDL=10	ug/L	
		Dissolved Cadmium (Cd)	2007/08/30	ND, RDL=0.1	ug/L	
		Dissolved Chromium (Cr)	2007/08/30	ND, RDL=5	ug/L	
		Dissolved Cobalt (Co)	2007/08/30	ND, RDL=0.5	ug/L	
		Dissolved Copper (Cu)	2007/08/30	ND, RDL=1	ug/L	
		Dissolved Lead (Pb)	2007/08/30	ND, RDL=0.5	ug/L	
		Dissolved Molybdenum (Mo)	2007/08/30	ND, RDL=1	ug/L	
		Dissolved Nickel (Ni)	2007/08/30	ND, RDL=1	ug/L	
		Dissolved Selenium (Se)	2007/08/30	ND, RDL=2	ug/L	
		Dissolved Silver (Ag)	2007/08/30	ND, RDL=0.1	ug/L	
		Dissolved Sodium (Na)	2007/08/30	ND, RDL=100	ug/L	
		Dissolved Thallium (TI)	2007/08/30	ND, RDL=0.05	ug/L	
		Dissolved Vanadium (V)	2007/08/30	ND, RDL=1	ug/L	
		Dissolved Zinc (Zn)	2007/08/30	ND, RDL=5	ug/L	

ND = Not detected N/A = Not Applicable NC = Non-calculable

RPD = Relative Percent Difference

SPIKE = Fortified sample

Validation Signature Page

Maxxam	Job	#:	A7	909	50
--------	-----	----	-----------	-----	----

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

MICHAEL WANG,

TROY CARRIERE, B.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Site: OWEN SOUND Your C.O.C. #: 00432605

Attention: Carla Reynolds
Barenco Inc
2561 Stouffville Rd
PO Box 295

Gormley, ON L0H 1G0

Report Date: 2007/07/12

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A646323 Received: 2006/05/17, 16:04

Sample Matrix: Water # Samples Received: 2

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Dissolved Metals by ICPMS	2	N/A	2006/05/20 CAM SOP-00447	EPA 6020
PAH Compounds in Water by GC/MS (SIM)	2	2006/05/19	2006/05/19 EPA 8270	GC/MS

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Maxxam Job #: A646323 Report Date: 2007/07/12

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

	Units	MW101	MW109	RDL	QC Batch
COC Number		00432605	00432605		
		13:30	14:00		
Sampling Date		2006/05/16	2006/05/16		
Maxxam ID		M08374	M08375		

METALS					
Dissolved Boron (B)	ug/L	320	1200	10	974322
Dissolved Cobalt (Co)	ug/L	1.4	ND	0.5	974322
Dissolved Copper (Cu)	ug/L	6	1	1	974322
Dissolved Lead (Pb)	ug/L	ND	ND	0.5	974322

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam Job #: A646323 Report Date: 2007/07/12

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

0.05

973913

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		M08374	M08375		
Sampling Date		2006/05/16	2006/05/16		
		13:30	14:00		
COC Number		00432605	00432605		
	Units	MW101	MW109	RDL	QC Batch
PAHs					
Acenaphthene	ug/L	0.4	ND	0.05	973913
Acenaphthylene	ug/L	ND	ND	0.05	973913
Anthracene	ug/L	0.7	ND	0.05	973913

10

ug/L

ND

Benzo(a)pyrene ug/L 20 0.02 0.01 973913 Benzo(b/j)fluoranthene ug/L 20 ND 0.05 973913 20 0.1 973913 0.2 Benzo(g,h,i)perylene ug/L 7 Benzo(k)fluoranthene ug/L ND 0.05 973913 ND 0.05 10 973913 Chrysene ug/L 3 Dibenz(a,h)anthracene ug/L ND 0.1 973913 Fluoranthene 0.3 0.05 973913 ug/L 10 Fluorene ug/L 0.2 ND 0.05 973913 Indeno(1,2,3-cd)pyrene ug/L 10 ND 0.1 973913 1-Methylnaphthalene ug/L 0.2 ND 0.05 973913 2-Methylnaphthalene 0.2 ND 0.05 973913 ug/L Naphthalene ug/L 0.3 0.05 0.05 973913 Phenanthrene 0.2 0.05 ug/L 4 973913 ug/L 10 0.3 0.05 973913 Pyrene Surrogate Recovery (%) D10-Anthracene % 91 82 973913 % D14-Terphenyl (FS) 103 103 973913 D7-Quinoline % 81 92 973913 86 % 95 973913 D8-Acenaphthylene

ND = Not detected

Benzo(a)anthracene

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A646323 Report Date: 2007/07/12 Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

Sample M08375-01: PAH ANALYSIS: Due to matrix background inferferences, the recovery for terphenyl-d14 was not available.

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

PAH Compounds in Water by GC/MS (SIM): NA: Recovery in the matrix spiked sample was not calculated. Because of the high concentration of this compound in the parent sample, the relative difference between the spiked and un-spiked concentrations is not sufficiently significant to permit reliable recovery calculation. This may not apply to all work orders.

Results relate only to the items tested.

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report Maxxam Job Number: MA646323

QA/QC			Date				
Batch	00.7	.	Analyzed		_		00
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Lim
9/3913 MWG	MATRIX SPIKE	D40 Asthusses	0000/05/40		00	0/	00 4
	[M08374-01]	D10-Anthracene	2006/05/19		93	%	30 - 10
		D14-Terphenyl (FS)	2006/05/19		104	%	30 - 13
		D7-Quinoline	2006/05/19		98	%	30 - 13
		D8-Acenaphthylene	2006/05/19		96	%	30 - 13
		Acenaphthene	2006/05/19		95	%	30 - 13
		Acenaphthylene	2006/05/19		97	%	30 - 13
		Anthracene	2006/05/19		104	%	30 - 13
		Benzo(a)anthracene	2006/05/19		NA	%	30 - 1
		Benzo(a)pyrene	2006/05/19		NA	%	30 - 1
		Benzo(b/j)fluoranthene	2006/05/19		NA	%	30 - 1
		Benzo(g,h,i)perylene	2006/05/19		NA	%	30 - 1
		Benzo(k)fluoranthene	2006/05/19		122	%	30 - 1
		Chrysene	2006/05/19		NA	%	30 - 1
		Dibenz(a,h)anthracene	2006/05/19		118	%	30 - 1
		Fluoranthene	2006/05/19		NA	%	30 - 1
		Fluorene	2006/05/19		116	%	30 - 1
		Indeno(1,2,3-cd)pyrene	2006/05/19		NA	%	30 - 1
		1-Methylnaphthalene	2006/05/19		108	%	30 - 1
		2-Methylnaphthalene	2006/05/19		94	%	30 - 1
		Naphthalene	2006/05/19		89	%	30 - 1
		Phenanthrene	2006/05/19		124	%	30 - 1
		Pyrene	2006/05/19		NA	%	30 - 1
	Spiked Blank	D10-Anthracene	2006/05/19		93	%	30 - 1
		D14-Terphenyl (FS)	2006/05/19		105	%	30 - 1
		D7-Quinoline	2006/05/19		109	%	30 - 1
		D8-Acenaphthylene	2006/05/19		95	%	30 - 1
		Acenaphthene	2006/05/19		88	%	30 - 1
		Acenaphthylene	2006/05/19		91	%	30 - 1
		Anthracene	2006/05/19		99	%	30 - 1
		Benzo(a)anthracene	2006/05/19		106	%	30 - 1
		Benzo(a)pyrene	2006/05/19		104	%	30 - 1
		Benzo(b/j)fluoranthene	2006/05/19		97	%	30 - 1
		Benzo(g,h,i)perylene	2006/05/19		109	%	30 - 1
		Benzo(k)fluoranthene	2006/05/19		117	%	30 - 1
		Chrysene	2006/05/19		107	%	30 - 1
		Dibenz(a,h)anthracene	2006/05/19		98	%	30 - 1
		Fluoranthene	2006/05/19		107	%	30 - 1
		Fluorene	2006/05/19		109	%	30 - 1
		Indeno(1,2,3-cd)pyrene	2006/05/19		100	%	30 - 1
		1-Methylnaphthalene	2006/05/19		110	%	30 - 1
		2-Methylnaphthalene	2006/05/19		97	%	30 - 1
		Naphthalene	2006/05/19		82	%	30 - 1
		Phenanthrene	2006/05/19		108	%	30 - 1
		Pyrene	2006/05/19		108	%	30 - 1
	Method Blank	D10-Anthracene	2006/05/19		91	% %	30 - 1
	ואוכנווטט שומווא	D14-Terphenyl (FS)	2006/05/19		103	% %	30 - 1
		D7-Quinoline	2006/05/19		103	% %	30 - 1
					94	%	
		D8-Acenaphthylene	2006/05/19	אוט ט			30 - 1
		Acenaphthylana	2006/05/19		DL=0.05	ug/L	
		Acenaphthylene	2006/05/19		DL=0.05	ug/L	
		Anthracene	2006/05/19		DL=0.05	ug/L	
		Benzo(a)anthracene	2006/05/19		DL=0.05	ug/L	
		Benzo(a)pyrene	2006/05/19		DL=0.01	ug/L	
		Benzo(b/j)fluoranthene	2006/05/19	ND, R	DL=0.05	ug/L	

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

Maxxam Job Number: MA646323

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
973913 MWG	Method Blank	Benzo(g,h,i)perylene	2006/05/19	ND, RDL=0.1	ug/L	
		Benzo(k)fluoranthene	2006/05/19	ND, RDL=0.05	ug/L	
		Chrysene	2006/05/19	ND, RDL=0.05	ug/L	
		Dibenz(a,h)anthracene	2006/05/19	ND, RDL=0.1	ug/L	
		Fluoranthene	2006/05/19	ND, RDL=0.05	ug/L	
		Fluorene	2006/05/19	ND, RDL=0.05	ug/L	
		Indeno(1,2,3-cd)pyrene	2006/05/19	ND, RDL=0.1	ug/L	
		1-Methylnaphthalene	2006/05/19	ND, RDL=0.05	ug/L	
		2-Methylnaphthalene	2006/05/19	ND, RDL=0.05	ug/L	
		Naphthalene	2006/05/19	ND, RDL=0.05	ug/L	
		Phenanthrene	2006/05/19	ND, RDL=0.05	ug/L	
		Pyrene	2006/05/19	ND, RDL=0.05	ug/L	
	RPD [M08375-01]	Acenaphthene	2006/05/19	NC	%	4
		Acenaphthylene	2006/05/19	NC	%	4
		Anthracene	2006/05/19	NC	%	4
		Benzo(a)anthracene	2006/05/19	NC	%	4
		Benzo(a)pyrene	2006/05/19	NC	%	4
		Benzo(b/j)fluoranthene	2006/05/19	NC	%	4
	Benzo(g,h,i)perylene	2006/05/19	NC	%	4	
	Benzo(k)fluoranthene	2006/05/19	NC	%	4	
	Chrysene	2006/05/19	NC	%	4	
		Dibenz(a,h)anthracene	2006/05/19	NC	%	2
		Fluoranthene	2006/05/19	2.7	%	2
		Fluorene	2006/05/19	NC	%	
		Indeno(1,2,3-cd)pyrene	2006/05/19	NC	%	
		1-Methylnaphthalene	2006/05/19	NC	%	
		2-Methylnaphthalene	2006/05/19	NC	%	_
		Naphthalene	2006/05/19	NC	%	
		Phenanthrene	2006/05/19	NC	%	2
		Pyrene	2006/05/19	0.8	%	
974322 HRE	MATRIX SPIKE	Dissolved Boron (B)	2006/05/20	NC (75 - 12
914322 TINL	WATRIA SPIRE	Dissolved Boroll (B) Dissolved Cobalt (Co)	2006/05/20	95	" %	80 - 12
		Dissolved Cobait (Co) Dissolved Copper (Cu)	2006/05/20	94	% %	80 - 12 80 - 12
		••		94	%	80 - 12 80 - 12
	Chilead Dlank	Dissolved Lead (Pb)	2006/05/20	_		
	Spiked Blank	Dissolved Boron (B)	2006/05/20	106 97	%	85 - 11 85 - 11
		Dissolved Cobalt (Co)	2006/05/20		%	
		Dissolved Copper (Cu)	2006/05/20	101	%	85 - 11
	M (1 15)	Dissolved Lead (Pb)	2006/05/20	98	%	85 - 11
	Method Blank	Dissolved Boron (B)	2006/05/20	ND, RDL=10	ug/L	
		Dissolved Cobalt (Co)	2006/05/20	ND, RDL=0.5	ug/L	
		Dissolved Copper (Cu)	2006/05/20	ND, RDL=1	ug/L	
		Dissolved Lead (Pb)	2006/05/20	ND, RDL=0.5	ug/L	
	RPD	Dissolved Boron (B)	2006/05/20	2.9	%	4
		Dissolved Cobalt (Co)	2006/05/20	NC	%	2
		Dissolved Copper (Cu)	2006/05/20	NC	%	2
		Dissolved Lead (Pb)	2006/05/20	NC	%	2

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

SPIKE = Fortified sample

¹⁾ The recovery in the matrix spiked sample was not calculated. Because of the high concentration of this compound in the parent sample, the relative difference between the spiked and un-spiked concentrations is not sufficiently significant to permit a reliable recovery calculation.

Validation Signature Page

Maxxar	n J	ob #	: A	646	323
--------	-----	------	-----	-----	-----

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

BRAD NEWMAN, Scientific Specialist

ALINA SEGAL, Manager Main Lab - Organics

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Site: OWEN SOUND Your C.O.C. #: 00457597

Attention: Carla Reynolds

Barenco Inc 2561 Stouffville Rd PO Box 295 Gormley, ON L0H 1G0

Report Date: 2006/11/03

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A6B6138 Received: 2006/10/27, 13:38

Sample Matrix: Soil # Samples Received: 9

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME FI & BTEX in Soil	5	2006/10/30	2006/11/01	CAM SOP-00315	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	5	2006/10/29	2006/10/29	CAM SOP-00316	CCME CWS
MOISTURE	6	N/A	2006/10/28	Ont SOP-0114	MOE HANDBOOK(1983)
PAH Compounds in Soil by GC/MS (SIM)	1	2006/10/28	2006/10/28	EPA 8270	GC/MS
pH CaCl2 EXTRACT	2	N/A	2006/10/30	Ont SOP-0067	4500-H+B
Total Organic Carbon in Soil	4	N/A	2006/11/01		LECO

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	TH1	TH2-1	TH2-2	TH2-3	TH3-1	RDL	QC Batch
COC Number		00457597	00457597	00457597	00457597	00457597		
Sampling Date		2006/10/23	2006/10/23	2006/10/23	2006/10/23	2006/10/23		
Maxxam ID		P15669	P15670	P15671	P15672	P15673		

INORGANICS								
Moisture	%	16	22	17	28		0.2	1088658
Total Organic Carbon	mg/kg	38000	ND			41000	500	1091406
Available (CaCl2) pH	рН					7.38	N/A	1089186

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam ID		P15674	P15675	P15676	P15677		
Sampling Date		2006/10/23	2006/10/23	2006/10/23	2006/10/23		
COC Number		00457597	00457597	00457597	00457597		
	Units	TH3-2	TH3-3	TH4-1	TH4-2	RDL	QC Batch

INORGANICS							
Moisture	%	17			13	0.2	1088658
Total Organic Carbon	mg/kg		20000			500	1091406
Available (CaCl2) pH	рН			8.28		N/A	1089186

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

	Units	TH2-3	RDL	QC Batch
COC Number		00457597		
Sampling Date		2006/10/23		
Maxxam ID		P15672		

PAHs				
Acenaphthene	ug/g	ND	0.02	1088657
Acenaphthylene	ug/g	ND	0.01	1088657
Anthracene	ug/g	ND	0.01	1088657
Benzo(a)anthracene	ug/g	0.03	0.02	1088657
Benzo(a)pyrene	ug/g	0.03	0.01	1088657
Benzo(b/j)fluoranthene	ug/g	0.04	0.01	1088657
Benzo(g,h,i)perylene	ug/g	ND	0.04	1088657
Benzo(k)fluoranthene	ug/g	ND	0.02	1088657
Chrysene	ug/g	0.03	0.02	1088657
Dibenzo(a,h)anthracene	ug/g	ND	0.04	1088657
Fluoranthene	ug/g	0.06	0.01	1088657
Fluorene	ug/g	ND	0.01	1088657
Indeno(1,2,3-cd)pyrene	ug/g	ND	0.04	1088657
1-Methylnaphthalene	ug/g	0.03	0.01	1088657
2-Methylnaphthalene	ug/g	0.05	0.01	1088657
Naphthalene	ug/g	0.03	0.01	1088657
Phenanthrene	ug/g	0.04	0.01	1088657
Pyrene	ug/g	0.04	0.01	1088657
Surrogate Recovery (%)				
D10-Anthracene	%	85		1088657
D14-Terphenyl (FS)	%	83		1088657
D7-Quinoline	%	73		1088657
D8-Acenaphthylene	%	72		1088657

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

72

1088792

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		P15669	P15670	P15671	P15674		
Sampling Date		2006/10/23	2006/10/23	2006/10/23	2006/10/23		
COC Number		00457597	00457597	00457597	00457597		
	Units	TH1	TH2-1	TH2-2	TH3-2	RDL	QC Batch
			ı	ı	I	1	
F1 PHC and BTEX							
Benzene	ug/g	ND	ND	ND	ND	0.02	1089614
Toluene	ug/g	ND	0.21	ND	ND	0.02	1089614
Ethylbenzene	ug/g	ND	0.09	ND	ND	0.02	1089614
o-Xylene	ug/g	ND	0.36	ND	0.10	0.02	1089614
p+m-Xylene	ug/g	ND	0.60	ND	0.17	0.04	1089614
Total Xylenes	ug/g	ND	0.96	ND	0.27	0.04	1089614
F1 (C6-C10)	ug/g	ND	22	ND	ND	10	1089614
F1 (C6-C10) - BTEX	ug/g	ND	21	ND	ND	10	1089614
F2-F4 PHC							
F2 (C10-C16 Hydrocarbons)	ug/g	ND	26	ND	ND	10	1088792
F3 (C16-C34 Hydrocarbons)	ug/g	38	530	ND	11	10	1088792
F4 (C34-C50 Hydrocarbons)	ug/g	43	760	ND	ND	10	1088792
Reached Baseline at C50	ug/g	Yes	No	Yes	Yes		1088792
Surrogate Recovery (%)							
1,4-Difluorobenzene	%	107	104	107	107		1089614
4-Bromofluorobenzene	%	93	94	94	95		1089614
D10-Ethylbenzene	%	102	101	98	101		1089614
D4-1,2-Dichloroethane	%	94	94	94	95		1089614

91

78

ND = Not detected

o-Terphenyl

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

%

106

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		P15677		
Sampling Date		2006/10/23		
COC Number		00457597		
	Units	TH4-2	RDL	QC Batch

F1 PHC and BTEX				
Benzene	ug/g	ND	0.02	1089614
Toluene	ug/g	ND	0.02	1089614
Ethylbenzene	ug/g	ND	0.02	1089614
o-Xylene	ug/g	ND	0.02	1089614
p+m-Xylene	ug/g	ND	0.04	1089614
Total Xylenes	ug/g	ND	0.04	1089614
F1 (C6-C10)	ug/g	ND	10	1089614
F1 (C6-C10) - BTEX	ug/g	ND	10	1089614
F2-F4 PHC				
F2 (C10-C16 Hydrocarbons)	ug/g	14	10	1088792
F3 (C16-C34 Hydrocarbons)	ug/g	270	10	1088792
F4 (C34-C50 Hydrocarbons)	ug/g	24	10	1088792
Reached Baseline at C50	ug/g	Yes		1088792
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	107		1089614
4-Bromofluorobenzene	%	94		1089614
D10-Ethylbenzene	%	101		1089614
D4-1,2-Dichloroethane	%	95		1089614
o-Terphenyl	%	74		1088792

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

Sample P15672-01: PAH analysis: Due to coloured interferences, sample required dilution. DLs were adjusted accordingly.

Results relate only to the items tested.

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report Maxxam Job Number: MA6B6138

QA/QC			Date				
Batch		_	Analyzed				
	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limit
1088657 MWG	MATRIX SPIKE	D10-Anthracene	2006/10/28		72	%	30 - 13
		D14-Terphenyl (FS)	2006/10/28		79	%	30 - 13
		D7-Quinoline	2006/10/28		54	%	30 - 13
		D8-Acenaphthylene	2006/10/28		56	%	30 - 13
		Acenaphthene	2006/10/28		62	%	30 - 13
		Acenaphthylene	2006/10/28		61	%	30 - 13
		Anthracene	2006/10/28		72	%	30 - 13
		Benzo(a)anthracene	2006/10/28		84	%	30 - 13
		Benzo(a)pyrene	2006/10/28		78	%	30 - 13
		Benzo(b/j)fluoranthene	2006/10/28		81	%	30 - 13
		Benzo(g,h,i)perylene	2006/10/28		77	%	30 - 13
		Benzo(k)fluoranthene	2006/10/28		77	%	30 - 13
		Chrysene	2006/10/28		83	%	30 - 13
		Dibenzo(a,h)anthracene	2006/10/28		71	%	30 - 13
		Fluoranthene	2006/10/28		78	%	30 - 13
		Fluorene	2006/10/28		64	%	30 - 13
		Indeno(1,2,3-cd)pyrene	2006/10/28		68	%	30 - 13
		1-Methylnaphthalene	2006/10/28		50	%	30 - 13
			2006/10/28		60	%	30 - 13
		2-Methylnaphthalene					
		Naphthalene	2006/10/28		60	%	30 - 13
		Phenanthrene	2006/10/28		74	%	30 - 13
Spiked Blank	Pyrene	2006/10/28		84	%	30 - 13	
	D10-Anthracene	2006/10/28		81	%	30 - 13	
		D14-Terphenyl (FS)	2006/10/28		88	%	30 - 13
		D7-Quinoline	2006/10/28		79	%	30 - 13
		D8-Acenaphthylene	2006/10/28		68	%	30 - 13
		Acenaphthene	2006/10/28		74	%	30 - 13
		Acenaphthylene	2006/10/28		75	%	30 - 13
		Anthracene	2006/10/28		80	%	30 - 13
		Benzo(a)anthracene	2006/10/28		85	%	30 - 13
		Benzo(a)pyrene	2006/10/28		82	%	30 - 13
		Benzo(b/j)fluoranthene	2006/10/28		83	%	30 - 13
		Benzo(g,h,i)perylene	2006/10/28		68	%	30 - 13
		Benzo(k)fluoranthene	2006/10/28		88	%	30 - 13
		Chrysene	2006/10/28		88	%	30 - 13
		Dibenzo(a,h)anthracene	2006/10/28		65	%	30 - 13
		Fluoranthene	2006/10/28		82	%	30 - 13
		Fluorene	2006/10/28		72	%	30 - 13
		Indeno(1,2,3-cd)pyrene	2006/10/28		61	%	30 - 13
		1-Methylnaphthalene	2006/10/28		67	%	30 - 13
		2-Methylnaphthalene	2006/10/28		79	%	30 - 13
		Naphthalene	2006/10/28		73 74	%	30 - 13
					83		
		Phenanthrene	2006/10/28			%	30 - 13
	Mathad Dlad.	Pyrene	2006/10/28		87	%	30 - 13
	Method Blank	D10-Anthracene	2006/10/28		83	%	30 - 13
		D14-Terphenyl (FS)	2006/10/28		86 77	%	30 - 13
		D7-Quinoline	2006/10/28		77	%	30 - 13
		D8-Acenaphthylene	2006/10/28		66	%	30 - 13
		Acenaphthene	2006/10/28		DL=0.01	ug/g	
		Acenaphthylene	2006/10/28	-	DL=0.005	ug/g	
		Anthracene	2006/10/28		DL=0.005	ug/g	
		Benzo(a)anthracene	2006/10/28		DL=0.01	ug/g	
		Benzo(a)pyrene	2006/10/28	ND, R	DL=0.005	ug/g	
		Benzo(b/j)fluoranthene	2006/10/28	ND, R	DL=0.005	ug/g	
		Benzo(g,h,i)perylene	2006/10/28		DL=0.02	ug/g	

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1088657 MWG	Method Blank	Benzo(k)fluoranthene	2006/10/28	ND, RDL=0.01	ug/g	
		Chrysene	2006/10/28	ND, RDL=0.01	ug/g	
		Dibenzo(a,h)anthracene	2006/10/28	ND, RDL=0.02	ug/g	
		Fluoranthene	2006/10/28	ND, RDL=0.005	ug/g	
		Fluorene	2006/10/28	ND, RDL=0.005	ug/g	
		Indeno(1,2,3-cd)pyrene	2006/10/28	ND, RDL=0.02	ug/g	
		1-Methylnaphthalene	2006/10/28	ND, RDL=0.005	ug/g	
		2-Methylnaphthalene	2006/10/28	ND, RDL=0.005	ug/g	
		Naphthalene	2006/10/28	ND, RDL=0.005	ug/g	
		Phenanthrene	2006/10/28	ND, RDL=0.005	ug/g	
		Pyrene	2006/10/28	ND, RDL=0.005	ug/g	
	RPD	D14-Terphenyl (FS)	2006/10/28	2.5	%	N/A
		Acenaphthene	2006/10/28	NC	%	50
		Acenaphthylene	2006/10/28	NC	%	50
		Anthracene	2006/10/28	NC	%	50
		Benzo(a)anthracene	2006/10/28	NC	%	50
		Benzo(a)pyrene	2006/10/28	NC	%	50
		Benzo(b/j)fluoranthene	2006/10/28	NC	%	50
		Benzo(g,h,i)perylene	2006/10/28	NC	%	50
		Benzo(k)fluoranthene	2006/10/28	NC	%	50
		Chrysene	2006/10/28	NC	%	50
		Dibenzo(a,h)anthracene	2006/10/28	NC	%	50
		Fluoranthene	2006/10/28	NC	%	50
		Fluorene	2006/10/28	NC	%	50
	Indeno(1,2,3-cd)pyrene	2006/10/28	NC	% %	50	
		2006/10/28	NC	% %	50	
		1-Methylnaphthalene		NC NC	%	
		2-Methylnaphthalene	2006/10/28		% %	50 50
		Naphthalene	2006/10/28	NC NC	% %	50
		Phenanthrene	2006/10/28			
4000050 14/14/	DDD	Pyrene	2006/10/28	NC	%	50
1088658 WW	RPD	Moisture	2006/10/28	1.6	%	50
1088792 LSY	MATRIX SPIKE	o-Terphenyl	2006/10/29	87	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2006/10/29	87	%	60 - 130
		F3 (C16-C34 Hydrocarbons)	2006/10/29	87	%	60 - 130
		F4 (C34-C50 Hydrocarbons)	2006/10/29	87	%	60 - 130
	Spiked Blank	o-Terphenyl	2006/10/29	85	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2006/10/29	85	%	60 - 130
		F3 (C16-C34 Hydrocarbons)	2006/10/29	85	%	60 - 130
		F4 (C34-C50 Hydrocarbons)	2006/10/29	85	%	60 - 130
	Method Blank	o-Terphenyl	2006/10/29	81	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2006/10/29	ND, RDL=10	ug/g	
		F3 (C16-C34 Hydrocarbons)	2006/10/29	ND, RDL=10	ug/g	
		F4 (C34-C50 Hydrocarbons)	2006/10/29	ND, RDL=10	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2006/10/29	NC	%	50
		F3 (C16-C34 Hydrocarbons)	2006/10/29	NC	%	50
		F4 (C34-C50 Hydrocarbons)	2006/10/29	NC	%	50
1089614 SPV	MATRIX SPIKE	1,4-Difluorobenzene	2006/11/01	105	%	60 - 140
		4-Bromofluorobenzene	2006/11/01	96	%	60 - 140
		D10-Ethylbenzene	2006/11/01	97	%	30 - 130
		D4-1,2-Dichloroethane	2006/11/01	96	%	60 - 140
		Benzene	2006/11/01	87	%	60 - 140
		Toluene	2006/11/01	84	%	60 - 140
		Ethylbenzene	2006/11/01	84	%	60 - 140
		o-Xylene	2006/11/01	87	%	60 - 140
		p+m-Xylene	2006/11/01	87	%	60 - 140
	1		3 1		20 . 10	

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

Maxxam Job Number: MA6B6138

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1089614 SPV	MATRIX SPIKE	F1 (C6-C10)	2006/11/01	117	%	60 - 140
	Spiked Blank	1,4-Difluorobenzene	2006/11/01	107	%	60 - 140
		4-Bromofluorobenzene	2006/11/01	94	%	60 - 140
		D10-Ethylbenzene	2006/11/01	103	%	30 - 130
		D4-1,2-Dichloroethane	2006/11/01	97	%	60 - 140
		Benzene	2006/11/01	95	%	60 - 140
		Toluene	2006/11/01	90	%	60 - 140
		Ethylbenzene	2006/11/01	91	%	60 - 140
		o-Xylene	2006/11/01	93	%	60 - 140
		p+m-Xylene	2006/11/01	94	%	60 - 140
		F1 (C6-C10)	2006/11/01	126	%	60 - 140
	Method Blank	1,4-Difluorobenzene	2006/11/01	107	%	60 - 140
		4-Bromofluorobenzene	2006/11/01	93	%	60 - 140
		D10-Ethylbenzene	2006/11/01	101	%	30 - 130
		D4-1,2-Dichloroethane	2006/11/01	97	%	60 - 140
		Benzene	2006/11/01	ND, RDL=0.02	ug/g	
		Toluene	2006/11/01	ND, RDL=0.02	ug/g	
		Ethylbenzene	2006/11/01	ND, RDL=0.02	ug/g	
		o-Xylene	2006/11/01	ND, RDL=0.02	ug/g	
		p+m-Xylene	2006/11/01	ND, RDL=0.04	ug/g	
		Total Xylenes	2006/11/01	ND, RDL=0.04	ug/g	
		F1 (C6-C10)	2006/11/01	ND, RDL=10	ug/g	
		F1 (C6-C10) - BTEX	2006/11/01	ND, RDL=10	ug/g	
	RPD	F1 (C6-C10)	2006/11/01	NC	%	50
		F1 (C6-C10) - BTEX	2006/11/01	NC	%	50
1091406 OK	QC STANDARD	Total Organic Carbon	2006/11/01	99	%	20 - 120
	Method Blank	Total Organic Carbon	2006/11/01	ND, RDL=0.05	mg/kg	
	RPD [P15669-01]	Total Organic Carbon	2006/11/01	14.4	%	50

ND = Not detected
N/A = Not Applicable
NC = Non-calculable
RPD = Relative Percen

RPD = Relative Percent Difference QC Standard = Quality Control Standard

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A6B6138

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

EWA PRANJIC, M.Sc., C.Chem, Scientific Specialist

MEDHAT RISKALLAH, Manager, Hydrocarbon Department

SUZANA POPOVIC, Supervisor, Hydrocarbons

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Site: OWEN SOUND Your C.O.C. #: 00457598

Attention: Carla Reynolds

Barenco Inc 2561 Stouffville Rd PO Box 295 Gormley, ON L0H 1G0

Report Date: 2006/11/06

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A6B6132 Received: 2006/10/27, 13:42

Sample Matrix: Soil # Samples Received: 8

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME FI & BTEX in Soil	3	2006/10/30	2006/11/01	CAM SOP-00315	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	3	2006/10/29	2006/10/29	CAM SOP-00316	CCME CWS
MOISTURE	3	N/A	2006/10/28	Ont SOP-0114	MOE HANDBOOK(1983)
PAH Compounds in Soil by GC/MS (SIM)	1	2006/10/30	2006/10/30	EPA 8270	GC/MS
pH CaCl2 EXTRACT	2	N/A	2006/10/31	Ont SOP-0067	4500-H+B
Total Organic Carbon in Soil	4	N/A	2006/11/01		LECO

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	TH5-1	TH5-2	TH5-3	TH6-1	TH6-2	RDL	QC Batch
COC Number		00457598	00457598	00457598	00457598	00457598		
Sampling Date		2006/10/24	2006/10/24	2006/10/24	2006/10/24	2006/10/24		
Maxxam ID		P15646	P15647	P15648	P15649	P15650		

INORGANICS								
Moisture	%		11		21		0.2	1088622
Total Organic Carbon	mg/kg	30000		41000		28000	500	1091406
Available (CaCl2) pH	рН	7.56					N/A	1090065

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	TH7-1	TH7-2	TH7-3	RDL	QC Batch
COC Number		00457598	00457598	00457598		
Sampling Date		2006/10/24	2006/10/24	2006/10/24		
Maxxam ID		P15651	P15652	P15653		

INORGANICS						
Moisture	%			17	0.2	1088622
Total Organic Carbon	mg/kg		12000		500	1091406
Available (CaCl2) pH	рН	7.72			N/A	1090065

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

CCC Hamber	Units	TH7-3	RDL	QC Batch
COC Number		00457598		
Sampling Date		2006/10/24		
Maxxam ID		P15653		

			,
ug/g	0.02	0.01	1088995
ug/g	0.032	0.005	1088995
ug/g	0.025	0.005	1088995
ug/g	0.07	0.01	1088995
ug/g	0.046	0.005	1088995
ug/g	0.063	0.005	1088995
ug/g	0.03	0.02	1088995
ug/g	0.02	0.01	1088995
ug/g	0.07	0.01	1088995
ug/g	ND	0.02	1088995
ug/g	0.11	0.005	1088995
ug/g	0.014	0.005	1088995
ug/g	0.02	0.02	1088995
ug/g	0.50	0.005	1088995
ug/g	0.59	0.005	1088995
ug/g	0.31	0.005	1088995
ug/g	0.36	0.005	1088995
ug/g	0.090	0.005	1088995
%	92		1088995
%	102		1088995
%	85		1088995
%	88		1088995
	ug/g ug/g ug/g ug/g ug/g ug/g ug/g ug/g	ug/g 0.032 ug/g 0.025 ug/g 0.07 ug/g 0.046 ug/g 0.063 ug/g 0.02 ug/g 0.07 ug/g 0.07 ug/g 0.11 ug/g 0.014 ug/g 0.50 ug/g 0.31 ug/g 0.36 ug/g 0.090 % 92 % 85	ug/g 0.032 0.005 ug/g 0.025 0.005 ug/g 0.07 0.01 ug/g 0.046 0.005 ug/g 0.063 0.005 ug/g 0.03 0.02 ug/g 0.02 0.01 ug/g 0.07 0.01 ug/g 0.11 0.005 ug/g 0.014 0.005 ug/g 0.50 0.005 ug/g 0.59 0.005 ug/g 0.31 0.005 ug/g 0.36 0.005 ug/g 0.090 0.005 w 92 % 102 % 85

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

PETROLEUM HYDROCARBONS (CCME)

	Units	TH5-2	TH6-1	TH7-3	RDL	QC Batch
COC Number		00457598	00457598	00457598		
Sampling Date		2006/10/24	2006/10/24	2006/10/24		
Maxxam ID		P15647	P15649	P15653		

F1 PHC and BTEX						
Benzene	ug/g	ND	ND	ND	0.02	1089614
Toluene	ug/g	ND	ND	0.66	0.02	1089614
Ethylbenzene	ug/g	ND	ND	0.19	0.02	1089614
o-Xylene	ug/g	ND	ND	0.78	0.02	1089614
p+m-Xylene	ug/g	ND	ND	1.1	0.04	1089614
Total Xylenes	ug/g	ND	ND	1.9	0.04	1089614
F1 (C6-C10)	ug/g	ND	ND	27	10	1089614
F1 (C6-C10) - BTEX	ug/g	ND	ND	24	10	1089614
F2-F4 PHC						
F2 (C10-C16 Hydrocarbons)	ug/g	ND	ND	19	10	1088792
F3 (C16-C34 Hydrocarbons)	ug/g	210	66	150	10	1088792
F4 (C34-C50 Hydrocarbons)	ug/g	470	190	13	10	1088792
Reached Baseline at C50	ug/g	No	No	Yes		1088792
Surrogate Recovery (%)						
1,4-Difluorobenzene	%	105	107	106		1089614
4-Bromofluorobenzene	%	94	94	96		1089614
D10-Ethylbenzene	%	102	102	99		1089614
D4-1,2-Dichloroethane	%	93	95	94		1089614
o-Terphenyl	%	77	89	85		1088792

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

Results relate only to the items tested.

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report Maxxam Job Number: MA6B6132

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1088622 WW	RPD	Moisture	2006/10/28	3.2		%	50
1088792 LSY	MATRIX SPIKE	o-Terphenyl	2006/10/29		87	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2006/10/29		87	%	60 - 130
		F3 (C16-C34 Hydrocarbons)	2006/10/29		87	%	60 - 130
		F4 (C34-C50 Hydrocarbons)	2006/10/29		87	%	60 - 130
	Spiked Blank	o-Terphenyl	2006/10/29		85	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2006/10/29		85	%	60 - 130
		F3 (C16-C34 Hydrocarbons)	2006/10/29		85	%	60 - 130
		F4 (C34-C50 Hydrocarbons)	2006/10/29		85	%	60 - 130
	Method Blank	o-Terphenyl	2006/10/29		81	%	30 - 130
		F2 (C10-C16 Hydrocarbons)	2006/10/29		DL=10	ug/g	
		F3 (C16-C34 Hydrocarbons)	2006/10/29		DL=10	ug/g	
	000	F4 (C34-C50 Hydrocarbons)	2006/10/29		DL=10	ug/g	
RPD	RPD	F2 (C10-C16 Hydrocarbons)	2006/10/29	NC		%	50
		F3 (C16-C34 Hydrocarbons)	2006/10/29	NC		%	50
		F4 (C34-C50 Hydrocarbons)	2006/10/29	NC		%	50
1088995 MWG	MATRIX SPIKE	D10-Anthracene	2006/10/30		89	%	30 - 130
		D14-Terphenyl (FS)	2006/10/30		91	%	30 - 130
		D7-Quinoline	2006/10/30		74	%	30 - 130
		D8-Acenaphthylene	2006/10/30		75 	%	30 - 130
	Acenaphthene	2006/10/30		78 70	%	30 - 130	
	Acenaphthylene	2006/10/30		78	%	30 - 130	
	Anthracene	2006/10/30		90	%	30 - 130	
	Benzo(a)anthracene	2006/10/30		93	%	30 - 130	
		Benzo(a)pyrene	2006/10/30		92	%	30 - 130
		Benzo(b/j)fluoranthene	2006/10/30		91	%	30 - 130
		Benzo(g,h,i)perylene	2006/10/30		81	%	30 - 130
		Benzo(k)fluoranthene	2006/10/30		99	%	30 - 130
		Chrysene	2006/10/30		96	%	30 - 130
		Dibenzo(a,h)anthracene	2006/10/30		87	%	30 - 130
		Fluoranthene	2006/10/30		89	%	30 - 130
		Fluorene	2006/10/30		82	%	30 - 130
		Indeno(1,2,3-cd)pyrene	2006/10/30		87	%	30 - 130
		1-Methylnaphthalene	2006/10/30		71	%	30 - 130
		2-Methylnaphthalene	2006/10/30		74	%	30 - 130
		Naphthalene	2006/10/30		67	%	30 - 130
		Phenanthrene	2006/10/30		88	%	30 - 130
	Called Dlank	Pyrene	2006/10/30		90	%	30 - 130
	Spiked Blank	D10-Anthracene	2006/10/30		100	%	30 - 130
		D14-Terphenyl (FS)	2006/10/30		98	%	30 - 130
		D7-Quinoline	2006/10/30		95	%	30 - 130
		D8-Acenaphthylene	2006/10/30		96	%	30 - 130
		Acenaphthene	2006/10/30		99	%	30 - 130
		Acenaphthylene	2006/10/30		102	%	30 - 130
		Anthracene	2006/10/30		103	%	30 - 130
		Benzo(a)anthracene	2006/10/30		102	%	30 - 130
		Benzo(a)pyrene	2006/10/30		105	%	30 - 130
		Benzo(b/j)fluoranthene	2006/10/30		102	%	30 - 130
		Benzo(g,h,i)perylene	2006/10/30		92	%	30 - 130
		Benzo(k)fluoranthene	2006/10/30		114	%	30 - 130
		Chrysene	2006/10/30		108	%	30 - 130
		Dibenzo(a,h)anthracene	2006/10/30		96	%	30 - 130
		Fluoranthene	2006/10/30		100	%	30 - 130
		Fluorene	2006/10/30		101	%	30 - 130
		Indeno(1,2,3-cd)pyrene	2006/10/30		95	%	30 - 130

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

QA/QC			Date			
Batch		_	Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1088995 MWG	Spiked Blank	1-Methylnaphthalene	2006/10/30	93	%	30 - 130
		2-Methylnaphthalene	2006/10/30	100	%	30 - 130
		Naphthalene	2006/10/30	93	%	30 - 130
		Phenanthrene	2006/10/30	102	%	30 - 130
		Pyrene	2006/10/30	102	%	30 - 130
	Method Blank	D10-Anthracene	2006/10/30	93	%	30 - 130
		D14-Terphenyl (FS)	2006/10/30	100	%	30 - 130
		D7-Quinoline	2006/10/30	85	%	30 - 130
		D8-Acenaphthylene	2006/10/30	83	%	30 - 130
		Acenaphthene	2006/10/30	ND. RDL=0.01	ug/g	
		Acenaphthylene	2006/10/30	ND, RDL=0.005	ug/g	
		Anthracene	2006/10/30	ND, RDL=0.005	ug/g	
		Benzo(a)anthracene	2006/10/30	ND, RDL=0.003	ug/g ug/g	
		Benzo(a)pyrene	2006/10/30	ND, RDL=0.01		
				· ·	ug/g	
		Benzo(b/j)fluoranthene	2006/10/30	ND, RDL=0.005	ug/g	
		Benzo(g,h,i)perylene	2006/10/30	ND, RDL=0.02	ug/g	
		Benzo(k)fluoranthene	2006/10/30	ND, RDL=0.01	ug/g	
		Chrysene	2006/10/30	ND, RDL=0.01	ug/g	
		Dibenzo(a,h)anthracene	2006/10/30	ND, RDL=0.02	ug/g	
		Fluoranthene	2006/10/30	ND, RDL=0.005	ug/g	
		Fluorene	2006/10/30	ND, RDL=0.005	ug/g	
		Indeno(1,2,3-cd)pyrene	2006/10/30	ND, RDL=0.02	ug/g	
		1-Methylnaphthalene	2006/10/30	ND, RDL=0.005	ug/g	
		2-Methylnaphthalene	2006/10/30	ND, RDL=0.005	ug/g	
		Naphthalene	2006/10/30	ND, RDL=0.005	ug/g	
		Phenanthrene	2006/10/30	ND, RDL=0.005	ug/g	
		Pyrene	2006/10/30	ND, RDL=0.005	ug/g	
	RPD	D14-Terphenyl (FS)	2006/10/30	5.4	%	N/A
		Acenaphthene	2006/10/30	NC	%	50
		Acenaphthylene	2006/10/30	NC	%	50
		Anthracene	2006/10/30	NC	%	50
		Benzo(a)anthracene	2006/10/30	NC	%	50
		Benzo(a)pyrene	2006/10/30	NC	%	50
		Benzo(b/j)fluoranthene	2006/10/30	NC	%	50
		Benzo(g,h,i)perylene	2006/10/30	NC	%	50
		Benzo(k)fluoranthene	2006/10/30	NC	%	50
		Chrysene	2006/10/30	NC	%	50
		Dibenzo(a,h)anthracene	2006/10/30	NC	%	50
		,				
		Fluoranthene	2006/10/30	NC	%	50
		Fluorene	2006/10/30	NC	%	50
		Indeno(1,2,3-cd)pyrene	2006/10/30	NC	%	50
		1-Methylnaphthalene	2006/10/30	NC	%	50
		2-Methylnaphthalene	2006/10/30	NC	%	50
		Naphthalene	2006/10/30	NC	%	50
		Phenanthrene	2006/10/30	NC	%	50
		Pyrene	2006/10/30	NC	%	50
089614 SPV	MATRIX SPIKE	1,4-Difluorobenzene	2006/11/01	105	%	60 - 140
		4-Bromofluorobenzene	2006/11/01	96	%	60 - 140
		D10-Ethylbenzene	2006/11/01	97	%	30 - 130
		D4-1,2-Dichloroethane	2006/11/01	96	%	60 - 140
		Benzene	2006/11/01	87	%	60 - 140
		Toluene	2006/11/01	84	%	60 - 140
		Ethylbenzene	2006/11/01	84	%	60 - 140
		o-Xylene	2006/11/01	87	%	60 - 140
		•	2006/11/01	87 87	% %	60 - 140 60 - 140
		p+m-Xylene	ZUU0/ 1 1/U 1	07	/0	00 - 140

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

Maxxam Job Number: MA6B6132

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1089614 SPV	MATRIX SPIKE	F1 (C6-C10)	2006/11/01	117	%	60 - 140
	Spiked Blank	1,4-Difluorobenzene	2006/11/01	107	%	60 - 140
		4-Bromofluorobenzene	2006/11/01	94	%	60 - 140
		D10-Ethylbenzene	2006/11/01	103	%	30 - 130
		D4-1,2-Dichloroethane	2006/11/01	97	%	60 - 140
		Benzene	2006/11/01	95	%	60 - 140
		Toluene	2006/11/01	90	%	60 - 140
		Ethylbenzene	2006/11/01	91	%	60 - 140
		o-Xylene	2006/11/01	93	%	60 - 140
		p+m-Xylene	2006/11/01	94	%	60 - 140
		F1 (C6-C10)	2006/11/01	126	%	60 - 140
	Method Blank	1,4-Difluorobenzene	2006/11/01	107	%	60 - 140
		4-Bromofluorobenzene	2006/11/01	93	%	60 - 140
		D10-Ethylbenzene	2006/11/01	101	%	30 - 130
		D4-1,2-Dichloroethane	2006/11/01	97	%	60 - 140
		Benzene	2006/11/01	ND, RDL=0.02	ug/g	
		Toluene	2006/11/01	ND, RDL=0.02	ug/g	
		Ethylbenzene	2006/11/01	ND, RDL=0.02	ug/g	
		o-Xylene	2006/11/01	ND, RDL=0.02	ug/g	
		p+m-Xylene	2006/11/01	ND, RDL=0.04	ug/g	
		Total Xylenes	2006/11/01	ND, RDL=0.04	ug/g	
		F1 (C6-C10)	2006/11/01	ND, RDL=10	ug/g	
		F1 (C6-C10) - BTEX	2006/11/01	ND, RDL=10	ug/g	
	RPD	F1 (C6-C10)	2006/11/01	NC	%	50
		F1 (C6-C10) - BTEX	2006/11/01	NC	%	50
1091406 OK	QC STANDARD	Total Organic Carbon	2006/11/01	99	%	20 - 120
	Method Blank	Total Organic Carbon	2006/11/01	ND, RDL=0.05	mg/kg	
	RPD [P15648-01]	Total Organic Carbon	2006/11/01	18.9	%	50

ND = Not detected
N/A = Not Applicable
NC = Non-calculable

RPD = Relative Percent Difference QC Standard = Quality Control Standard

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A6B6132

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s). n. Risheld MEDHAT RISKALLAH, Manager, Hydrocarbon Department ALINA SEGAL, Instrumentation Supervisor

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Site: OWEN SOUND Your C.O.C. #: 00457599

Attention: Carla Reynolds

Barenco Inc 2561 Stouffville Rd PO Box 295 Gormley, ON L0H 1G0

Report Date: 2006/11/06

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A6B6188 Received: 2006/10/27, 13:45

Sample Matrix: Soil # Samples Received: 9

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Chromium (VI) in Soil	2	2006/10/30	2006/10/30	Ont SOP 0104	EPA 7196
Chromium (VI) in Soil	1	2006/10/31	2006/10/31	Ont SOP 0104	EPA 7196
Mercury in Soil by CVAA	3	2006/10/30	2006/10/31	Ont SOP 0112	EPA 7470
Acid Extr. Metals (aqua regia) by ICPMS	3	2006/10/30	2006/10/31	CAM SOP-00447	EPA 6020
MOISTURE	3	N/A	2006/10/28	Ont SOP-0114	MOE HANDBOOK(1983)
MOISTURE	3	N/A	2006/10/30	Ont SOP-0114	MOE HANDBOOK(1983)
pH CaCl2 EXTRACT	3	N/A	2006/10/30	Ont SOP-0067	4500-H+B
Total Organic Carbon in Soil	5	N/A	2006/11/01		LECO
Volatile Organic Compounds in Soil	3	N/A	2006/10/31	Ont SOP-0806	EPA 8260 modified

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

		1	1	1	T	.	_	
	Units	TH8-1	TH8-2	QC Batch	TH8-3	TH8-4	RDL	QC Batch
COC Number		00457599	00457599		00457599	00457599		
Sampling Date		2006/10/24	2006/10/24		2006/10/24	2006/10/24		
Maxxam ID		P15940	P15941		P15942	P15943		

INORGANICS								
Moisture	%		16	1089620	18		0.2	1088622
Total Organic Carbon	mg/kg	40000		1091406		41000	500	1091406
Available (CaCl2) pH	рН	7.56		1089186			N/A	

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		P15944		P15945		P15947		
Sampling Date		2006/10/24		2006/10/24		2006/10/24		
COC Number		00457599		00457599		00457599		
	Units	TH9-1	QC Batch	TH9-2	QC Batch	TH10-1	RDL	QC Batch

INORGANICS								
Moisture	%	9.3	1089620	16	1088622	26	0.2	1089620
Total Organic Carbon	mg/kg	50000	1091406			48000	500	1091406
Available (CaCl2) pH	рН	7.93	1089186			7.44	N/A	1089186

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam ID		P15952	P15955		
Sampling Date		2006/10/24	2006/10/24		
COC Number		00457599	00457599		
	Units	TH10-2	TH10-3	RDL	QC Batch

INORGANICS					
Moisture	%	18		0.2	1088622
Total Organic Carbon	mg/kg		37000	500	1091406

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

OCC NUMBER	Units	TH8-3		QC Batch		RDL	QC Batch
COC Number		00457599	00457599		00457599		
Sampling Date		2006/10/24	2006/10/24		2006/10/24		
Maxxam ID		P15942	P15945		P15952		

METALS							
Acid Extractable Antimony (Sb)	ug/g	ND	ND	1089854	ND	0.2	1089854
Acid Extractable Arsenic (As)	ug/g	2	3	1089854	2	1	1089854
Acid Extractable Barium (Ba)	ug/g	16.7	18.7	1089854	13.6	0.5	1089854
Acid Extractable Beryllium (Be)	ug/g	0.2	0.4	1089854	0.3	0.2	1089854
Acid Extractable Cadmium (Cd)	ug/g	ND	ND	1089854	ND	0.1	1089854
Acid Extractable Chromium (Cr)	ug/g	11	13	1089854	12	1	1089854
Chromium (VI)	ug/g	ND	ND	1088893	ND	0.05	1089958
Acid Extractable Cobalt (Co)	ug/g	6.7	7.9	1089854	7.1	0.1	1089854
Acid Extractable Copper (Cu)	ug/g	12.8	11.6	1089854	12.1	0.5	1089854
Acid Extractable Lead (Pb)	ug/g	4	4	1089854	4	1	1089854
Acid Extractable Mercury (Hg)	ug/g	0.37	ND	1089857	ND	0.05	1089857
Acid Extractable Molybdenum (Mo)	ug/g	ND	ND	1089854	ND	0.5	1089854
Acid Extractable Nickel (Ni)	ug/g	13.6	16.2	1089854	15.1	0.5	1089854
Acid Extractable Selenium (Se)	ug/g	ND	ND	1089854	ND	0.5	1089854
Acid Extractable Silver (Ag)	ug/g	ND	ND	1089854	ND	0.2	1089854
Acid Extractable Thallium (TI)	ug/g	ND	ND	1089854	ND	0.05	1089854
Acid Extractable Vanadium (V)	ug/g	14	16	1089854	15	5	1089854
Acid Extractable Zinc (Zn)	ug/g	34	33	1089854	30	5	1089854

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		P15941	P15944	P15947	1	
Sampling Date		2006/10/24	2006/10/24	2006/10/24		
COC Number	Units	00457599 TH8-2	00457599 TH9-1	00457599 TH10-1	RDL	QC Batch
	OTILLO	1110 2	11.0		INDE	QC Baton
VOLATILES						
Acetone (2-Propanone)	ug/g	ND	ND	ND	0.1	1089688
Benzene	ug/g	0.014	0.010	0.019	0.002	1089688
Bromodichloromethane	ug/g	ND	ND	ND	0.002	1089688
Bromoform	ug/g	ND	ND	ND	0.002	1089688
Bromomethane	ug/g	ND	ND	ND	0.003	1089688
Carbon Tetrachloride	ug/g	ND	ND	ND	0.002	1089688
Chlorobenzene	ug/g	ND	ND	ND	0.002	1089688
Chloroform	ug/g	ND	ND	ND	0.002	1089688
Dibromochloromethane	ug/g	ND	ND	ND	0.002	1089688
1,2-Dichlorobenzene	ug/g	ND	0.004	ND	0.002	1089688
1,3-Dichlorobenzene	ug/g	ND	ND	ND	0.002	1089688
1,4-Dichlorobenzene	ug/g	ND	ND	ND	0.002	1089688
1,1-Dichloroethane	ug/g	ND	ND	ND	0.002	1089688
1,2-Dichloroethane	ug/g	ND	ND	ND	0.002	1089688
1,1-Dichloroethylene	ug/g	ND	ND	ND	0.002	1089688
cis-1,2-Dichloroethylene	ug/g	ND	ND	ND	0.002	1089688
trans-1,2-Dichloroethylene	ug/g	ND	ND	ND	0.002	1089688
1,2-Dichloropropane	ug/g	ND	ND	ND	0.002	1089688
cis-1,3-Dichloropropene	ug/g	ND	ND	ND	0.002	1089688
trans-1,3-Dichloropropene	ug/g	ND	ND	ND	0.002	1089688
Ethylbenzene	ug/g	0.010	0.007	0.009	0.002	1089688
Ethylene Dibromide	ug/g	ND	ND	ND	0.002	1089688
Methylene Chloride(Dichloromethane)	ug/g	ND	ND	ND	0.003	1089688
Methyl Isobutyl Ketone	ug/g	ND	ND	ND	0.025	1089688
Methyl Ethyl Ketone (2-Butanone)	ug/g	ND	ND	ND	0.025	1089688
Methyl t-butyl ether (MTBE)	ug/g	ND	ND	ND	0.002	1089688
Styrene	ug/g	ND	ND	ND	0.002	1089688
1,1,1,2-Tetrachloroethane	ug/g	ND	ND	ND	0.002	1089688
1,1,2,2-Tetrachloroethane	ug/g	ND	ND	ND	0.002	1089688
Tetrachloroethylene	ug/g	ND	ND	ND	0.002	1089688
Toluene	ug/g	0.022	0.019	0.029	0.002	1089688

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

	P15941	P15944	P15947		
	2006/10/24	2006/10/24	2006/10/24		
	00457599	00457599	00457599		
Units	TH8-2	TH9-1	TH10-1	RDL	QC Batch
ug/g	ND	ND	ND	0.002	1089688
ug/g	ND	ND	ND	0.002	1089688
ug/g	ND	ND	ND	0.002	1089688
ug/g	ND	ND	ND	0.002	1089688
ug/g	0.007	0.009	0.008	0.002	1089688
ug/g	0.002	0.003	0.003	0.002	1089688
ug/g	0.010	0.012	0.010	0.002	1089688
%	95	82	75		1089688
%	90	87	89		1089688
%	108	123	124		1089688
	ug/g ug/g ug/g ug/g ug/g ug/g ug/g wg/g w	2006/10/24 00457599 Units TH8-2 Ug/g ND Ug/g ND Ug/g ND Ug/g ND Ug/g O.007 Ug/g O.002 Ug/g O.010 % 95 % 90	2006/10/24 2006/10/24 00457599 00457599 00457599 00457599 Units TH8-2 TH9-1 Ug/g ND ND ND Ug/g ND ND ND Ug/g ND ND ND Ug/g 0.007 0.009 Ug/g 0.002 0.003 Ug/g 0.010 0.012	2006/10/24 200	2006/10/24 2006/10/24 2006/10/24 2006/10/24 00457599 00457599 00457599 Units TH8-2 TH9-1 TH10-1 RDL ug/g ND ND ND 0.002 ug/g 0.007 0.009 0.008 0.002 ug/g 0.002 0.003 0.003 0.002 ug/g 0.010 0.012 0.010 0.002 % 95 82 75 % 90 87 89

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

Results relate only to the items tested.

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report Maxxam Job Number: MA6B6188

Batch Num Init 1088622 WW			Analyzad				
			Analyzed				
1000633 \\\\\\	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
	RPD [P15952-01]	Moisture	2006/10/28	2.2		%	50
1088893 VRO	MATRIX SPIKE						
	[P15942-01]	Chromium (VI)	2006/10/30		89	%	75 - 125
	QC STANDARD	Chromium (VI)	2006/10/30		94	%	85 - 115
	Spiked Blank	Chromium (VI)	2006/10/30		101	%	75 - 125
	Method Blank	Chromium (VI)	2006/10/30		RDL=0.05	ug/g	
	RPD [P15942-01]	Chromium (VI)	2006/10/30	NC		%	35
1089620 VPA	RPD [P15941-01]	Moisture	2006/10/30	9.6		%	50
1089688 RZH	MATRIX SPIKE	4-Bromofluorobenzene	2006/10/31		92	%	60 - 140
		D4-1,2-Dichloroethane	2006/10/31		99	%	60 - 140
		D8-Toluene	2006/10/31		105	%	60 - 140
		Acetone (2-Propanone)	2006/10/31		90	%	24 - 171
		Benzene Bromodiahlaramathana	2006/10/31		74	% %	39 - 137
		Bromodichloromethane	2006/10/31		88		45 - 131
		Bromoform	2006/10/31		69 76	%	44 - 131
		Bromomethane	2006/10/31		76	%	20 - 146
		Carbon Tetrachloride	2006/10/31		91	%	40 - 139
		Chlorobenzene Chloroform	2006/10/31		89	% %	45 - 140
			2006/10/31 2006/10/31		88		48 - 128
		Dibromochloromethane			81	%	52 - 135
		1,2-Dichlorobenzene	2006/10/31		86 85	%	39 - 145 38 - 158
		1,3-Dichlorobenzene	2006/10/31		85 85	% %	
		1,4-Dichlorobenzene	2006/10/31		85 01	% %	35 - 159 48 - 131
		1,1-Dichloroethane	2006/10/31 2006/10/31		91 92	% %	46 - 131
		1,2-Dichloroethane	2006/10/31		95	%	50 - 134
		1,1-Dichloroethylene cis-1,2-Dichloroethylene	2006/10/31		93	%	45 - 136
		· · · · · · · · · · · · · · · · · · ·				% %	45 - 136 45 - 138
		trans-1,2-Dichloroethylene	2006/10/31 2006/10/31		94 89	% %	45 - 130 51 - 130
		1,2-Dichloropropane	2006/10/31		94	%	39 - 143
		cis-1,3-Dichloropropene			93	%	33 - 135
		trans-1,3-Dichloropropene Ethylbenzene	2006/10/31 2006/10/31		89	%	46 - 150
		Ethylene Dibromide	2006/10/31		100	%	48 - 136
		Methylene Chloride(Dichloromethane)	2006/10/31		NC (1)	% %	47 - 124
		Methyl Isobutyl Ketone	2006/10/31		83	%	48 - 133
		Methyl Ethyl Ketone (2-Butanone)	2006/10/31		114	% %	39 - 160
		Methyl t-butyl ether (MTBE)	2006/10/31		92	%	37 - 150
		Styrene	2006/10/31		90	%	27 - 148
		1,1,1,2-Tetrachloroethane	2006/10/31		94	%	51 - 140
		1,1,2,2-Tetrachloroethane	2006/10/31		98	%	46 - 128
		Tetrachloroethylene	2006/10/31		97	%	45 - 154
		Toluene	2006/10/31		71	%	30 - 158
		1,1,1-Trichloroethane	2006/10/31		94	%	44 - 136
		1,1,2-Trichloroethane	2006/10/31		100	%	56 - 135
		Trichloroethylene	2006/10/31		93	%	39 - 146
		Vinyl Chloride	2006/10/31		70	%	34 - 136
		p+m-Xylene	2006/10/31		88	%	29 - 161
		o-Xylene	2006/10/31		84	%	45 - 150
	Spiked Blank	4-Bromofluorobenzene	2006/10/31		104	%	60 - 140
	Spinou Dialin	D4-1,2-Dichloroethane	2006/10/31		95	%	60 - 140
		D8-Toluene	2006/10/31		101	%	60 - 140
		Acetone (2-Propanone)	2006/10/31		83	% %	60 - 140
		Benzene	2006/10/31		107	%	60 - 140
		Bromodichloromethane	2006/10/31		107	%	60 - 140
		Bromoform	2006/10/31		115	%	60 - 140

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

QA/QC			Date			•
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
089688 RZH	Spiked Blank	Bromomethane	2006/10/31	105	%	60 - 140
		Carbon Tetrachloride	2006/10/31	110	%	60 - 140
		Chlorobenzene	2006/10/31	109	%	60 - 140
		Chloroform	2006/10/31	104	%	60 - 140
		Dibromochloromethane	2006/10/31	112	%	60 - 140
		1,2-Dichlorobenzene	2006/10/31	112	%	60 - 140
		1,3-Dichlorobenzene	2006/10/31	118	%	60 - 140
		1,4-Dichlorobenzene	2006/10/31	120	%	60 - 140
		1,1-Dichloroethane	2006/10/31	103	%	60 - 140
		1,2-Dichloroethane	2006/10/31	100	%	60 - 140
		1,1-Dichloroethylene	2006/10/31	108	%	60 - 140
		cis-1,2-Dichloroethylene	2006/10/31	110	%	60 - 14
		trans-1,2-Dichloroethylene	2006/10/31	111	%	60 - 14
		1,2-Dichloropropane	2006/10/31	102	%	60 - 14
		cis-1,3-Dichloropropene	2006/10/31	120	%	60 - 14
		trans-1,3-Dichloropropene	2006/10/31	118	%	60 - 14
		Ethylbenzene	2006/10/31	120	%	60 - 14
		Ethylene Dibromide	2006/10/31	104	%	60 - 14
		Methylene Chloride(Dichloromethane)	2006/10/31	101	%	60 - 14
		Methyl Isobutyl Ketone	2006/10/31	93	%	60 - 14
		Methyl Ethyl Ketone (2-Butanone)	2006/10/31	89	%	60 - 14
		Methyl t-butyl ether (MTBE)	2006/10/31	119	%	60 - 14
		Styrene	2006/10/31	114	%	60 - 14
		1,1,1,2-Tetrachloroethane		113	%	60 - 14
		1,1,2,2-Tetrachloroethane	2006/10/31 2006/10/31	104	% %	60 - 12
		Tetrachloroethylene	2006/10/31	116	%	60 - 14
		Toluene	2006/10/31	107	%	60 - 14
		1,1,1-Trichloroethane	2006/10/31	107	%	60 - 14
		1,1,2-Trichloroethane	2006/10/31	105	%	60 - 14
		Trichloroethylene	2006/10/31	116	%	60 - 14
		Vinyl Chloride	2006/10/31	94	%	60 - 14
		p+m-Xylene	2006/10/31	124	%	60 - 14
		o-Xylene	2006/10/31	119	%	60 - 14
	Method Blank	4-Bromofluorobenzene	2006/10/31	102	%	60 - 14
		D4-1,2-Dichloroethane	2006/10/31	94	%	60 - 14
		D8-Toluene	2006/10/31	103	%	60 - 14
		Acetone (2-Propanone)	2006/10/31	ND, RDL=0.1	ug/g	
		Benzene	2006/10/31	ND, RDL=0.002	ug/g	
		Bromodichloromethane	2006/10/31	ND, RDL=0.002	ug/g	
		Bromoform	2006/10/31	ND, RDL=0.002	ug/g	
		Bromomethane	2006/10/31	ND, RDL=0.003	ug/g	
		Carbon Tetrachloride	2006/10/31	ND, RDL=0.002	ug/g	
		Chlorobenzene	2006/10/31	ND, RDL=0.002	ug/g	
		Chloroform	2006/10/31	ND, RDL=0.002	ug/g	
		Dibromochloromethane	2006/10/31	ND, RDL=0.002	ug/g	
		1,2-Dichlorobenzene	2006/10/31	ND, RDL=0.002	ug/g	
		1,3-Dichlorobenzene	2006/10/31	ND, RDL=0.002	ug/g	
		1,4-Dichlorobenzene	2006/10/31	ND, RDL=0.002	ug/g	
		1.1-Dichloroethane	2006/10/31	ND, RDL=0.002	ug/g ug/g	
		1,2-Dichloroethane	2006/10/31	ND, RDL=0.002 ND, RDL=0.002	ug/g ug/g	
		1,1-Dichloroethylene	2006/10/31	ND, RDL=0.002 ND, RDL=0.002		
		cis-1,2-Dichloroethylene	2006/10/31	ND, RDL=0.002 ND, RDL=0.002	ug/g	
		,		· · · · · · · · · · · · · · · · · · ·	ug/g	
		trans-1,2-Dichloroethylene	2006/10/31	ND, RDL=0.002	ug/g	
		1,2-Dichloropropane	2006/10/31	ND, RDL=0.002	ug/g	
		cis-1,3-Dichloropropene	2006/10/31	ND, RDL=0.002	ug/g	

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1089688 RZH	Method Blank	trans-1,3-Dichloropropene	2006/10/31	ND, RDL=0.002	ug/g	
		Ethylbenzene	2006/10/31	ND, RDL=0.002	ug/g	
		Ethylene Dibromide	2006/10/31	ND, RDL=0.002	ug/g	
		Methylene Chloride(Dichloromethane)	2006/10/31	ND, RDL=0.003	ug/g	
		Methyl Isobutyl Ketone	2006/10/31	ND, RDL=0.025	ug/g	
		Methyl Ethyl Ketone (2-Butanone)	2006/10/31	ND, RDL=0.025	ug/g	
		Methyl t-butyl ether (MTBE)	2006/10/31	ND, RDL=0.002	ug/g	
		Styrene	2006/10/31	ND, RDL=0.002	ug/g ug/g	
		1,1,1,2-Tetrachloroethane	2006/10/31	ND, RDL=0.002	ug/g ug/g	
		1,1,2,2-Tetrachloroethane	2006/10/31	ND, RDL=0.002		
		Tetrachloroethylene	2006/10/31	ND, RDL=0.002 ND, RDL=0.002	ug/g	
		•		The state of the s	ug/g	
		Toluene	2006/10/31	ND, RDL=0.002	ug/g	
		1,1,1-Trichloroethane	2006/10/31	ND, RDL=0.002	ug/g	
		1,1,2-Trichloroethane	2006/10/31	ND, RDL=0.002	ug/g	
		Trichloroethylene	2006/10/31	ND, RDL=0.002	ug/g	
		Vinyl Chloride	2006/10/31	ND, RDL=0.002	ug/g	
		p+m-Xylene	2006/10/31	ND, RDL=0.002	ug/g	
		o-Xylene	2006/10/31	ND, RDL=0.002	ug/g	
		Xylene (Total)	2006/10/31	ND, RDL=0.002	ug/g	
	RPD	Acetone (2-Propanone)	2006/10/31	NC	%	50
		Benzene	2006/10/31	4.4	%	50
		Bromodichloromethane	2006/10/31	NC	%	50
		Bromoform	2006/10/31	NC	%	50
		Bromomethane	2006/10/31	NC	%	50
		Carbon Tetrachloride	2006/10/31	NC	%	50
		Chlorobenzene	2006/10/31	NC	%	50
		Chloroform	2006/10/31	NC	%	50
		Dibromochloromethane	2006/10/31	NC NC	%	50
				NC NC	%	50
		1,2-Dichlorobenzene	2006/10/31			
		1,3-Dichlorobenzene	2006/10/31	NC	%	50
		1,4-Dichlorobenzene	2006/10/31	NC	%	50
		1,1-Dichloroethane	2006/10/31	NC	%	50
		1,2-Dichloroethane	2006/10/31	NC	%	50
		1,1-Dichloroethylene	2006/10/31	NC	%	50
		cis-1,2-Dichloroethylene	2006/10/31	NC	%	50
		trans-1,2-Dichloroethylene	2006/10/31	NC	%	50
		1,2-Dichloropropane	2006/10/31	NC	%	50
		cis-1,3-Dichloropropene	2006/10/31	NC	%	50
		trans-1,3-Dichloropropene	2006/10/31	NC	%	50
		Ethylbenzene	2006/10/31	NC	%	50
		Ethylene Dibromide	2006/10/31	NC	%	50
		Methylene Chloride(Dichloromethane)	2006/10/31	3.0	%	50
		Methyl Isobutyl Ketone	2006/10/31	NC	%	50
		Methyl Ethyl Ketone (2-Butanone)	2006/10/31	NC	%	50
		Methyl t-butyl ether (MTBE)	2006/10/31	NC	% %	50
		` '	2006/10/31			50
		Styrene		NC NC	%	
		1,1,1,2-Tetrachloroethane	2006/10/31	NC NC	%	50
		1,1,2,2-Tetrachloroethane	2006/10/31	NC	%	50
		Tetrachloroethylene	2006/10/31	NC	%	50
		Toluene	2006/10/31	4.9	%	50
		1,1,1-Trichloroethane	2006/10/31	NC	%	50
		1,1,2-Trichloroethane	2006/10/31	NC	%	50
		Trichloroethylene	2006/10/31	NC	%	50
		Vinyl Chloride	2006/10/31	NC	%	50
			2006/10/31	NC	%	50

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1089688 RZH	RPD	o-Xylene	2006/10/31	Value Recovery NC	%	<u>QC Lilling</u> 50
1009000 NZII	KFD	· ·		NC NC	% %	50
1089854 VIV	MATRIX SPIKE	Xylene (Total) Acid Extractable Antimony (Sb)	2006/10/31 2006/10/31		%	
009034 VIV	WATRIX SPIRE	, ,		90		75 - 12: 75 - 12:
		Acid Extractable Arsenic (As)	2006/10/31	101	%	
		Acid Extractable Barium (Ba)	2006/10/31	109	%	75 - 12
		Acid Extractable Beryllium (Be)	2006/10/31	88	%	75 - 12
		Acid Extractable Cadmium (Cd)	2006/10/31	104	%	75 - 12
		Acid Extractable Chromium (Cr)	2006/10/31	105	%	75 - 12
		Acid Extractable Cobalt (Co)	2006/10/31	100	%	75 - 12
		Acid Extractable Copper (Cu)	2006/10/31	98	%	75 - 12
		Acid Extractable Lead (Pb)	2006/10/31	104	%	75 - 12
		Acid Extractable Molybdenum (Mo)	2006/10/31	99	%	75 - 12
		Acid Extractable Nickel (Ni)	2006/10/31	99	%	75 - 12
		Acid Extractable Selenium (Se)	2006/10/31	101	%	75 - 12
		Acid Extractable Silver (Ag)	2006/10/31	101	%	75 - 12
		Acid Extractable Thallium (TI)	2006/10/31	99	%	75 - 12
		Acid Extractable Vanadium (V)	2006/10/31	99	%	75 - 12
		Acid Extractable Zinc (Zn)	2006/10/31	87	%	75 - 12
	QC STANDARD	Acid Extractable Antimony (Sb)	2006/10/31	93	%	75 - 12
		Acid Extractable Arsenic (As)	2006/10/31	121	%	75 - 12
		Acid Extractable Barium (Ba)	2006/10/31	101	%	75 - 12
		Acid Extractable Beryllium (Be)	2006/10/31	86	%	75 - 12
		Acid Extractable Cadmium (Cd)	2006/10/31	99	%	75 - 12
		Acid Extractable Chromium (Cr)	2006/10/31	95	%	75 - 12
		Acid Extractable Cobalt (Co)	2006/10/31	105	%	75 - 12
		Acid Extractable Copper (Cu)	2006/10/31	113	%	75 - 12
		Acid Extractable Lead (Pb)	2006/10/31	105	%	75 - 12
		Acid Extractable Molybdenum (Mo)	2006/10/31	117	%	75 - 12
		Acid Extractable Nickel (Ni)	2006/10/31	114	%	75 - 12
		Acid Extractable Selenium (Se)	2006/10/31	65	%	50 - 15
		Acid Extractable Silver (Ag)	2006/10/31	80	%	75 - 12
		Acid Extractable Thallium (TI)	2006/10/31	96	%	75 - 12
		Acid Extractable Vanadium (V)	2006/10/31	108	%	75 - 12 75 - 12
		Acid Extractable Variation (V) Acid Extractable Zinc (Zn)	2006/10/31	121	%	75 - 12 75 - 12
	Method Blank	` '		ND, RDL=0.2		75-12
	WELLIOU DIALIK	Acid Extractable Antimony (Sb)	2006/10/31	·	ug/g	
		Acid Extractable Arsenic (As) Acid Extractable Barium (Ba)	2006/10/31	ND, RDL=1	ug/g	
		` ,	2006/10/31	ND, RDL=0.5	ug/g	
		Acid Extractable Beryllium (Be)	2006/10/31	ND, RDL=0.2	ug/g	
		Acid Extractable Cadmium (Cd)	2006/10/31	ND, RDL=0.1	ug/g	
		Acid Extractable Chromium (Cr)	2006/10/31	ND, RDL=1	ug/g	
		Acid Extractable Cobalt (Co)	2006/10/31	ND, RDL=0.1	ug/g	
		Acid Extractable Copper (Cu)	2006/10/31	ND, RDL=0.5	ug/g	
		Acid Extractable Lead (Pb)	2006/10/31	ND, RDL=1	ug/g	
		Acid Extractable Molybdenum (Mo)	2006/10/31	ND, RDL=0.5	ug/g	
		Acid Extractable Nickel (Ni)	2006/10/31	ND, RDL=0.5	ug/g	
		Acid Extractable Selenium (Se)	2006/10/31	ND, RDL=0.5	ug/g	
		Acid Extractable Silver (Ag)	2006/10/31	ND, RDL=0.2	ug/g	
		Acid Extractable Thallium (TI)	2006/10/31	ND, RDL=0.05	ug/g	
		Acid Extractable Vanadium (V)	2006/10/31	ND, RDL=5	ug/g	
		Acid Extractable Zinc (Zn)	2006/10/31	ND, RDL=5	ug/g	
	RPD	Acid Extractable Antimony (Sb)	2006/10/31	NC	%	3
		Acid Extractable Arsenic (As)	2006/10/31	4.6	%	3
		Acid Extractable Barium (Ba)	2006/10/31	3.5	%	3
		Acid Extractable Beryllium (Be)	2006/10/31	NC	%	3
		Acid Extractable Cadmium (Cd)	2006/10/31	NC	%	3

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

Maxxam Job Number: MA6B6188

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1089854 VIV	RPD	Acid Extractable Chromium (Cr)	2006/10/31	3.8		%	35
		Acid Extractable Cobalt (Co)	2006/10/31	7.3		%	35
		Acid Extractable Copper (Cu)	2006/10/31	10		%	35
		Acid Extractable Lead (Pb)	2006/10/31	5.9		%	35
		Acid Extractable Molybdenum (Mo)	2006/10/31	NC		%	35
		Acid Extractable Nickel (Ni)	2006/10/31	5.2		%	35
		Acid Extractable Selenium (Se)	2006/10/31	NC		%	35
		Acid Extractable Silver (Ag)	2006/10/31	NC		%	35
		Acid Extractable Thallium (TI)	2006/10/31	NC		%	35
		Acid Extractable Vanadium (V)	2006/10/31	NC		%	35
		Acid Extractable Zinc (Zn)	2006/10/31	9.6		%	35
1089857 MC	MATRIX SPIKE	Acid Extractable Mercury (Hg)	2006/10/31		96	%	75 - 125
	QC STANDARD	Acid Extractable Mercury (Hg)	2006/10/31		104	%	75 - 125
	Method Blank	Acid Extractable Mercury (Hg)	2006/10/31	ND, RD	L=0.05	ug/g	
	RPD	Acid Extractable Mercury (Hg)	2006/10/31	NC		%	35
1089958 VRO	MATRIX SPIKE	Chromium (VI)	2006/10/31		80	%	75 - 125
	QC STANDARD	Chromium (VI)	2006/10/31		90	%	85 - 115
	Spiked Blank	Chromium (VI)	2006/10/31		98	%	75 - 125
	Method Blank	Chromium (VI)	2006/10/31	ND, RD	L=0.05	ug/g	
	RPD	Chromium (VI)	2006/10/31	NC		%	35
1091406 OK	QC STANDARD	Total Organic Carbon	2006/11/01		99	%	20 - 120
	Method Blank	Total Organic Carbon	2006/11/01	ND, RD	L=0.05	mg/kg	
	RPD	Total Organic Carbon	2006/11/01	18.9		%	50

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

¹⁾ The recovery in the matrix spike was not calculated since the spiking level was < 2x the native concentration.

Validation Signature Page

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

TROY CARRIERE, B.Sc., Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Site: OWEN SOUND Your C.O.C. #: 00457611

Attention: Carla Reynolds

Barenco Inc 2561 Stouffville Rd PO Box 295 Gormley, ON L0H 1G0

Report Date: 2006/11/02

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A6B6262 Received: 2006/10/27, 13:45

Sample Matrix: Soil # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Hot Water Extractable Boron	1	2006/10/30	2006/11/01	Ont SOP 0102	EPA 3050B
Acid Extr. Metals (agua regia) by ICPMS	1	2006/10/30	2006/10/31	CAM SOP-00447	EPA 6020

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Maxxam Job #: A6B6262 Report Date: 2006/11/02

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		P16178		
Sampling Date		2006/10/25		
COC Number		00457611		
	Units	SM1	RDL	QC Batch
		ī		
METALS				
Acid Extractable Arsenic (As)	ug/g	13	1	1089853
Hot Water Ext. Boron (B)	ug/g	0.44	0.01	1089722
Acid Extractable Copper (Cu)	ug/g	251	0.5	1089853
Acid Extractable Lead (Pb)	ug/g	398	1	1089853
Acid Extractable Molybdenum (Mo)	ug/g	57.9	0.5	1089853
Acid Extractable Nickel (Ni)	ug/g	170	2.5	1089853
RDL = Reportable Detection Limit QC Batch = Quality Control Batch	•			•

Maxxam Job #: A6B6262 Report Date: 2006/11/02 Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

Sample P16178-01: ICP/MS: Ni DL was raised due to matrix interferences.

Results relate only to the items tested.

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report Maxxam Job Number: MA6B6262

QA/QC			Date			
Batch	00.7	Б	Analyzed		11.24	001: "
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1089722 ADA	QC STANDARD	Hot Water Ext. Boron (B)	2006/11/01	106	%	77 - 121
	Method Blank	Hot Water Ext. Boron (B)	2006/11/01	ND, RDL=0.01	ug/g	
1089853 VIV	MATRIX SPIKE	Acid Extractable Arsenic (As)	2006/10/31	99	%	75 - 125
		Acid Extractable Copper (Cu)	2006/10/31	97	%	75 - 125
		Acid Extractable Lead (Pb)	2006/10/31	99	%	75 - 125
		Acid Extractable Molybdenum (Mo)	2006/10/31	103	%	75 - 125
		Acid Extractable Nickel (Ni)	2006/10/31	99	%	75 - 125
	QC STANDARD	Acid Extractable Arsenic (As)	2006/10/31	119	%	75 - 125
		Acid Extractable Copper (Cu)	2006/10/31	114	%	75 - 125
		Acid Extractable Lead (Pb)	2006/10/31	111	%	75 - 125
		Acid Extractable Molybdenum (Mo)	2006/10/31	125	%	75 - 125
		Acid Extractable Nickel (Ni)	2006/10/31	119	%	75 - 125
	Method Blank	Acid Extractable Arsenic (As)	2006/10/31	ND, RDL=1	ug/g	
		Acid Extractable Copper (Cu)	2006/10/31	ND, RDL=0.5	ug/g	
		Acid Extractable Lead (Pb)	2006/10/31	ND, RDL=1	ug/g	
		Acid Extractable Molybdenum (Mo)	2006/10/31	ND, RDL=0.5	ug/g	
		Acid Extractable Nickel (Ni)	2006/10/31	ND, RDL=0.5	ug/g	
	RPD	Acid Extractable Arsenic (As)	2006/10/31	NC	%	35
		Acid Extractable Copper (Cu)	2006/10/31	0.08	%	35
		Acid Extractable Lead (Pb)	2006/10/31	NC	%	35
		Acid Extractable Molybdenum (Mo)	2006/10/31	NC	%	35
		Acid Extractable Nickel (Ni)	2006/10/31	4.4	%	35

ND = Not detected

NC = Non-calculable RPD = Relative Percent Difference

QC Standard = Quality Control Standard

Validation Signature Page

Maxxam	Job	#:	Α	6B	62	62
--------	-----	----	---	-----------	----	----

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

EWA PRANJIC, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Site: OWEN SOUND Your C.O.C. #: 00457610

Attention: Carla Reynolds
Barenco Inc
2561 Stouffville Rd

PO Box 295 Gormley, ON L0H 1G0

Report Date: 2007/07/12

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A6B6181 Received: 2006/10/27, 13:45

Sample Matrix: Water # Samples Received: 5

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Dissolved Metals by ICPMS	2	N/A	2006/11/01 CAM SOP-00447	EPA 6020
Dissolved Metals by ICPMS	1	N/A	2006/11/02 CAM SOP-00447	EPA 6020
PAH Compounds in Water by GC/MS (SIM)	2	2006/10/31	2006/10/31 EPA 8270	GC/MS
Volatile Organic Compounds in Water	3	N/A	2006/10/31 CAM SOP 0226	EPA 8260 modified

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

COC Number	Units	00457610 TH8	QC Batch	00457610 TH9	BDI	QC Batch
		11:00		11:50		
Sampling Date		2006/10/26		2006/10/26		
Maxxam ID		P15906		P15907		

METALS						
Dissolved Antimony (Sb)	ug/L	ND	1091424	ND	1	1092303
Dissolved Arsenic (As)	ug/L	ND	1091424	2	1	1092303
Dissolved Barium (Ba)	ug/L	99	1091424	310	5	1092303
Dissolved Beryllium (Be)	ug/L	ND	1091424	ND	0.5	1092303
Dissolved Boron (B)	ug/L	140	1091424	490	10	1092303
Dissolved Cadmium (Cd)	ug/L	0.1	1091424	ND	0.1	1092303
Dissolved Chromium (Cr)	ug/L	ND	1091424	ND	5	1092303
Dissolved Cobalt (Co)	ug/L	3.1	1091424	18	0.5	1092303
Dissolved Copper (Cu)	ug/L	3	1091424	1	1	1092303
Dissolved Lead (Pb)	ug/L	ND	1091424	ND	0.5	1092303
Dissolved Molybdenum (Mo)	ug/L	1	1091424	3	1	1092303
Dissolved Nickel (Ni)	ug/L	3	1091424	4	1	1092303
Dissolved Selenium (Se)	ug/L	ND	1091424	ND	2	1092303
Dissolved Silver (Ag)	ug/L	ND	1091424	ND	0.1	1092303
Dissolved Thallium (TI)	ug/L	ND	1091424	ND	0.05	1092303
Dissolved Vanadium (V)	ug/L	ND	1091424	ND	1	1092303
Dissolved Zinc (Zn)	ug/L	860	1091424	45	5	1092303

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

COC Number	Units	TH10	RDL	QC Batch
COC Number		00457610		
		12:30		
Sampling Date		2006/10/26		
Maxxam ID		P15908		

		1	
ug/L	ND	1	1091424
ug/L	ND	1	1091424
ug/L	120	5	1091424
ug/L	ND	0.5	1091424
ug/L	220	10	1091424
ug/L	ND	0.1	1091424
ug/L	ND	5	1091424
ug/L	3.6	0.5	1091424
ug/L	ND	1	1091424
ug/L	ND	0.5	1091424
ug/L	4	1	1091424
ug/L	1	1	1091424
ug/L	ND	2	1091424
ug/L	ND	0.1	1091424
ug/L	ND	0.05	1091424
ug/L	ND	1	1091424
ug/L	ND	5	1091424
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L ND ug/L 120 ug/L 120 ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L 1 ug/L 1 ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND ug/L ND	ug/L ND 1 ug/L 120 5 ug/L ND 0.5 ug/L 220 10 ug/L ND 0.1 ug/L ND 5 ug/L ND 1 ug/L ND 1 ug/L ND 0.5 ug/L 4 1 ug/L 1 1 ug/L ND 2 ug/L ND 0.1 ug/L ND 0.05 ug/L ND 0.05 ug/L ND 1

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

	Ullits	IVIVV IOI	IVIVV 103	NDL	QC Balcii
	Units	MW 101	MW 109	BUI	QC Batch
COC Number		00457610	00457610		
Sampling Date		2006/10/25	2006/10/25		
Maxxam ID		P15909	P15910		

					1
PAHs					
Acenaphthene	ug/L	ND	ND	0.05	1090684
Acenaphthylene	ug/L	ND	ND	0.05	1090684
Anthracene	ug/L	ND	ND	0.05	1090684
Benzo(a)anthracene	ug/L	ND	ND	0.05	1090684
Benzo(a)pyrene	ug/L	ND	ND	0.01	1090684
Benzo(b/j)fluoranthene	ug/L	ND	ND	0.05	1090684
Benzo(g,h,i)perylene	ug/L	ND	ND	0.1	1090684
Benzo(k)fluoranthene	ug/L	ND	ND	0.05	1090684
Chrysene	ug/L	ND	ND	0.05	1090684
Dibenz(a,h)anthracene	ug/L	ND	ND	0.1	1090684
Fluoranthene	ug/L	ND	ND	0.05	1090684
Fluorene	ug/L	ND	ND	0.05	1090684
Indeno(1,2,3-cd)pyrene	ug/L	ND	ND	0.1	1090684
1-Methylnaphthalene	ug/L	ND	ND	0.05	1090684
2-Methylnaphthalene	ug/L	ND	ND	0.05	1090684
Naphthalene	ug/L	ND	ND	0.05	1090684
Phenanthrene	ug/L	ND	ND	0.05	1090684
Pyrene	ug/L	ND	ND	0.05	1090684
Surrogate Recovery (%)					
D10-Anthracene	%	59	68		1090684
D14-Terphenyl (FS)	%	78	93		1090684
D7-Quinoline	%	61	68		1090684
D8-Acenaphthylene	%	60	67		1090684

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		P15906	P15907	P15908		
Sampling Date		2006/10/26	2006/10/26	2006/10/26		
COC Number		11:00 00457610	11:50 00457610	12:30 00457610		
COC Number	Units	TH8	TH9	TH10	RDL	QC Batch
			1	1		1
VOLATILES						
Acetone (2-Propanone)	ug/L	ND	24	12	10	1088754
Benzene	ug/L	0.1	0.3	0.2	0.1	1088754
Bromodichloromethane	ug/L	ND	ND	ND	0.1	1088754
Bromoform	ug/L	ND	ND	ND	0.2	1088754
Bromomethane	ug/L	ND	ND	ND	0.5	1088754
Carbon Tetrachloride	ug/L	ND	ND	ND	0.1	1088754
Chlorobenzene	ug/L	ND	ND	ND	0.1	1088754
Chloroform	ug/L	ND	ND	ND	0.1	1088754
Dibromochloromethane	ug/L	ND	ND	ND	0.2	1088754
1,2-Dichlorobenzene	ug/L	ND	ND	ND	0.2	1088754
1,3-Dichlorobenzene	ug/L	ND	ND	ND	0.2	1088754
1,4-Dichlorobenzene	ug/L	ND	ND	ND	0.2	1088754
1,1-Dichloroethane	ug/L	ND	ND	ND	0.1	1088754
1,2-Dichloroethane	ug/L	ND	ND	ND	0.1	1088754
1,1-Dichloroethylene	ug/L	ND	ND	ND	0.1	1088754
cis-1,2-Dichloroethylene	ug/L	ND	ND	ND	0.1	1088754
trans-1,2-Dichloroethylene	ug/L	ND	ND	ND	0.1	1088754
1,2-Dichloropropane	ug/L	ND	ND	ND	0.1	1088754
cis-1,3-Dichloropropene	ug/L	ND	ND	ND	0.2	1088754
trans-1,3-Dichloropropene	ug/L	ND	ND	ND	0.2	1088754
Ethylbenzene	ug/L	ND	ND	ND	0.1	1088754
Ethylene Dibromide	ug/L	ND	ND	ND	0.2	1088754
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	ND	0.5	1088754
Methyl Isobutyl Ketone	ug/L	ND	ND	ND	5	1088754
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	ND	5	1088754
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	ND	0.2	1088754
Styrene	ug/L	ND	ND	ND	0.1	1088754
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	ND	0.1	1088754
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	ND	0.1	1088754
Tetrachloroethylene	ug/L	ND	ND	ND	0.1	1088754

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		P15906	P15907	P15908		
Sampling Date		2006/10/26	2006/10/26	2006/10/26		
		11:00	11:50	12:30		
COC Number		00457610	00457610	00457610		
	Units	TH8	TH9	TH10	RDL	QC Batch
			-	-		
Toluene	ug/L	ND	6.7	2.1	0.2	1088754
1,1,1-Trichloroethane	ug/L	ND	ND	ND	0.1	1088754
1,1,2-Trichloroethane	ug/L	ND	ND	ND	0.2	1088754
Trichloroethylene	ug/L	ND	ND	ND	0.1	1088754
Vinyl Chloride	ug/L	ND	ND	ND	0.2	1088754
p+m-Xylene	ug/L	ND	0.1	ND	0.1	1088754
o-Xylene	ug/L	ND	ND	ND	0.1	1088754
Xylene (Total)	ug/L	ND	0.1	ND	0.1	1088754
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	87	89	86		1088754
D4-1,2-Dichloroethane	%	107	103	103		1088754
D8-Toluene	%	95	96	96		1088754

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: OWEN SOUND Your P.O. #: 06043 Sampler Initials:

GEN	IFR A I	COM	MFN	TS

Results relate only to the items tested.

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report Maxxam Job Number: MA6B6181

QA/QC			Date				
Batch		_	Analyzed		_		
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limit
1088754 SCO	MATRIX SPIKE	4-Bromofluorobenzene	2006/10/31		96	%	70 - 13
		D4-1,2-Dichloroethane	2006/10/31		102	%	70 - 13
		D8-Toluene	2006/10/31		98	%	70 - 13
		Acetone (2-Propanone)	2006/10/31		102	%	60 - 14
		Benzene	2006/10/31		110	%	70 - 13
		Bromodichloromethane	2006/10/31		108	%	70 - 13
		Bromoform	2006/10/31		86	%	70 - 13
		Bromomethane	2006/10/31		100	%	60 - 14
		Carbon Tetrachloride	2006/10/31		112	%	70 - 13
		Chlorobenzene	2006/10/31		97	%	70 - 13
		Chloroform	2006/10/31		106	%	70 - 13
		Dibromochloromethane	2006/10/31		105	%	70 - 13
		1,2-Dichlorobenzene	2006/10/31		103	%	70 - 13
		1,3-Dichlorobenzene	2006/10/31		109	%	70 - 13
		1,4-Dichlorobenzene	2006/10/31		98	%	70 - 13
		1,1-Dichloroethane	2006/10/31		109	%	70 - 13
		1,2-Dichloroethane	2006/10/31		109	%	70 - 13
		1,1-Dichloroethylene	2006/10/31		118	%	70 - 13
		cis-1,2-Dichloroethylene	2006/10/31		112	%	70 - 13
		trans-1,2-Dichloroethylene	2006/10/31		107	%	70 - 13
		1,2-Dichloropropane	2006/10/31		108	%	70 - 13
		cis-1,3-Dichloropropene	2006/10/31		99	%	70 - 13
		trans-1,3-Dichloropropene	2006/10/31		102	%	70 - 13
		Ethylbenzene	2006/10/31		97	%	70 - 13
		Ethylene Dibromide	2006/10/31		103	%	70 - 13
		Methylene Chloride(Dichloromethane)	2006/10/31		102	%	70 - 13
		Methyl Isobutyl Ketone	2006/10/31		91	%	60 - 14
		Methyl Ethyl Ketone (2-Butanone)	2006/10/31		104	%	60 - 14
		Methyl t-butyl ether (MTBE)	2006/10/31		96	%	70 - 13
		Styrene	2006/10/31		93	%	70 - 13
		1,1,1,2-Tetrachloroethane	2006/10/31		104	%	70 - 13
		1,1,2,7-Tetrachloroethane	2006/10/31		96	%	70 - 13
		Tetrachloroethylene	2006/10/31		96	%	70 - 13
		Toluene	2006/10/31		102	%	70 - 13
		1,1,1-Trichloroethane	2006/10/31		112	%	70 - 13
		1,1,2-Trichloroethane	2006/10/31		97	% %	70 - 13
		Trichloroethylene	2006/10/31		106	% %	70 - 13
		Vinyl Chloride	2006/10/31		106	% %	70 - 13
		•					70 - 13
		p+m-Xylene	2006/10/31		97	%	-
	Cuilead Dlaule	o-Xylene	2006/10/31		97	%	70 - 13
	Spiked Blank	4-Bromofluorobenzene	2006/10/31		98	%	70 - 13
		D4-1,2-Dichloroethane	2006/10/31		97	%	70 - 13
		D8-Toluene	2006/10/31		99	%	70 - 13
		Acetone (2-Propanone)	2006/10/31		116	%	60 - 14
		Benzene	2006/10/31		99	%	70 - 13
		Bromodichloromethane	2006/10/31		97	%	70 - 13
		Bromoform	2006/10/31		80	%	70 - 13
		Bromomethane	2006/10/31		88	%	60 - 14
		Carbon Tetrachloride	2006/10/31		99	%	70 - 1
		Chlorobenzene	2006/10/31		92	%	70 - 1
		Chloroform	2006/10/31		96	%	70 - 13
		Dibromochloromethane	2006/10/31		99	%	70 - 1
		1,2-Dichlorobenzene	2006/10/31		96	%	70 - 13
		1,3-Dichlorobenzene	2006/10/31		106	%	70 - 13
	1,4-Dichlorobenzene	2006/10/31		93	%	70 - 13	

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1088754 SCO	Spiked Blank	1,1-Dichloroethane	2006/10/31	98	%	70 - 130
1000754 000	орікса Віалік	1,2-Dichloroethane	2006/10/31	99	%	70 - 130
		1,1-Dichloroethylene	2006/10/31	112	%	70 - 130
		cis-1,2-Dichloroethylene	2006/10/31	102	%	70 - 130
		trans-1,2-Dichloroethylene	2006/10/31	98	%	70 - 130
		1,2-Dichloropropane	2006/10/31	98	%	70 - 130
		cis-1,3-Dichloropropene	2006/10/31	89	%	70 - 130
		trans-1,3-Dichloropropene	2006/10/31	92	%	70 - 130
		Ethylbenzene	2006/10/31	92	%	70 - 130
		Ethylene Dibromide	2006/10/31	96	%	70 - 13
		Methylene Chloride(Dichloromethane)	2006/10/31	92	%	70 - 13
		Methyl Isobutyl Ketone	2006/10/31	79	%	60 - 14
		Methyl Ethyl Ketone (2-Butanone)	2006/10/31	106	%	60 - 14
		Methyl t-butyl ether (MTBE)	2006/10/31	91	%	70 - 13
		Styrene	2006/10/31	88	%	70 - 13
		1,1,1,2-Tetrachloroethane	2006/10/31	99	%	70 - 13
		1,1,2,2-Tetrachloroethane		99	%	70 - 13
		Tetrachloroethylene	2006/10/31 2006/10/31	92 92	% %	70 - 13 70 - 13
		,			% %	
		Toluene	2006/10/31	98		70 - 13
		1,1,1-Trichloroethane	2006/10/31	101	%	70 - 13
		1,1,2-Trichloroethane	2006/10/31	93	%	70 - 13
		Trichloroethylene	2006/10/31	96	%	70 - 13
		Vinyl Chloride	2006/10/31	95	%	70 - 13
		p+m-Xylene	2006/10/31	92	%	70 - 13
		o-Xylene	2006/10/31	92	%	70 - 13
	Method Blank	4-Bromofluorobenzene	2006/10/31	86	%	70 - 13
		D4-1,2-Dichloroethane	2006/10/31	107	%	70 - 13
		D8-Toluene	2006/10/31	96	%	70 - 13
		Acetone (2-Propanone)	2006/10/31	ND, RDL=10	ug/L	
		Benzene	2006/10/31	ND, RDL=0.1	ug/L	
		Bromodichloromethane	2006/10/31	ND, RDL=0.1	ug/L	
		Bromoform	2006/10/31	ND, RDL=0.2	ug/L	
		Bromomethane	2006/10/31	ND, RDL=0.5	ug/L	
		Carbon Tetrachloride	2006/10/31	ND, RDL=0.1	ug/L	
		Chlorobenzene	2006/10/31	ND, RDL=0.1	ug/L	
		Chloroform	2006/10/31	ND, RDL=0.1	ug/L	
		Dibromochloromethane	2006/10/31	ND, RDL=0.2	ug/L	
		1,2-Dichlorobenzene	2006/10/31	ND, RDL=0.2	ug/L	
		1,3-Dichlorobenzene	2006/10/31	ND, RDL=0.2	ug/L	
		1,4-Dichlorobenzene	2006/10/31	ND, RDL=0.2	ug/L	
		1,1-Dichloroethane	2006/10/31	ND, RDL=0.1	ug/L	
		1,2-Dichloroethane	2006/10/31	ND, RDL=0.1	ug/L	
		1,1-Dichloroethylene	2006/10/31	ND, RDL=0.1	ug/L	
		cis-1,2-Dichloroethylene	2006/10/31	ND, RDL=0.1	ug/L	
		trans-1,2-Dichloroethylene	2006/10/31	ND, RDL=0.1	ug/L	
		1,2-Dichloropropane	2006/10/31	ND, RDL=0.1	ug/L	
		cis-1,3-Dichloropropene	2006/10/31	ND, RDL=0.2	ug/L	
		trans-1,3-Dichloropropene	2006/10/31	ND, RDL=0.2	ug/L	
		Ethylbenzene	2006/10/31	ND, RDL=0.1	ug/L	
		Ethylene Dibromide	2006/10/31	ND, RDL=0.2	ug/L	
		Methylene Chloride(Dichloromethane)	2006/10/31	ND, RDL=0.5	ug/L	
		Methyl Isobutyl Ketone	2006/10/31	ND, RDL=5	ug/L	
		Methyl Ethyl Ketone (2-Butanone)	2006/10/31	ND, RDL=5	ug/L	
		Methyl t-butyl ether (MTBE)	2006/10/31	ND, RDL=0.2	ug/L ug/L	
		Styrene	2006/10/31	ND, RDL=0.2 ND, RDL=0.1	ug/L ug/L	
		Otyrene	2000/10/31	14D, 11DL=0.1	ug/L	

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1088754 SCO	Method Blank	1,1,1,2-Tetrachloroethane	2006/10/31	ND, RDL=0.1	ug/L	
		1,1,2,2-Tetrachloroethane	2006/10/31	ND, RDL=0.1	ug/L	
		Tetrachloroethylene	2006/10/31	ND, RDL=0.1	ug/L	
		Toluene	2006/10/31	ND, RDL=0.2	ug/L	
		1,1,1-Trichloroethane	2006/10/31	ND, RDL=0.1	ug/L	
		1,1,2-Trichloroethane	2006/10/31	ND, RDL=0.2	ug/L	
		Trichloroethylene	2006/10/31	ND, RDL=0.1	ug/L	
		Vinyl Chloride	2006/10/31	ND, RDL=0.2	ug/L	
		p+m-Xylene	2006/10/31	ND, RDL=0.1	ug/L	
		o-Xylene	2006/10/31	ND, RDL=0.1	ug/L	
		Xylene (Total)	2006/10/31	ND, RDL=0.1	ug/L	
1090684 MWG	MATRIX SPIKE	Aylono (Total)	2000/10/01	115, 1152-0.1	ug/L	
1030004 101000	[P15910-01]	D10-Anthracene	2006/10/31	63	%	30 - 13
	[1 13310-01]	D14-Terphenyl (FS)	2006/10/31	88	%	30 - 13
		D7-Quinoline	2006/10/31	65	%	30 - 13
				58		
		D8-Acenaphthylene	2006/10/31		%	30 - 13
		Acenaphthene	2006/10/31	68	%	30 - 13
		Acenaphthylene	2006/10/31	63	%	30 - 13
		Anthracene	2006/10/31	70	%	30 - 13
		Benzo(a)anthracene	2006/10/31	72	%	30 - 13
		Benzo(a)pyrene	2006/10/31	72	%	30 - 13
		Benzo(b/j)fluoranthene	2006/10/31	72	%	30 - 13
		Benzo(g,h,i)perylene	2006/10/31	74	%	30 - 13
		Benzo(k)fluoranthene	2006/10/31	78	%	30 - 13
		Chrysene	2006/10/31	77	%	30 - 13
		Dibenz(a,h)anthracene	2006/10/31	72	%	30 - 13
		Fluoranthene	2006/10/31	76	%	30 - 13
		Fluorene	2006/10/31	73	%	30 - 13
		Indeno(1,2,3-cd)pyrene	2006/10/31	72	%	30 - 13
		1-Methylnaphthalene	2006/10/31	61	%	30 - 13
		2-Methylnaphthalene	2006/10/31	61	%	30 - 13
		Naphthalene	2006/10/31	55	%	30 - 13
		Phenanthrene	2006/10/31	71	%	30 - 13
		Pyrene	2006/10/31	77	%	30 - 13
	Spiked Blank			59	%	30 - 13
	орікей Біалк	D10-Anthracene	2006/10/31	89	%	
		D14-Terphenyl (FS)	2006/10/31			30 - 13
		D7-Quinoline	2006/10/31	68	%	30 - 13
		D8-Acenaphthylene	2006/10/31	46	%	30 - 13
		Acenaphthene	2006/10/31	54	%	30 - 13
		Acenaphthylene	2006/10/31	51	%	30 - 13
		Anthracene	2006/10/31	64	%	30 - 13
		Benzo(a)anthracene	2006/10/31	74	%	30 - 13
		Benzo(a)pyrene	2006/10/31	76	%	30 - 13
		Benzo(b/j)fluoranthene	2006/10/31	74	%	30 - 13
		Benzo(g,h,i)perylene	2006/10/31	74	%	30 - 13
		Benzo(k)fluoranthene	2006/10/31	83	%	30 - 13
		Chrysene	2006/10/31	79	%	30 - 13
		Dibenz(a,h)anthracene	2006/10/31	73	%	30 - 13
		Fluoranthene	2006/10/31	75	%	30 - 13
		Fluorene	2006/10/31	59	%	30 - 13
		Indeno(1,2,3-cd)pyrene	2006/10/31	71	%	30 - 13
		1-Methylnaphthalene	2006/10/31	49	%	30 - 13
		2-Methylnaphthalene	2006/10/31	47	%	30 - 13
		Naphthalene	2006/10/31	47	% %	30 - 13
		Phenanthrene	2006/10/31	63	% %	30 - 13
		i nenanunene	2000/10/31	63	/0	30 - 13

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1090684 MWG	Spiked Blank	Pyrene	2006/10/31	77	%	30 - 130
	Method Blank	D10-Anthracene	2006/10/31	69	%	30 - 130
		D14-Terphenyl (FS)	2006/10/31	95	%	30 - 130
		D7-Quinoline	2006/10/31	81	%	30 - 130
		D8-Acenaphthylene	2006/10/31	68	%	30 - 130
		Acenaphthene	2006/10/31	ND, RDL=0.05	ug/L	
		Acenaphthylene	2006/10/31	ND, RDL=0.05	ug/L	
		Anthracene	2006/10/31	ND, RDL=0.05	ug/L	
		Benzo(a)anthracene	2006/10/31	ND, RDL=0.05	ug/L	
		Benzo(a)pyrene	2006/10/31	ND, RDL=0.01	ug/L	
		Benzo(b/j)fluoranthene	2006/10/31	ND, RDL=0.05	ug/L	
		Benzo(g,h,i)perylene	2006/10/31	ND, RDL=0.1	ug/L	
		Benzo(k)fluoranthene	2006/10/31	ND, RDL=0.05	ug/L	
		Chrysene	2006/10/31	ND, RDL=0.05	ug/L	
		Dibenz(a,h)anthracene	2006/10/31	ND, RDL=0.1	ug/L	
		Fluoranthene	2006/10/31	ND, RDL=0.05	ug/L	
		Fluorene	2006/10/31	ND, RDL=0.05	ug/L	
		Indeno(1,2,3-cd)pyrene	2006/10/31	ND, RDL=0.1	ug/L	
		1-Methylnaphthalene	2006/10/31	ND, RDL=0.05	ug/L	
		2-Methylnaphthalene	2006/10/31	ND, RDL=0.05	ug/L	
		Naphthalene	2006/10/31	ND, RDL=0.05	ug/L	
		Phenanthrene	2006/10/31	ND, RDL=0.05	ug/L	
		Pyrene	2006/10/31	ND, RDL=0.05	ug/L	
	RPD	D14-Terphenyl (FS)	2006/10/31	2.2	₩ %	N/A
	IXI D	Naphthalene	2006/10/31	NC	%	40
091424 HRE	MATRIX SPIKE	Dissolved Antimony (Sb)	2006/11/01	111	%	80 - 120
031424 1111	WATKIN OF IKE	Dissolved Artifficity (3b) Dissolved Arsenic (As)	2006/11/01	102	%	80 - 120
		Dissolved Arsenic (As) Dissolved Barium (Ba)	2006/11/01	100	% %	80 - 120
		Dissolved Barium (Ba) Dissolved Beryllium (Be)	2006/11/01	102	%	75 - 125
		Dissolved Beryllidin (Be) Dissolved Boron (B)		102	%	75 - 125 75 - 125
		` ,	2006/11/01			
		Dissolved Cadmium (Cd)	2006/11/01	106	%	80 - 120 80 - 120
		Dissolved Chromium (Cr)	2006/11/01	101	%	
		Dissolved Cobalt (Co)	2006/11/01	96 97	%	80 - 120
		Dissolved Copper (Cu)	2006/11/01		%	80 - 120
		Dissolved Lead (Pb)	2006/11/01	104	%	80 - 120
		Dissolved Molybdenum (Mo)	2006/11/01	113	%	80 - 120
		Dissolved Nickel (Ni)	2006/11/01	95	%	80 - 120
		Dissolved Selenium (Se)	2006/11/01	100	%	80 - 120
		Dissolved Silver (Ag)	2006/11/01	96	%	80 - 120
		Dissolved Thallium (TI)	2006/11/01	99	%	75 - 125
		Dissolved Vanadium (V)	2006/11/01	101	%	80 - 120
	0 " 1 " 1	Dissolved Zinc (Zn)	2006/11/01	98	%	80 - 120
	Spiked Blank	Dissolved Antimony (Sb)	2006/11/01	105	%	85 - 115
		Dissolved Arsenic (As)	2006/11/01	102	%	85 - 115
		Dissolved Barium (Ba)	2006/11/01	103	%	85 - 115
		Dissolved Beryllium (Be)	2006/11/01	106	%	85 - 115
		Dissolved Boron (B)	2006/11/01	111	%	85 - 115
		Dissolved Cadmium (Cd)	2006/11/01	105	%	85 - 115
		Dissolved Chromium (Cr)	2006/11/01	104	%	85 - 115
		Dissolved Cobalt (Co)	2006/11/01	98	%	85 - 115
		Dissolved Copper (Cu)	2006/11/01	100	%	85 - 115
		Dissolved Lead (Pb)	2006/11/01	99	%	85 - 115
		Dissolved Molybdenum (Mo)	2006/11/01	105	%	85 - 115
		Dissolved Nickel (Ni)	2006/11/01	100	%	85 - 115
	Dissolved Selenium (Se)	2006/11/01	100	%	85 - 115	

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1091424 HRE	Spiked Blank	Dissolved Silver (Ag)	2006/11/01	99	%	85 - 115
		Dissolved Thallium (TI)	2006/11/01	95	%	85 - 115
		Dissolved Vanadium (V)	2006/11/01	102	%	85 - 115
		Dissolved Zinc (Zn)	2006/11/01	102	%	85 - 115
	Method Blank	Dissolved Antimony (Sb)	2006/11/01	ND, RDL=1	ug/L	
		Dissolved Arsenic (As)	2006/11/01	ND, RDL=1	ug/L	
		Dissolved Barium (Ba)	2006/11/01	ND, RDL=5	ug/L	
		Dissolved Beryllium (Be)	2006/11/01	ND, RDL=0.5	ug/L	
		Dissolved Boron (B)	2006/11/01	ND, RDL=10	ug/L	
		Dissolved Cadmium (Cd)	2006/11/01	ND, RDL=0.1	ug/L	
		Dissolved Chromium (Cr)	2006/11/01	ND, RDL=5	ug/L	
		Dissolved Cobalt (Co)	2006/11/01	ND, RDL=0.5	ug/L	
		Dissolved Copper (Cu)	2006/11/01	ND, RDL=1	ug/L	
		Dissolved Lead (Pb)	2006/11/01	ND, RDL=0.5	ug/L	
		Dissolved Molybdenum (Mo)	2006/11/01	ND, RDL=1	ug/L	
		Dissolved Nickel (Ni)	2006/11/01	ND, RDL=1	ug/L	
		Dissolved Selenium (Se)	2006/11/01	ND, RDL=2	ug/L	
		Dissolved Silver (Ag)	2006/11/01	ND, RDL=0.1	ug/L	
		Dissolved Thallium (TI)	2006/11/01	ND, RDL=0.05	ug/L	
		Dissolved Vanadium (V)	2006/11/01	ND, RDL=1	ug/L	
		Dissolved Zinc (Zn)	2006/11/01	ND, RDL=5	ug/L	
	RPD	Dissolved Antimony (Sb)	2006/11/01	NC	%	25
		Dissolved Arsenic (As)	2006/11/01	3.4	%	25
		Dissolved Barium (Ba)	2006/11/01	0.4	%	25
		Dissolved Beryllium (Be)	2006/11/01	NC	%	25
		Dissolved Boron (B)	2006/11/01	2.7	%	25
		Dissolved Cadmium (Cd)	2006/11/01	NC	%	25
		Dissolved Chromium (Cr)	2006/11/01	NC	%	25
		Dissolved Cobalt (Co)	2006/11/01	0.2	%	25
		Dissolved Copper (Cu)	2006/11/01	NC	%	25
		Dissolved Lead (Pb)	2006/11/01	NC	%	25
		Dissolved Molybdenum (Mo)	2006/11/01	NC	%	25
		Dissolved Nickel (Ni)	2006/11/01	0.1	%	25
		Dissolved Selenium (Se)	2006/11/01	NC	%	25
		Dissolved Silver (Ag)	2006/11/01	NC	%	25
		Dissolved Thallium (TI)	2006/11/01	NC	%	25
		Dissolved Vanadium (V)	2006/11/01	NC	%	25
		Dissolved Zinc (Zn)	2006/11/01	NC	%	25
1092303 JBW	MATRIX SPIKE	Dissolved Antimony (Sb)	2006/11/02	102	%	80 - 120
		Dissolved Arsenic (As)	2006/11/02	103	%	80 - 120
		Dissolved Barium (Ba)	2006/11/02	97	%	80 - 120
		Dissolved Beryllium (Be)	2006/11/02	105	%	75 - 125
		Dissolved Boron (B)	2006/11/02	95	%	75 - 125
		Dissolved Cadmium (Cd)	2006/11/02	103	%	80 - 120
		Dissolved Chromium (Cr)	2006/11/02	103	%	80 - 120
		Dissolved Cobalt (Co)	2006/11/02	99	%	80 - 120
		Dissolved Copper (Cu)	2006/11/02	97	%	80 - 120
		Dissolved Lead (Pb)	2006/11/02	100	%	80 - 120
		Dissolved Molybdenum (Mo)	2006/11/02	104	%	80 - 120
		Dissolved Nickel (Ni)	2006/11/02	97	%	80 - 120
		Dissolved Selenium (Se)	2006/11/02	100	%	80 - 120
		Dissolved Silver (Ag)	2006/11/02	101	%	80 - 120
		Dissolved Thallium (TI)	2006/11/02	100	%	75 - 125
		Dissolved Vanadium (V)	2006/11/02	104	%	80 - 120
		Dissolved Zinc (Zn)	2006/11/02	100	%	80 - 120

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

Maxxam Job Number: MA6B6181

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1092303 JBW	Spiked Blank	Dissolved Antimony (Sb)	2006/11/02	100	%	85 - 11
		Dissolved Arsenic (As)	2006/11/02	101	%	85 - 11
		Dissolved Barium (Ba)	2006/11/02	100	%	85 - 11
		Dissolved Beryllium (Be)	2006/11/02	101	%	85 - 11
		Dissolved Boron (B)	2006/11/02	99	%	85 - 11
		Dissolved Cadmium (Cd)	2006/11/02	101	%	85 - 11
		Dissolved Chromium (Cr)	2006/11/02	102	%	85 - 11
		Dissolved Cobalt (Co)	2006/11/02	100	%	85 - 11
		Dissolved Copper (Cu)	2006/11/02	98	%	85 - 11
		Dissolved Lead (Pb)	2006/11/02	99	%	85 - 11
		Dissolved Molybdenum (Mo)	2006/11/02	102	%	85 - 11
		Dissolved Nickel (Ni)	2006/11/02	99	%	85 - 11
		Dissolved Selenium (Se)	2006/11/02	100	%	85 - 11
		Dissolved Silver (Ag)	2006/11/02	100	%	85 - 1 <i>°</i>
		Dissolved Thallium (TI)	2006/11/02	100	%	85 - 1 <i>°</i>
		Dissolved Vanadium (V)	2006/11/02	102	%	85 - 1°
		Dissolved Zinc (Zn)	2006/11/02	99	%	85 - 1°
	Method Blank	Dissolved Antimony (Sb)	2006/11/02	ND, RDL=1	ug/L	
		Dissolved Arsenic (As)	2006/11/02	ND, RDL=1	ug/L	
		Dissolved Barium (Ba)	2006/11/02	ND, RDL=5	ug/L	
		Dissolved Beryllium (Be)	2006/11/02	ND, RDL=0.5	ug/L	
		Dissolved Boron (B)	2006/11/02	ND, RDL=10	ug/L	
		Dissolved Cadmium (Cd)	2006/11/02	ND, RDL=0.1	ug/L	
		Dissolved Chromium (Cr)	2006/11/02	ND, RDL=5	ug/L	
		Dissolved Cobalt (Co)	2006/11/02	ND, RDL=0.5	ug/L	
		Dissolved Copper (Cu)	2006/11/02	ND, RDL=1	ug/L	
		Dissolved Lead (Pb)	2006/11/02	ND, RDL=0.5	ug/L	
		Dissolved Molybdenum (Mo)	2006/11/02	ND, RDL=1	ug/L	
		Dissolved Nickel (Ni)	2006/11/02	ND, RDL=1	ug/L	
		Dissolved Selenium (Se)	2006/11/02	ND, RDL=2	ug/L	
		Dissolved Scientiff (Sc)	2006/11/02	ND, RDL=0.1	ug/L	
		Dissolved Thallium (TI)	2006/11/02	ND, RDL=0.05	ug/L	
		Dissolved Vanadium (V)	2006/11/02	ND, RDL=1	ug/L	
		Dissolved Zinc (Zn)	2006/11/02	ND, RDL=5	ug/L	
	RPD	Dissolved Antimony (Sb)	2006/11/02	NC	%	
	IXI D	Dissolved Arithmony (Gb)	2006/11/02	NC	%	
		Dissolved Arsenic (As) Dissolved Barium (Ba)	2006/11/02	3.1	%	
		Dissolved Bandin (Ba) Dissolved Beryllium (Be)	2006/11/02	NC	%	
		Dissolved Beryllidiff (Be) Dissolved Boron (B)	2006/11/02	NC NC	% %	
		Dissolved Bolon (B) Dissolved Cadmium (Cd)	2006/11/02	NC NC	%	
		` ,			%	•
		Dissolved Chromium (Cr)	2006/11/02	NC NC		
		Dissolved Cobalt (Co)	2006/11/02	NC NC	%	
		Dissolved Copper (Cu)	2006/11/02	NC NC	%	
		Dissolved Lead (Pb)	2006/11/02	NC NC	%	:
		Dissolved Molybdenum (Mo)	2006/11/02	NC	%	
		Dissolved Nickel (Ni)	2006/11/02	NC	%	
		Dissolved Selenium (Se)	2006/11/02	NC	%	
		Dissolved Silver (Ag)	2006/11/02	NC	%	
		Dissolved Thallium (TI)	2006/11/02	NC	%	
		Dissolved Vanadium (V)	2006/11/02	NC	%	

ND = Not detected

N/A = Not Applicable NC = Non-calculable

RPD = Relative Percent Difference

Attention: Carla Reynolds Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND

Quality Assurance Report (Continued)

Maxxam Job Number: MA6B6181

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A6B6181
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).
Cliptina News

CHRISTINA NERVO, Scientific Services

ALINA SEGAL, Manager Main Lab - Organics

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00522625

Attention: Vinod Kella
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2007/07/30

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A776348 Received: 2007/07/23, 14:18

Sample Matrix: Soil # Samples Received: 6

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Hot Water Extractable Boron	2	2007/07/27	2007/07/27 CAM SOP-00408	EPA 3050B
Petroleum Hydro. CCME F1 & BTEX in Soil	2	2007/07/24	2007/07/24 CAM SOP-00315	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	2	2007/07/24	2007/07/24 CAM SOP-00316	CCME CWS
F4G (CCME Hydrocarbons Gravimetric)	1	2007/07/27	2007/07/27 CAM SOP-00316	CCME CWS
Acid Extr. Metals (aqua regia) by ICPMS	2	2007/07/27	2007/07/27 CAM SOP-00447	EPA 6020
MOISTURE	4	N/A	2007/07/24 Ont SOP-0114	MOE HANDBOOK(1983)
MOISTURE	2	N/A	2007/07/25 Ont SOP-0114	MOE HANDBOOK(1983)
PAH Compounds in Soil by GC/MS (SIM)	3	2007/07/24	2007/07/24 EPA 8270	GC/MS
Polychlorinated Biphenyl in Soil	1	2007/07/26	2007/07/27 CAM SOP-00307	EPA 8082

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

Maxxam ID		T62516	T62517	T62518	T62519		
Sampling Date		2007/07/20	2007/07/20	2007/07/20	2007/07/20		
		17:15	18:30	19:15	20:00		
COC Number		00522625	00522625	00522625	00522625		
	Units	SM3	SM4	SM5	SM6	RDL	QC Batch

INORGANICS							
Moisture	%	32	7.9	33	25	0.2	1309099

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

	Units	HH8	HH7	RDL	QC Batch
COC Number		00522625	00522625		
		18:30	19:00		
Sampling Date		2007/07/20	2007/07/20		
Maxxam ID		T62520	T62521		

INORGANICS					
Moisture	%	14	16	0.2	1310092

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		T62517	T62520		
Sampling Date		2007/07/20	2007/07/20		
		18:30	18:30		
COC Number		00522625	00522625		
	Units	SM4	HH8	RDL	QC Batch

METALS					
Acid Extractable Arsenic (As)	ug/g	4	9	1	1313110
Hot Water Ext. Boron (B)	ug/g	0.27	0.21	0.01	1313099
Acid Extractable Chromium (Cr)	ug/g	31	140	1	1313110
Acid Extractable Copper (Cu)	ug/g	150	180	0.5	1313110
Acid Extractable Lead (Pb)	ug/g	34	410	1	1313110
Acid Extractable Molybdenum (Mo)	ug/g	4.1	15	0.5	1313110
Acid Extractable Nickel (Ni)	ug/g	38	33	0.5	1313110

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		T62517		T62518		
Sampling Date		2007/07/20		2007/07/20		
000 Novel ex		18:30		19:15		
COC Number	Units	00522625 SM4	RDL	00522625 SM5	RDL	QC Batch
	JUIIIIS	31114	KDL	SIVIS	KDL	WC Balcii
PAHs						
Acenaphthene	ug/g	ND	0.1	ND	0.01	1309432
Acenaphthylene	ug/g	ND	0.05	ND	0.005	1309432
Anthracene	ug/g	0.13	0.05	0.013	0.005	1309432
Benzo(a)anthracene	ug/g	4.7	0.1	0.02	0.01	1309432
Benzo(a)pyrene	ug/g	6.2	0.05	0.015	0.005	1309432
Benzo(b/j)fluoranthene	ug/g	14	0.05	0.023	0.005	1309432
Benzo(g,h,i)perylene	ug/g	7.3	0.2	ND	0.02	1309432
Benzo(k)fluoranthene	ug/g	4.1	0.1	ND	0.01	1309432
Chrysene	ug/g	5.0	0.1	0.01	0.01	1309432
Dibenz(a,h)anthracene	ug/g	2.0	0.2	ND	0.02	1309432
Fluoranthene	ug/g	3.6	0.05	0.040	0.005	1309432
Fluorene	ug/g	ND	0.05	0.008	0.005	1309432
Indeno(1,2,3-cd)pyrene	ug/g	7.7	0.2	ND	0.02	1309432
1-Methylnaphthalene	ug/g	0.09	0.05	0.006	0.005	1309432
2-Methylnaphthalene	ug/g	0.13	0.05	0.006	0.005	1309432
Naphthalene	ug/g	0.20	0.05	0.011	0.005	1309432
Phenanthrene	ug/g	0.71	0.05	0.053	0.005	1309432
Pyrene	ug/g	3.6	0.05	0.032	0.005	1309432
Surrogate Recovery (%)						
D10-Anthracene	%	82		79		1309432
D14-Terphenyl (FS)	%	86		88		1309432
D7-Quinoline	%	84		67		1309432
D8-Acenaphthylene	%	90		66		1309432

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

COC Number	Units	SM6	RDL	QC Batch
COC Number		00522625		
		20:00		
Sampling Date		2007/07/20		
Maxxam ID		T62519		

PAHs				
Acenaphthene	ug/g	ND	0.1	1309432
Acenaphthylene	ug/g	0.05	0.05	1309432
Anthracene	ug/g	0.06	0.05	1309432
Benzo(a)anthracene	ug/g	0.1	0.1	1309432
Benzo(a)pyrene	ug/g	0.11	0.05	1309432
Benzo(b/j)fluoranthene	ug/g	0.24	0.05	1309432
Benzo(g,h,i)perylene	ug/g	ND	0.2	1309432
Benzo(k)fluoranthene	ug/g	ND	0.1	1309432
Chrysene	ug/g	0.1	0.1	1309432
Dibenz(a,h)anthracene	ug/g	ND	0.2	1309432
Fluoranthene	ug/g	0.16	0.05	1309432
Fluorene	ug/g	ND	0.05	1309432
Indeno(1,2,3-cd)pyrene	ug/g	ND	0.2	1309432
1-Methylnaphthalene	ug/g	0.66	0.05	1309432
2-Methylnaphthalene	ug/g	0.76	0.05	1309432
Naphthalene	ug/g	0.52	0.05	1309432
Phenanthrene	ug/g	0.33	0.05	1309432
Pyrene	ug/g	0.17	0.05	1309432
Surrogate Recovery (%)				
D10-Anthracene	%	72		1309432
D14-Terphenyl (FS)	%	76		1309432
D7-Quinoline	%	76		1309432
D8-Acenaphthylene	%	82		1309432

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		T62520	T62521		
Sampling Date		2007/07/20	2007/07/20		
		18:30	19:00		
COC Number		00522625	00522625		
	Units	HH8	HH7	RDL	QC Batch

F1 PHC and BTEX					
Benzene	ug/g	ND	ND	0.02	1309220
Toluene	ug/g	ND	ND	0.02	1309220
Ethylbenzene	ug/g	ND	ND	0.02	1309220
o-Xylene	ug/g	0.07	ND	0.02	1309220
p+m-Xylene	ug/g	0.12	ND	0.04	1309220
Total Xylenes	ug/g	0.19	ND	0.04	1309220
F1 (C6-C10)	ug/g	ND	ND	10	1309220
F1 (C6-C10) - BTEX	ug/g	ND	ND	10	1309220
F2-F4 PHC					
F4G (Grav. Heavy Hydrocarbons)	ug/g		460	100	1313813
F2 (C10-C16 Hydrocarbons)	ug/g	ND	ND	10	1309337
F3 (C16-C34 Hydrocarbons)	ug/g	68	81	10	1309337
F4 (C34-C50 Hydrocarbons)	ug/g	25	76	10	1309337
Reached Baseline at C50	ug/g	Yes	No		1309337
Surrogate Recovery (%)					
1,4-Difluorobenzene	%	97	113		1309220
4-Bromofluorobenzene	%	106	98		1309220
D10-Ethylbenzene	%	101	98		1309220
D4-1,2-Dichloroethane	%	111	97		1309220
o-Terphenyl	%	84	86		1309337

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

POLYCHLORINATED BIPHENYLS BY GC-ECD (SOIL)

	Units	SM3	RDL	QC Batch
COC Number		00522625		
		17:15		
Sampling Date		2007/07/20		
Maxxam ID		T62516		

PCBs				
Aroclor 1262	ug/g	ND	0.1	1311729
Aroclor 1016	ug/g	ND	0.1	1311729
Aroclor 1221	ug/g	ND	0.1	1311729
Aroclor 1232	ug/g	ND	0.1	1311729
Aroclor 1242	ug/g	ND	0.1	1311729
Aroclor 1248	ug/g	ND	0.1	1311729
Aroclor 1254	ug/g	ND	0.1	1311729
Aroclor 1260	ug/g	1.2	0.1	1311729
Aroclor 1268	ug/g	ND	0.1	1311729
Total PCB	ug/g	1.2	0.1	1311729
Surrogate Recovery (%)				
2,4,5,6-Tetrachloro-m-xylene	%	92		1311729
Decachlorobiphenyl	%	70		1311729

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

PAH Analysis: Due to matrix interferences, some of the samples required dilution. DLs were adjusted accordingly.

Sample T62516-01: PCB Analysis: Due to high levels of PCBs, sample required dilution. DLs were adjusted accordingly.

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

PAH Compounds in Soil by GC/MS (SIM): PAH Analysis: Duplicate results for QC batch 1309432 exceeded the RPD acceptance criterion for the flagged parameters. The variability of the results obtained for these parameters may be more pronounced.

Results relate only to the items tested.

Barenco Inc

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA776348

QA/QC Batch			Date Analyzed			
Num Init	OC Type	Parameter	yyyy/mm/dd	Value Recovery	Linita	QC Limi
1309099 FOT	QC Type RPD	Moisture	2007/07/24	1	Units %	QC LIIII
1309099 FOT 1309220 GRU				·		60 - 14
1309220 GRU	MATRIX SPINE	1,4-Difluorobenzene 4-Bromofluorobenzene	2007/07/24	102	% %	
			2007/07/24	105		60 - 14
		D10-Ethylbenzene	2007/07/24	106	%	30 - 13
		D4-1,2-Dichloroethane	2007/07/24	127	%	60 - 14
		Benzene	2007/07/24	81	%	60 - 14
		Toluene	2007/07/24	83	%	60 - 14
		Ethylbenzene	2007/07/24	88	%	60 - 1
		o-Xylene	2007/07/24	88	%	60 - 1
		p+m-Xylene	2007/07/24	92	%	60 - 1
		F1 (C6-C10)	2007/07/24	82	%	60 - 14
	Spiked Blank	1,4-Difluorobenzene	2007/07/24	102	%	60 - 1
		4-Bromofluorobenzene	2007/07/24	105	%	60 - 1
		D10-Ethylbenzene	2007/07/24	106	%	30 - 1
		D4-1,2-Dichloroethane	2007/07/24	122	%	60 - 1
		Benzene	2007/07/24	88	%	60 - 1
		Toluene	2007/07/24	85	%	60 - 1
		Ethylbenzene	2007/07/24	89	%	60 - 1
		o-Xylene	2007/07/24	91	%	60 - 1
		p+m-Xylene	2007/07/24	95	%	60 - 1
					% %	60 - 1
	Mathad Dlad.	F1 (C6-C10)	2007/07/24	90		
	Method Blank	1,4-Difluorobenzene	2007/07/24	101	%	60 - 1
		4-Bromofluorobenzene	2007/07/24	100	%	60 - 1
		D10-Ethylbenzene	2007/07/24	95	%	30 - 1
		D4-1,2-Dichloroethane	2007/07/24	125	%	60 - 1
		Benzene	2007/07/24	ND, RDL=0.02	ug/g	
		Toluene	2007/07/24	ND, RDL=0.02	ug/g	
		Ethylbenzene	2007/07/24	ND, RDL=0.02	ug/g	
		o-Xylene	2007/07/24	ND, RDL=0.02	ug/g	
		p+m-Xylene	2007/07/24	ND, RDL=0.04	ug/g	
		Total Xylenes	2007/07/24	ND, RDL=0.04	ug/g	
		F1 (C6-C10)	2007/07/24	ND, RDL=10	ug/g	
		F1 (C6-C10) - BTEX	2007/07/24	ND, RDL=10	ug/g	
	RPD	Benzene	2007/07/24	NC	%	
	111 5	Toluene	2007/07/24	NC	%	
		Ethylbenzene	2007/07/24	NC	%	
		o-Xylene	2007/07/24	NC	%	
		,		NC NC	% %	
		p+m-Xylene	2007/07/24			
		Total Xylenes	2007/07/24	NC NO	%	
		F1 (C6-C10)	2007/07/24	NC	%	
		F1 (C6-C10) - BTEX	2007/07/24	NC	%	;
1309337 JXI	MATRIX SPIKE	o-Terphenyl	2007/07/24	88	%	30 - 1
		F2 (C10-C16 Hydrocarbons)	2007/07/24	87	%	60 - 1
		F3 (C16-C34 Hydrocarbons)	2007/07/24	87	%	60 - 1
		F4 (C34-C50 Hydrocarbons)	2007/07/24	87	%	60 - 1
	Spiked Blank	o-Terphenyl	2007/07/24	82	%	30 - 1
		F2 (C10-C16 Hydrocarbons)	2007/07/24	85	%	60 - 1
		F3 (C16-C34 Hydrocarbons)	2007/07/24	85	%	60 - 1
		F4 (C34-C50 Hydrocarbons)	2007/07/24	85	%	60 - 1
	Method Blank	o-Terphenyl	2007/07/24	80	%	30 - 1
	ouioa Diariit	F2 (C10-C16 Hydrocarbons)	2007/07/24	ND, RDL=10	ug/g	00 1
		F3 (C16-C34 Hydrocarbons)	2007/07/24	ND, RDL=10	ug/g ug/g	
		F4 (C34-C50 Hydrocarbons)		ND, RDL=10 ND, RDL=10		
	DDD	,	2007/07/24	· · · · · · · · · · · · · · · · · · ·	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2007/07/24	NC NC	%	
		F3 (C16-C34 Hydrocarbons)	2007/07/24	NC	%	

Barenco Inc Attention: Vinod Kella

Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA776348

			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limi
1309337 JXI	RPD	F4 (C34-C50 Hydrocarbons)	2007/07/24	NC		%	5
1309432 JJI	MATRIX SPIKE	D10-Anthracene	2007/07/24		86	%	30 - 13
		D14-Terphenyl (FS)	2007/07/24		89	%	30 - 13
		D7-Quinoline	2007/07/24		82	%	30 - 13
		D8-Acenaphthylene	2007/07/24		82	%	30 - 13
		Acenaphthene	2007/07/24		87	%	30 - 13
		Acenaphthylene	2007/07/24		84	%	30 - 13
		Anthracene	2007/07/24		92	%	30 - 13
		Benzo(a)anthracene	2007/07/24		101	%	30 - 13
		` '	2007/07/24		98	%	30 - 13
		Benzo(a)pyrene					
		Benzo(b/j)fluoranthene	2007/07/24		98	%	30 - 13
		Benzo(g,h,i)perylene	2007/07/24		91	%	30 - 13
		Benzo(k)fluoranthene	2007/07/24		98	%	30 - 13
		Chrysene	2007/07/24		94	%	30 - 13
		Dibenz(a,h)anthracene	2007/07/24		88	%	30 - 13
		Fluoranthene	2007/07/24		94	%	30 - 1
		Fluorene	2007/07/24		92	%	30 - 1
		Indeno(1,2,3-cd)pyrene	2007/07/24		91	%	30 - 13
		1-Methylnaphthalene	2007/07/24		89	%	30 - 13
		2-Methylnaphthalene	2007/07/24		81	%	30 - 1
		Naphthalene	2007/07/24		77	%	30 - 1
		Phenanthrene	2007/07/24		97	%	30 - 1
		_					
	On the di Diami	Pyrene	2007/07/24		97	%	30 - 1
	Spiked Blank	D10-Anthracene	2007/07/24		85	%	30 - 1
		D14-Terphenyl (FS)	2007/07/24		87	%	30 - 1
		D7-Quinoline	2007/07/24		80	%	30 - 1
		D8-Acenaphthylene	2007/07/24		82	%	30 - 1
		Acenaphthene	2007/07/24		85	%	30 - 1
		Acenaphthylene	2007/07/24		82	%	30 - 1
		Anthracene	2007/07/24		87	%	30 - 1
		Benzo(a)anthracene	2007/07/24		94	%	30 - 1
		Benzo(a)pyrene	2007/07/24		91	%	30 - 1
		Benzo(b/j)fluoranthene	2007/07/24		93	%	30 - 1
		Benzo(g,h,i)perylene	2007/07/24		85	%	30 - 1
			2007/07/24		93	%	30 - 1
		Benzo(k)fluoranthene					
		Chrysene	2007/07/24		89	%	30 - 1
		Dibenz(a,h)anthracene	2007/07/24		84	%	30 - 1
		Fluoranthene	2007/07/24		87	%	30 - 1
		Fluorene	2007/07/24		90	%	30 - 1
		Indeno(1,2,3-cd)pyrene	2007/07/24		83	%	30 - 1
		1-Methylnaphthalene	2007/07/24		87	%	30 - 1
		2-Methylnaphthalene	2007/07/24		79	%	30 - 1
		Naphthalene	2007/07/24		76	%	30 - 1
		Phenanthrene	2007/07/24		87	%	30 - 1
		Pyrene	2007/07/24		91	%	30 - 1
	Method Blank	D10-Anthracene	2007/07/24		84	%	30 - 1
	METHOR DIVIN	D14-Terphenyl (FS)	2007/07/24		92	%	30 - 1
		. , ,					
		D7-Quinoline	2007/07/24		87	%	30 - 1
		D8-Acenaphthylene	2007/07/24		85	%	30 - 1
		Acenaphthene	2007/07/24		DL=0.01	ug/g	
		Acenaphthylene	2007/07/24	ND, R	DL=0.005	ug/g	
		Anthracene	2007/07/24	ND, R	DL=0.005	ug/g	
		Benzo(a)anthracene	2007/07/24	ND, R	DL=0.01	ug/g	
		Benzo(a)pyrene	2007/07/24		DL=0.005	ug/g	
		Benzo(b/j)fluoranthene	2007/07/24	,	DL=0.005	ug/g	

Barenco Inc

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA776348

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
309432 JJI	Method Blank	Benzo(g,h,i)perylene	2007/07/24	ND, RDL=0.02	ug/g	
		Benzo(k)fluoranthene	2007/07/24	ND, RDL=0.01	ug/g	
		Chrysene	2007/07/24	ND, RDL=0.01	ug/g	
		Dibenz(a,h)anthracene	2007/07/24	ND, RDL=0.02	ug/g	
		Fluoranthene	2007/07/24	ND, RDL=0.005	ug/g	
		Fluorene	2007/07/24	ND, RDL=0.005	ug/g	
		Indeno(1,2,3-cd)pyrene	2007/07/24	ND, RDL=0.02	ug/g	
		1-Methylnaphthalene	2007/07/24	ND, RDL=0.005	ug/g ug/g	
		2-Methylnaphthalene	2007/07/24	ND, RDL=0.005		
		, ,			ug/g	
		Naphthalene	2007/07/24	ND, RDL=0.005	ug/g	
		Phenanthrene	2007/07/24	ND, RDL=0.005	ug/g	
		Pyrene	2007/07/24	ND, RDL=0.005	ug/g	
	RPD	D14-Terphenyl (FS)	2007/07/24	0.2	%	N/
		Acenaphthene	2007/07/24	NC	%	5
		Acenaphthylene	2007/07/24	NC	%	5
		Anthracene	2007/07/24	NC	%	5
		Benzo(a)anthracene	2007/07/24	NC	%	5
		Benzo(a)pyrene	2007/07/24	NC	%	5
		Benzo(b/j)fluoranthene	2007/07/24	59.0 (1)	%	5
		Benzo(g,h,i)perylene	2007/07/24	NC Ú	%	5
		Benzo(k)fluoranthene	2007/07/24	NC	%	5
		Chrysene	2007/07/24	NC	%	5
		Dibenz(a,h)anthracene	2007/07/24	NC	%	į
		Fluoranthene	2007/07/24	66.5 (1)	%	į
		Fluorene	2007/07/24	NC	% %	į
		Indeno(1,2,3-cd)pyrene	2007/07/24	NC	%	
		1-Methylnaphthalene	2007/07/24	NC	%	Į
		2-Methylnaphthalene	2007/07/24	NC	%	5
		Naphthalene	2007/07/24	NC	%	5
		Phenanthrene	2007/07/24	38.5	%	Ę
		Pyrene	2007/07/24	64.9 (1)	%	Ę
1310092 AYU	RPD	Moisture	2007/07/25	8.5	%	Ę
311729 LGA	MATRIX SPIKE	2,4,5,6-Tetrachloro-m-xylene	2007/07/27	67	%	40 - 13
		Decachlorobiphenyl	2007/07/27	73	%	40 - 13
		Aroclor 1260	2007/07/27	85	%	30 - 13
		Total PCB	2007/07/27	85	%	30 - 13
	Spiked Blank	2,4,5,6-Tetrachloro-m-xylene	2007/07/27	77	%	40 - 13
	Opinou Biarin	Decachlorobiphenyl	2007/07/27	78	%	40 - 13
		Aroclor 1260	2007/07/27	87	%	30 - 10
		Total PCB	2007/07/27	87	%	30 - 13
	Method Blank		2007/07/27			
	Method Blank	2,4,5,6-Tetrachloro-m-xylene		72	%	40 - 13
		Decachlorobiphenyl	2007/07/27	74	%	40 - 13
		Aroclor 1262	2007/07/27	ND, RDL=0.01	ug/g	
		Aroclor 1016	2007/07/27	ND, RDL=0.01	ug/g	
		Aroclor 1221	2007/07/27	ND, RDL=0.01	ug/g	
		Aroclor 1232	2007/07/27	ND, RDL=0.01	ug/g	
		Aroclor 1242	2007/07/27	ND, RDL=0.01	ug/g	
		Aroclor 1248	2007/07/27	ND, RDL=0.01	ug/g	
		Aroclor 1254	2007/07/27	ND, RDL=0.01	ug/g	
		Aroclor 1260	2007/07/27	ND, RDL=0.01	ug/g	
		Aroclor 1268	2007/07/27	ND, RDL=0.01	ug/g	
		Total PCB	2007/07/27	ND, RDL=0.01	ug/g ug/g	
	RPD	Aroclor 1262	2007/07/27	NC	wg/g %	
	ND					
		Decachlorobiphenyl	2007/07/27	8.1	%	N,
		Aroclor 1016	2007/07/27	NC	%	

Barenco Inc

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA776348

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1311729 LGA	RPD	Aroclor 1221	2007/07/27	NC	%	50
		Aroclor 1232	2007/07/27	NC	%	50
		Aroclor 1242	2007/07/27	NC	%	50
		Aroclor 1248	2007/07/27	5.2	%	50
		Aroclor 1254	2007/07/27	NC	%	50
		Aroclor 1260	2007/07/27	NC	%	50
		Aroclor 1268	2007/07/27	NC	%	50
		Total PCB	2007/07/27	5.2	%	50
1313099 ADA	QC STANDARD	Hot Water Ext. Boron (B)	2007/07/27	97	%	77 - 121
	Method Blank	Hot Water Ext. Boron (B)	2007/07/27	ND, RDL=0.01	ug/g	
1313110 VIV	MATRIX SPIKE	Acid Extractable Arsenic (As)	2007/07/27	97	%	75 - 125
		Acid Extractable Chromium (Cr)	2007/07/27	101	%	75 - 125
		Acid Extractable Copper (Cu)	2007/07/27	100	%	75 - 125
		Acid Extractable Lead (Pb)	2007/07/27	97	%	75 - 125
		Acid Extractable Molybdenum (Mo)	2007/07/27	97	%	75 - 125
		Acid Extractable Nickel (Ni)	2007/07/27	101	%	75 - 125
	QC STANDARD	Acid Extractable Arsenic (As)	2007/07/27	98	%	75 - 125
		Acid Extractable Chromium (Cr)	2007/07/27	101	%	75 - 125
		Acid Extractable Copper (Cu)	2007/07/27	97	%	75 - 125
		Acid Extractable Lead (Pb)	2007/07/27	99	%	75 - 125
		Acid Extractable Molybdenum (Mo)	2007/07/27	99	%	75 - 125
		Acid Extractable Nickel (Ni)	2007/07/27	91	%	75 - 125
	Method Blank	Acid Extractable Arsenic (As)	2007/07/27	ND, RDL=1	ug/g	
		Acid Extractable Chromium (Cr)	2007/07/27	ND, RDL=1	ug/g	
		Acid Extractable Copper (Cu)	2007/07/27	ND, RDL=0.5	ug/g	
		Acid Extractable Lead (Pb)	2007/07/27	ND, RDL=1	ug/g	
		Acid Extractable Molybdenum (Mo)	2007/07/27	ND, RDL=0.5	ug/g	
		Acid Extractable Nickel (Ni)	2007/07/27	ND, RDL=0.5	ug/g	
	RPD	Acid Extractable Arsenic (As)	2007/07/27	NC	%	35
		Acid Extractable Chromium (Cr)	2007/07/27	3.0	%	35
		Acid Extractable Copper (Cu)	2007/07/27	7.0	%	35
		Acid Extractable Lead (Pb)	2007/07/27	7.8	%	35
		Acid Extractable Molybdenum (Mo)	2007/07/27	NC	%	35
		Acid Extractable Nickel (Ni)	2007/07/27	1.7	%	35
1313813 AZH	MATRIX SPIKE	F4G (Grav. Heavy Hydrocarbons)	2007/07/27	82	%	65 - 135
	Spiked Blank	F4G (Grav. Heavy Hydrocarbons)	2007/07/27	87	%	65 - 135
	Method Blank	F4G (Grav. Heavy Hydrocarbons)	2007/07/27	ND, RDL=100	ug/g	
	RPD	F4G (Grav. Heavy Hydrocarbons)	2007/07/27	7.1	%	50

ND = Not detected

N/A = Not Applicable

NC = Non-calculable

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

1) Please refer to General Comments page for specific clarification.

Validation Signature Page

Maxxam Job #: A776348

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

CHARLES ANCKER, B.Sc., M.Sc., C.Chem, Senior Analyst

Clistina News

CHRISTINA NERVO, Scientific Services

n. Risheld

MEDHAT RISKALLAH, Manager, Hydrocarbon Department

ALINA SEGAL, Manager Main Lab - Organics

SUZANA POPOVIC, Supervisor, Hydrocarbons

Validation Signature Page

Maxxam	Job	#:	A77	63	48
--------	-----	----	------------	----	----

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

TROY CARRIERE, B.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00522626

Attention: Vinod Kella
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2007/11/01

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A776360 Received: 2007/07/23, 14:18

Sample Matrix: Soil # Samples Received: 1

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
MOISTURE	1	N/A	2007/07/25 Ont SOP-0114	MOE HANDBOOK(1983)
Volatile Organic Compounds in Soil	1	N/A	2007/07/26 CAM SOP 0226	EPA 8260 modified

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	HH6	RDL	QC Batch
COC Number		00522626		
		16:30		
Sampling Date		2007/07/20		
Maxxam ID		T62576		

INORGANICS				
Moisture	%	21	0.2	1310419

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

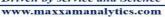
Maxxam ID		T62576		
Sampling Date		2007/07/20		
		16:30		
COC Number		00522626		
	Units	HH6	RDL	QC Batch

VOLATILES				
Acetone (2-Propanone)	ug/g	ND	0.1	1310081
Benzene	ug/g	0.007	0.002	1310081
Bromodichloromethane	ug/g	ND	0.002	1310081
Bromoform	ug/g	ND	0.002	1310081
Bromomethane	ug/g	ND	0.003	1310081
Carbon Tetrachloride	ug/g	ND	0.002	1310081
Chlorobenzene	ug/g	ND	0.002	1310081
Chloroform	ug/g	ND	0.002	1310081
Dibromochloromethane	ug/g	ND	0.002	1310081
1,2-Dichlorobenzene	ug/g	ND	0.002	1310081
1,3-Dichlorobenzene	ug/g	ND	0.002	1310081
1,4-Dichlorobenzene	ug/g	ND	0.002	1310081
1,1-Dichloroethane	ug/g	ND	0.002	1310081
1,2-Dichloroethane	ug/g	ND	0.002	1310081
1,1-Dichloroethylene	ug/g	ND	0.002	1310081
cis-1,2-Dichloroethylene	ug/g	ND	0.002	1310081
trans-1,2-Dichloroethylene	ug/g	ND	0.002	1310081
1,2-Dichloropropane	ug/g	ND	0.002	1310081
cis-1,3-Dichloropropene	ug/g	ND	0.002	1310081
trans-1,3-Dichloropropene	ug/g	ND	0.002	1310081
Ethylbenzene	ug/g	0.003	0.002	1310081
Ethylene Dibromide	ug/g	ND	0.002	1310081
Methylene Chloride(Dichloromethane)	ug/g	ND	0.003	1310081
Methyl Isobutyl Ketone	ug/g	ND	0.025	1310081
Methyl Ethyl Ketone (2-Butanone)	ug/g	ND	0.025	1310081
Methyl t-butyl ether (MTBE)	ug/g	ND	0.002	1310081
Styrene	ug/g	ND	0.002	1310081
1,1,1,2-Tetrachloroethane	ug/g	ND	0.002	1310081
1,1,2,2-Tetrachloroethane	ug/g	ND	0.002	1310081
Tetrachloroethylene	ug/g	ND	0.002	1310081

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:


VOLATILE ORGANICS BY GC/MS (SOIL)

Maxxam ID		T62576		
Sampling Date		2007/07/20		
		16:30		
COC Number		00522626		
	Units	HH6	RDL	QC Batch

Toluene	ug/g	0.012	0.002	1310081
1,1,1-Trichloroethane	ug/g	ND	0.002	1310081
1,1,2-Trichloroethane	ug/g	ND	0.002	1310081
Trichloroethylene	ug/g	ND	0.002	1310081
Vinyl Chloride	ug/g	ND	0.002	1310081
p+m-Xylene	ug/g	0.003	0.002	1310081
o-Xylene	ug/g	ND	0.002	1310081
Xylene (Total)	ug/g	0.003	0.002	1310081
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	71		1310081
D4-1,2-Dichloroethane	%	91		1310081
D8-Toluene	%	132		1310081

ND = Not detected

RDL = Reportable Detection Limit

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GENERAL (COMMENTS
------------------	----------

Results relate only to the items tested.

Barenco Inc

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA776360

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1310081 DRA	MATRIX SPIKE	4-Bromofluorobenzene	2007/07/26		102	%	60 - 140
		D4-1.2-Dichloroethane	2007/07/26		85	%	60 - 140
		D8-Toluene	2007/07/26		102	%	60 - 140
		Acetone (2-Propanone)	2007/07/26		264 (1)	%	24 - 171
		Benzene	2007/07/26		107	%	39 - 137
		Bromodichloromethane	2007/07/26		95	%	45 - 131
		Bromoform	2007/07/26		100	% %	44 - 131
		Bromomethane					
			2007/07/26		111	%	20 - 146
		Carbon Tetrachloride	2007/07/26		97	%	40 - 139
		Chlorobenzene	2007/07/26		113	%	45 - 140
		Chloroform	2007/07/26		99	%	48 - 128
		Dibromochloromethane	2007/07/26		100	%	52 - 135
		1,2-Dichlorobenzene	2007/07/26		101	%	39 - 145
		1,3-Dichlorobenzene	2007/07/26		104	%	38 - 158
		1,4-Dichlorobenzene	2007/07/26		103	%	35 - 159
		1,1-Dichloroethane	2007/07/26		107	%	48 - 131
		1,2-Dichloroethane	2007/07/26		93	%	43 - 123
		1,1-Dichloroethylene	2007/07/26		109	%	50 - 134
		cis-1,2-Dichloroethylene	2007/07/26		110	%	45 - 136
		trans-1,2-Dichloroethylene	2007/07/26		113	%	45 - 138
		1,2-Dichloropropane	2007/07/26		104	%	51 - 130
		cis-1,3-Dichloropropene	2007/07/26		107	%	39 - 143
		trans-1,3-Dichloropropene	2007/07/26		105	%	33 - 135
		• •					
		Ethylbenzene	2007/07/26		107	%	46 - 150
		Ethylene Dibromide	2007/07/26		106	%	48 - 136
		Methylene Chloride(Dichloromethane)	2007/07/26		111	%	47 - 124
		Methyl Isobutyl Ketone	2007/07/26		109	%	48 - 133
		Methyl Ethyl Ketone (2-Butanone)	2007/07/26		178 (1)	%	39 - 160
		Methyl t-butyl ether (MTBE)	2007/07/26		108	%	37 - 150
		Styrene	2007/07/26		115	%	27 - 148
		1,1,1,2-Tetrachloroethane	2007/07/26		102	%	51 - 140
		1,1,2,2-Tetrachloroethane	2007/07/26		109	%	46 - 128
		Tetrachloroethylene	2007/07/26		107	%	45 - 154
		Toluene	2007/07/26		109	%	30 - 158
		1,1,1-Trichloroethane	2007/07/26		98	%	44 - 136
		1,1,2-Trichloroethane	2007/07/26		104	%	56 - 135
		Trichloroethylene	2007/07/26		106	%	39 - 146
		Vinyl Chloride	2007/07/26		111	%	34 - 136
		p+m-Xylene	2007/07/26		106	%	29 - 161
		o-Xylene	2007/07/26		106	%	45 - 150
	Spiked Blank	4-Bromofluorobenzene	2007/07/26		115	%	60 - 140
	эрікей Біалк						
		D4-1,2-Dichloroethane	2007/07/26		93	%	60 - 140
		D8-Toluene	2007/07/26		97	%	60 - 140
		Acetone (2-Propanone)	2007/07/26		82	%	60 - 140
		Benzene	2007/07/26		98	%	60 - 140
		Bromodichloromethane	2007/07/26		96	%	60 - 140
		Bromoform	2007/07/26		106	%	60 - 140
		Bromomethane	2007/07/26		81	%	60 - 140
		Carbon Tetrachloride	2007/07/26		108	%	60 - 140
		Chlorobenzene	2007/07/26		98	%	60 - 140
		Chloroform	2007/07/26		97	%	60 - 140
		Dibromochloromethane	2007/07/26		99	%	60 - 140
		1,2-Dichlorobenzene	2007/07/26		91	%	60 - 140
		1,3-Dichlorobenzene	2007/07/26		103	%	60 - 140
		,					
		1,4-Dichlorobenzene	2007/07/26		98	%	60 - 140

Barenco Inc Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA776360

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1310081 DRA	Spiked Blank	1,1-Dichloroethane	2007/07/26	yaiue Recovery 97	%	60 - 14
1310001 DKA	Spikeu bialik	•	2007/07/26	95	%	60 - 14
		1,2-Dichloroethane 1,1-Dichloroethylene	2007/07/26	111	% %	60 - 14
		cis-1,2-Dichloroethylene	2007/07/26	105	%	60 - 14
		trans-1,2-Dichloroethylene	2007/07/26	109	%	60 - 14
		•		94	% %	
		1,2-Dichloropropane	2007/07/26	-	% %	60 - 14
		cis-1,3-Dichloropropene	2007/07/26	97		60 - 14
		trans-1,3-Dichloropropene	2007/07/26	100	%	60 - 14
		Ethylbenzene	2007/07/26	106	%	60 - 14
		Ethylene Dibromide	2007/07/26	99	%	60 - 14
		Methylene Chloride(Dichloromethane)	2007/07/26	106	%	60 - 14
		Methyl Isobutyl Ketone	2007/07/26	80	%	60 - 14
		Methyl Ethyl Ketone (2-Butanone)	2007/07/26	85	%	60 - 14
		Methyl t-butyl ether (MTBE)	2007/07/26	63	%	60 - 14
		Styrene	2007/07/26	100	%	60 - 14
		1,1,1,2-Tetrachloroethane	2007/07/26	97	%	60 - 14
		1,1,2,2-Tetrachloroethane	2007/07/26	93	%	60 - 14
		Tetrachloroethylene	2007/07/26	116	%	60 - 14
		Toluene	2007/07/26	100	%	60 - 14
		1,1,1-Trichloroethane	2007/07/26	103	%	60 - 14
		1,1,2-Trichloroethane	2007/07/26	93	%	60 - 14
		Trichloroethylene	2007/07/26	116	%	60 - 14
		Vinyl Chloride	2007/07/26	132	%	60 - 1
		p+m-Xylene	2007/07/26	101	%	60 - 1
		o-Xylene	2007/07/26	101	%	60 - 14
	Method Blank	4-Bromofluorobenzene	2007/07/25	89	%	60 - 1
		D4-1,2-Dichloroethane	2007/07/25	110	%	60 - 1
		D8-Toluene	2007/07/25	96	%	60 - 14
		Acetone (2-Propanone)	2007/07/25	ND, RDL=0.1	ug/g	00 1
		Benzene	2007/07/25	ND, RDL=0.002	ug/g ug/g	
		Bromodichloromethane	2007/07/25	ND, RDL=0.002	ug/g ug/g	
		Bromoform	2007/07/25	ND, RDL=0.002 ND, RDL=0.002		
		Bromomethane	2007/07/25	ND, RDL=0.002 ND, RDL=0.003	ug/g	
		Carbon Tetrachloride	2007/07/25	ND, RDL=0.003 ND, RDL=0.002	ug/g	
				·	ug/g	
		Chloroform	2007/07/25	ND, RDL=0.002	ug/g	
		Chloroform	2007/07/25	ND, RDL=0.002	ug/g	
		Dibromochloromethane	2007/07/25	ND, RDL=0.002	ug/g	
		1,2-Dichlorobenzene	2007/07/25	ND, RDL=0.002	ug/g	
		1,3-Dichlorobenzene	2007/07/25	ND, RDL=0.002	ug/g	
		1,4-Dichlorobenzene	2007/07/25	ND, RDL=0.002	ug/g	
		1,1-Dichloroethane	2007/07/25	ND, RDL=0.002	ug/g	
		1,2-Dichloroethane	2007/07/25	ND, RDL=0.002	ug/g	
		1,1-Dichloroethylene	2007/07/25	ND, RDL=0.002	ug/g	
		cis-1,2-Dichloroethylene	2007/07/25	ND, RDL=0.002	ug/g	
		trans-1,2-Dichloroethylene	2007/07/25	ND, RDL=0.002	ug/g	
		1,2-Dichloropropane	2007/07/25	ND, RDL=0.002	ug/g	
		cis-1,3-Dichloropropene	2007/07/25	ND, RDL=0.002	ug/g	
		trans-1,3-Dichloropropene	2007/07/25	ND, RDL=0.002	ug/g	
		Ethylbenzene	2007/07/25	ND, RDL=0.002	ug/g	
		Ethylene Dibromide	2007/07/25	ND, RDL=0.002	ug/g	
		Methylene Chloride(Dichloromethane)	2007/07/25	ND, RDL=0.002	ug/g ug/g	
		Methyl Isobutyl Ketone	2007/07/25	ND, RDL=0.005	ug/g ug/g	
		Methyl Ethyl Ketone (2-Butanone)	2007/07/25	ND, RDL=0.025		
		,		ND, RDL=0.025 ND, RDL=0.002	ug/g	
		Methyl t-butyl ether (MTBE)	2007/07/25	•	ug/g	
		Styrene	2007/07/25	ND, RDL=0.002	ug/g	

Barenco Inc

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA776360

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1310081 DRA	Method Blank	1,1,1,2-Tetrachloroethane	2007/07/25	ND, RDL=0.002	ug/g	
		1,1,2,2-Tetrachloroethane	2007/07/25	ND, RDL=0.002	ug/g	
		Tetrachloroethylene	2007/07/25	ND, RDL=0.002	ug/g	
		Toluene	2007/07/25	ND, RDL=0.002	ug/g	
		1,1,1-Trichloroethane	2007/07/25	ND, RDL=0.002	ug/g	
		1,1,2-Trichloroethane	2007/07/25	ND, RDL=0.002	ug/g	
		Trichloroethylene	2007/07/25	ND, RDL=0.002	ug/g	
		Vinyl Chloride	2007/07/25	ND, RDL=0.002	ug/g	
		p+m-Xylene	2007/07/25	ND, RDL=0.002	ug/g	
		o-Xylene	2007/07/25	ND, RDL=0.002	ug/g	
		Xylene (Total)	2007/07/25	ND, RDL=0.002	ug/g	
	RPD	Methyl t-butyl ether (MTBE)	2007/07/25	NC	%	50
1310419 AYU	RPD	Moisture	2007/07/25	4.7	%	50

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

SPIKE = Fortified sample

⁽¹⁾ The recovery for this compound was above the upper control limit. For results which are above the reporting limit, this may represent a high bias for this specific compound. For results indicated as not detected, this will have no impact on the reported results.

Validation Signature Page

Maxxam Job #: A776360
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).
Cliptina News
CHRISTINA NERVO, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00522626

Attention: Vinod Kella
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2007/11/01

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A776360 Received: 2007/07/23, 14:18

Sample Matrix: Soil # Samples Received: 1

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Hot Water Extractable Boron	1	2007/07/27	2007/07/27 CAM SOP-00408	EPA 3050B
Acid Extr. Metals (aqua regia) by ICPMS	1	2007/07/27	2007/07/27 CAM SOP-00447	EPA 6020
MOISTURE	1	N/A	2007/07/24 Ont SOP-0114	MOE HANDBOOK(1983)
PAH Compounds in Soil by GC/MS (SIM)	1	2007/07/24	2007/07/24 SOP - 00318	EPA 8270

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	SM2	RDL	QC Batch
COC Number		00522626		
		14:00		
Sampling Date		2007/07/20		
Maxxam ID		T62575		

INORGANICS				
Moisture	%	25	0.2	1309099

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	Units	SM2	RDL	QC Batch
COC Number		00522626		
		14:00		
Sampling Date		2007/07/20		
Maxxam ID		T62575		

METALS				
Acid Extractable Arsenic (As)	ug/g	6	1	1313110
Hot Water Ext. Boron (B)	ug/g	0.39	0.01	1313099
Acid Extractable Chromium (Cr)	ug/g	9	1	1313110
Acid Extractable Copper (Cu)	ug/g	18	0.5	1313110
Acid Extractable Lead (Pb)	ug/g	27	1	1313110
Acid Extractable Molybdenum (Mo)	ug/g	0.6	0.5	1313110
Acid Extractable Nickel (Ni)	ug/g	7.8	0.5	1313110

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

	Units	SM2	RDL	QC Batch
COC Number		00522626		
		14:00		
Sampling Date		2007/07/20		
Maxxam ID		T62575		

	1		1	1
PAHs				
Acenaphthene	ug/g	0.02	0.01	1309432
Acenaphthylene	ug/g	0.026	0.005	1309432
Anthracene	ug/g	0.066	0.005	1309432
Benzo(a)anthracene	ug/g	0.21	0.01	1309432
Benzo(a)pyrene	ug/g	0.18	0.005	1309432
Benzo(b/j)fluoranthene	ug/g	0.24	0.005	1309432
Benzo(g,h,i)perylene	ug/g	0.11	0.02	1309432
Benzo(k)fluoranthene	ug/g	0.08	0.01	1309432
Chrysene	ug/g	0.17	0.01	1309432
Dibenz(a,h)anthracene	ug/g	0.02	0.02	1309432
Fluoranthene	ug/g	0.42	0.005	1309432
Fluorene	ug/g	0.021	0.005	1309432
Indeno(1,2,3-cd)pyrene	ug/g	0.12	0.02	1309432
1-Methylnaphthalene	ug/g	0.15	0.005	1309432
2-Methylnaphthalene	ug/g	0.16	0.005	1309432
Naphthalene	ug/g	0.097	0.005	1309432
Phenanthrene	ug/g	0.33	0.005	1309432
Pyrene	ug/g	0.38	0.005	1309432
Surrogate Recovery (%)				
D10-Anthracene	%	81		1309432
D14-Terphenyl (FS)	%	89		1309432
D7-Quinoline	%	76		1309432
D8-Acenaphthylene	%	81		1309432

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

PAH Compounds in Soil by GC/MS (SIM): PAH Analysis: Duplicate results for QC batch 1309432 exceeded the RPD acceptance criterion for the flagged parameters. The variability of the results obtained for these parameters may be more pronounced.

Results relate only to the items tested.

Barenco Inc

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA776360

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limi
1309099 FOT	RPD	Moisture	2007/07/24	1	recovery	%	5
1309432 JJI	MATRIX SPIKE	D10-Anthracene	2007/07/24		86	%	30 - 13
1000402 001	WATRIX OF IRE	D14-Terphenyl (FS)	2007/07/24		89	%	30 - 13
		D7-Quinoline	2007/07/24		82	%	30 - 13
		D8-Acenaphthylene	2007/07/24		82	%	30 - 13
		Acenaphthene	2007/07/24		87	%	30 - 13
		Acenaphthylene	2007/07/24		84	%	30 - 13
		Anthracene	2007/07/24		92	%	30 - 13
		Benzo(a)anthracene	2007/07/24		101	%	30 - 13
		Benzo(a)pyrene	2007/07/24		98	%	30 - 13
		Benzo(b/j)fluoranthene	2007/07/24		98	%	30 - 1
		Benzo(g,h,i)perylene	2007/07/24		91	%	30 - 13
		Benzo(k)fluoranthene	2007/07/24		98	%	30 - 1
		Chrysene	2007/07/24		94	%	30 - 13
		Dibenz(a,h)anthracene	2007/07/24		88	%	30 - 13
		Fluoranthene	2007/07/24		94	%	30 - 13
		Fluorene					
			2007/07/24 2007/07/24		92	%	30 - 1
		Indeno(1,2,3-cd)pyrene			91	%	30 - 1
		1-Methylnaphthalene	2007/07/24		89	%	30 - 1
		2-Methylnaphthalene	2007/07/24		81	%	30 - 1
		Naphthalene	2007/07/24		77	%	30 - 1
		Phenanthrene	2007/07/24		97	%	30 - 1
		Pyrene	2007/07/24		97	%	30 - 1
	Spiked Blank	D10-Anthracene	2007/07/24		85	%	30 - 1
		D14-Terphenyl (FS)	2007/07/24		87	%	30 - 1
		D7-Quinoline	2007/07/24		80	%	30 - 1
		D8-Acenaphthylene	2007/07/24		82	%	30 - 1
		Acenaphthene	2007/07/24		85	%	30 - 1
		Acenaphthylene	2007/07/24		82	%	30 - 1
		Anthracene	2007/07/24		87	%	30 - 1
		Benzo(a)anthracene	2007/07/24		94	%	30 - 1
		Benzo(a)pyrene	2007/07/24		91	%	30 - 1
		Benzo(b/j)fluoranthene	2007/07/24		93	%	30 - 1
		Benzo(g,h,i)perylene	2007/07/24		85	%	30 - 1
		Benzo(k)fluoranthene	2007/07/24		93	%	30 - 1
		Chrysene	2007/07/24		89	%	30 - 1
		Dibenz(a,h)anthracene	2007/07/24		84	%	30 - 1
		Fluoranthene	2007/07/24		87	%	30 - 1
		Fluorene	2007/07/24		90	%	30 - 1
		Indeno(1,2,3-cd)pyrene	2007/07/24		83	%	30 - 1
		1-Methylnaphthalene	2007/07/24		87	%	30 - 1
		2-Methylnaphthalene	2007/07/24		79	%	30 - 1
		Naphthalene	2007/07/24		76	%	30 - 1
		Phenanthrene	2007/07/24		87	%	30 - 1
		Pyrene	2007/07/24		91	%	30 - 1
	Method Blank	D10-Anthracene	2007/07/24		84	%	30 - 1
	Motified Dialik	D14-Terphenyl (FS)	2007/07/24		92	%	30 - 1
		D7-Quinoline	2007/07/24		87	%	30 - 1
		D8-Acenaphthylene	2007/07/24		85	%	30 - 1
		. ,		אום ם	05 DL=0.01		30 - I
		Acenaphthylone	2007/07/24	,		ug/g	
		Acenaphthylene	2007/07/24		DL=0.005	ug/g	
		Anthracene	2007/07/24		DL=0.005	ug/g	
		Benzo(a)anthracene	2007/07/24		DL=0.01	ug/g	
		Benzo(a)pyrene	2007/07/24		DL=0.005	ug/g	
		Benzo(b/j)fluoranthene	2007/07/24	ND, R	DL=0.005	ug/g	

Barenco Inc

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA776360

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1309432 JJI	Method Blank	Benzo(g,h,i)perylene	2007/07/24	ND, RDL=0.02	ug/g	QC LIIIIIG
1303432 331	Welliou Dialik	Benzo(k)fluoranthene	2007/07/24	ND, RDL=0.02 ND, RDL=0.01	ug/g ug/g	
		Chrysene	2007/07/24	ND, RDL=0.01		
		•			ug/g	
		Dibenz(a,h)anthracene	2007/07/24	ND, RDL=0.02	ug/g	
		Fluoranthene	2007/07/24	ND, RDL=0.005	ug/g	
		Fluorene	2007/07/24	ND, RDL=0.005	ug/g	
		Indeno(1,2,3-cd)pyrene	2007/07/24	ND, RDL=0.02	ug/g	
		1-Methylnaphthalene	2007/07/24	ND, RDL=0.005	ug/g	
		2-Methylnaphthalene	2007/07/24	ND, RDL=0.005	ug/g	
		Naphthalene	2007/07/24	ND, RDL=0.005	ug/g	
		Phenanthrene	2007/07/24	ND, RDL=0.005	ug/g	
		Pyrene	2007/07/24	ND, RDL=0.005	ug/g	
	RPD	D14-Terphenyl (FS)	2007/07/24	0.2	%	N/A
		Acenaphthene	2007/07/24	NC	%	50
		Acenaphthylene	2007/07/24	NC	%	50
		Anthracene	2007/07/24	NC	%	50
		Benzo(a)anthracene	2007/07/24	NC	%	50
		Benzo(a)pyrene	2007/07/24	NC	%	50
		Benzo(b/j)fluoranthene	2007/07/24	59.0 (1)	%	50
		Benzo(g,h,i)perylene	2007/07/24	NC	%	50
		Benzo(k)fluoranthene	2007/07/24	NC NC	%	50
		Chrysene	2007/07/24	NC NC	%	50
		,				
		Dibenz(a,h)anthracene	2007/07/24	NC	%	50
		Fluoranthene	2007/07/24	66.5 (1)	%	50
		Fluorene	2007/07/24	NC	%	50
		Indeno(1,2,3-cd)pyrene	2007/07/24	NC	%	50
		1-Methylnaphthalene	2007/07/24	NC	%	50
		2-Methylnaphthalene	2007/07/24	NC	%	50
		Naphthalene	2007/07/24	NC	%	50
		Phenanthrene	2007/07/24	38.5	%	50
		Pyrene	2007/07/24	64.9 (1)	%	50
1313099 ADA	QC STANDARD	Hot Water Ext. Boron (B)	2007/07/27	97	%	77 - 121
	Method Blank	Hot Water Ext. Boron (B)	2007/07/27	ND, RDL=0.01	ug/g	
1313110 VIV	MATRIX SPIKE	Acid Extractable Arsenic (As)	2007/07/27	97	%	75 - 125
		Acid Extractable Chromium (Cr)	2007/07/27	101	%	75 - 125
		Acid Extractable Copper (Cu)	2007/07/27	100	%	75 - 125
		Acid Extractable Lead (Pb)	2007/07/27	97	%	75 - 125
		Acid Extractable Molybdenum (Mo)	2007/07/27	97	%	75 - 125 75 - 125
		Acid Extractable Nickel (Ni)	2007/07/27	101	% %	75 - 125 75 - 125
	OC CTANDARD					
	QC STANDARD	Acid Extractable Arsenic (As)	2007/07/27	98	%	75 - 125
		Acid Extractable Chromium (Cr)	2007/07/27	101	%	75 - 125
		Acid Extractable Copper (Cu)	2007/07/27	97	%	75 - 125
		Acid Extractable Lead (Pb)	2007/07/27	99	%	75 - 125
		Acid Extractable Molybdenum (Mo)	2007/07/27	99	%	75 - 125
		Acid Extractable Nickel (Ni)	2007/07/27	91	%	75 - 125
	Method Blank	Acid Extractable Arsenic (As)	2007/07/27	ND, RDL=1	ug/g	
		Acid Extractable Chromium (Cr)	2007/07/27	ND, RDL=1	ug/g	
		Acid Extractable Copper (Cu)	2007/07/27	ND, RDL=0.5	ug/g	
		Acid Extractable Lead (Pb)	2007/07/27	ND, RDL=1	ug/g	
		Acid Extractable Molybdenum (Mo)	2007/07/27	ND, RDL=0.5	ug/g	
		Acid Extractable Nickel (Ni)	2007/07/27	ND, RDL=0.5	ug/g ug/g	
	RPD	Acid Extractable Arsenic (As)		NC NC	ug/g %	35
	NED	` ,	2007/07/27			
		Acid Extractable Chromium (Cr)	2007/07/27	3.0	%	35
		Acid Extractable Copper (Cu)	2007/07/27	7.0	%	35
		Acid Extractable Lead (Pb)	2007/07/27	7.8	%	35

Barenco Inc Attention: Vinod Kella Client Project #: 06043 P.O. #: 06043

Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA776360

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1313110 VIV	RPD	Acid Extractable Molybdenum (Mo)	2007/07/27	NC		%	35
		Acid Extractable Nickel (Ni)	2007/07/27	1.7		%	35

ND = Not detected N/A = Not Applicable NC = Non-calculable RPD = Relative Perce

RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

(1) Please refer to General Comments page for specific clarification.

Validation Signature Page

Maxxam Job #: A776360

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

Christina Nervo, Scientific Services

ALINA SEGAL, Manager Main Lab - Organics

TROY CARRIERE, B.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: n/a

Attention: Vinod Kella
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2007/08/07

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A781726 Received: 2007/08/03, 12:19

Sample Matrix: Soil # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Total Metals in Soil by Axial ICP-AES	1	2007/08/06	2007/08/07	Ont SOP-0072	EPA SW-846-6010C

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

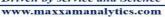
Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Maxxam Job #: A781726 Report Date: 2007/08/07

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:


ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		T85524		
Sampling Date		2007/07/20		
COC Number		n/a		
	Units	SM5	RDL	QC Batch

METALS				
Acid Extractable Arsenic (As)	ug/g	5	1	1321877

N/A = Not Applicable

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A781726 Report Date: 2007/08/07 Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

CENI	COM	MEN	тс
GEIN	COIVI		113

Results relate only to the items tested.

Barenco Inc Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA781726

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value R	ecovery	Units	QC Limits
1321877 BGI	MATRIX SPIKE						
	[T85524-01]	Acid Extractable Arsenic (As)	2007/08/07		95	%	75 - 125
	QC STANDARD	Acid Extractable Arsenic (As)	2007/08/07		94	%	75 - 125
	Method Blank	Acid Extractable Arsenic (As)	2007/08/07	ND, RDL=	:1	ug/g	
	RPD [T85524-01]	Acid Extractable Arsenic (As)	2007/08/07	NC		%	35

ND = Not detected NC = Non-calculable RPD = Relative Percent Difference QC Standard = Quality Control Standard

Validation Signature Page

М	axxam	Job	#:	A7	81	72	6
---	-------	-----	----	-----------	----	----	---

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

EWA PRANJIC, M.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043

Site: OWEN SOUND,2202-3RD AVE. EAST

Your C.O.C. #: 43134

Attention: Vinod Kella
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2007/11/01

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A790947 Received: 2007/08/23, 16:32

Sample Matrix: Water # Samples Received: 11

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
Dissolved Metals by ICPMS	7	N/A	2007/08/30 CAM SOP-00447	EPA 6020
PAH Compounds in Water by GC/MS (SIM)	11	2007/08/27	2007/08/27 SOP - 00318	EPA 8270
Volatile Organic Compounds in Water	8	N/A	2007/08/28 CAM SOP 0226	EPA 8260 modified

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		U25696	U25697	U25698		
Sampling Date		2007/08/22	2007/08/22	2007/08/22		
		11:00	11:15	11:30		
COC Number		43134	43134	43134		
	Units	MW 5	MW 6	MW 7	RDL	QC Batch

METALS						
Dissolved Antimony (Sb)	ug/L	ND	ND	ND	0.5	1346298
Dissolved Arsenic (As)	ug/L	ND	ND	1	1	1346298
Dissolved Barium (Ba)	ug/L	24	140	66	5	1346298
Dissolved Beryllium (Be)	ug/L	ND	ND	ND	0.5	1346298
Dissolved Boron (B)	ug/L	55	200	140	10	1346298
Dissolved Cadmium (Cd)	ug/L	ND	ND	ND	0.1	1346298
Dissolved Chromium (Cr)	ug/L	ND	ND	ND	5	1346298
Dissolved Cobalt (Co)	ug/L	ND	ND	ND	0.5	1346298
Dissolved Copper (Cu)	ug/L	3	5	ND	1	1346298
Dissolved Lead (Pb)	ug/L	ND	ND	ND	0.5	1346298
Dissolved Molybdenum (Mo)	ug/L	ND	ND	ND	1	1346298
Dissolved Nickel (Ni)	ug/L	ND	ND	ND	1	1346298
Dissolved Selenium (Se)	ug/L	ND	ND	ND	2	1346298
Dissolved Silver (Ag)	ug/L	ND	ND	ND	0.1	1346298
Dissolved Sodium (Na)	ug/L	7400	33000	11000	100	1346298
Dissolved Thallium (TI)	ug/L	ND	ND	ND	0.05	1346298
Dissolved Vanadium (V)	ug/L	ND	ND	ND	1	1346298
Dissolved Zinc (Zn)	ug/L	13	35	ND	5	1346298

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		U25699	U25700	U25701		
Sampling Date		2007/08/22	2007/08/22	2007/08/22		
		11:45	12:00	12:15		
COC Number		43134	43134	43134		
	Units	MW 11	MW 103	MW 104	RDL	QC Batch

METALS						
Dissolved Antimony (Sb)	ug/L	ND	ND	ND	0.5	1346298
Dissolved Arsenic (As)	ug/L	2	2	ND	1	1346298
Dissolved Barium (Ba)	ug/L	190	93	150	5	1346298
Dissolved Beryllium (Be)	ug/L	ND	ND	ND	0.5	1346298
Dissolved Boron (B)	ug/L	590	610	490	10	1346298
Dissolved Cadmium (Cd)	ug/L	ND	ND	ND	0.1	1346298
Dissolved Chromium (Cr)	ug/L	ND	ND	ND	5	1346298
Dissolved Cobalt (Co)	ug/L	0.6	ND	0.9	0.5	1346298
Dissolved Copper (Cu)	ug/L	3	4	2	1	1346298
Dissolved Lead (Pb)	ug/L	ND	ND	ND	0.5	1346298
Dissolved Molybdenum (Mo)	ug/L	ND	ND	3	1	1346298
Dissolved Nickel (Ni)	ug/L	ND	ND	4	1	1346298
Dissolved Selenium (Se)	ug/L	ND	ND	ND	2	1346298
Dissolved Silver (Ag)	ug/L	ND	ND	ND	0.1	1346298
Dissolved Sodium (Na)	ug/L	42000	14000	48000	100	1346298
Dissolved Thallium (TI)	ug/L	ND	ND	ND	0.05	1346298
Dissolved Vanadium (V)	ug/L	ND	ND	ND	1	1346298
Dissolved Zinc (Zn)	ug/L	16	16	20	5	1346298

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (WATER)

Maxxam ID		U25702		
Sampling Date		2007/08/22		
		12:45		
COC Number		43134		
	Units	MW 107	RDL	QC Batch

ug/L	ND	0.5	1346298
ug/L	28	1	1346298
ug/L	64	5	1346298
ug/L	ND	0.5	1346298
ug/L	130	10	1346298
ug/L	ND	0.1	1346298
ug/L	ND	5	1346298
ug/L	ND	0.5	1346298
ug/L	1	1	1346298
ug/L	ND	0.5	1346298
ug/L	ND	1	1346298
ug/L	ND	1	1346298
ug/L	ND	2	1346298
ug/L	ND	0.1	1346298
ug/L	28000	100	1346298
ug/L	ND	0.05	1346298
ug/L	3	1	1346298
ug/L	13	5	1346298
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	ug/L 28 ug/L 64 ug/L 130 ug/L ND ug/L ND ug/L ND ug/L 1 ug/L ND ug/L 3	ug/L 28 1 ug/L 64 5 ug/L ND 0.5 ug/L 130 10 ug/L ND 0.1 ug/L ND 0.5 ug/L ND 0.5 ug/L ND 1 ug/L ND 1 ug/L ND 1 ug/L ND 0.1 ug/L ND 0.0 ug/L ND 0.05 ug/L ND 0.05 ug/L ND 0.05 ug/L ND 0.05

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		U25695	U25696	U25697		
Sampling Date		2007/08/22	2007/08/22	2007/08/22		
		10:45	11:00	11:15		
COC Number		43134	43134	43134		
	Units	MW 4	MW 5	MW 6	RDL	QC Batch

PAHs						
Acenaphthene	ug/L	ND	ND	ND	0.05	1343481
Acenaphthylene	ug/L	ND	ND	ND	0.05	1343481
Anthracene	ug/L	ND	ND	ND	0.05	1343481
Benzo(a)anthracene	ug/L	ND	0.06	ND	0.05	1343481
Benzo(a)pyrene	ug/L	ND	0.02	ND	0.01	1343481
Benzo(b/j)fluoranthene	ug/L	ND	ND	ND	0.05	1343481
Benzo(g,h,i)perylene	ug/L	ND	ND	ND	0.1	1343481
Benzo(k)fluoranthene	ug/L	ND	ND	ND	0.05	1343481
Chrysene	ug/L	ND	ND	ND	0.05	1343481
Dibenz(a,h)anthracene	ug/L	ND	ND	ND	0.1	1343481
Fluoranthene	ug/L	ND	ND	ND	0.05	1343481
Fluorene	ug/L	ND	ND	ND	0.05	1343481
Indeno(1,2,3-cd)pyrene	ug/L	ND	ND	ND	0.1	1343481
1-Methylnaphthalene	ug/L	ND	0.05	ND	0.05	1343481
2-Methylnaphthalene	ug/L	ND	0.07	ND	0.05	1343481
Naphthalene	ug/L	ND	0.08	ND	0.05	1343481
Phenanthrene	ug/L	ND	0.08	ND	0.05	1343481
Pyrene	ug/L	ND	ND	ND	0.05	1343481
Surrogate Recovery (%)						
D10-Anthracene	%	80	78	74		1343481
D14-Terphenyl (FS)	%	78	74	71		1343481
D7-Quinoline	%	77	83	72		1343481
D8-Acenaphthylene	%	81	76	68		1343481

ND = Not detected

RDL = Reportable Detection Limit

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		U25698	U25699	U25700		
Sampling Date		2007/08/22	2007/08/22	2007/08/22		
		11:30	11:45	12:00		
COC Number		43134	43134	43134		
	Units	MW 7	MW 11	MW 103	RDL	QC Batch

PAHs						
Acenaphthene	ug/L	ND	ND	ND	0.05	1343481
Acenaphthylene	ug/L	ND	ND	ND	0.05	1343481
Anthracene	ug/L	ND	ND	ND	0.05	1343481
Benzo(a)anthracene	ug/L	0.05	ND	0.08	0.05	1343481
Benzo(a)pyrene	ug/L	0.03	0.01	0.04	0.01	1343481
Benzo(b/j)fluoranthene	ug/L	0.06	ND	0.07	0.05	1343481
Benzo(g,h,i)perylene	ug/L	ND	ND	ND	0.1	1343481
Benzo(k)fluoranthene	ug/L	ND	ND	ND	0.05	1343481
Chrysene	ug/L	ND	ND	ND	0.05	1343481
Dibenz(a,h)anthracene	ug/L	ND	ND	ND	0.1	1343481
Fluoranthene	ug/L	0.11	0.06	0.08	0.05	1343481
Fluorene	ug/L	ND	ND	ND	0.05	1343481
Indeno(1,2,3-cd)pyrene	ug/L	ND	ND	ND	0.1	1343481
1-Methylnaphthalene	ug/L	ND	ND	ND	0.05	1343481
2-Methylnaphthalene	ug/L	ND	ND	ND	0.05	1343481
Naphthalene	ug/L	ND	ND	ND	0.05	1343481
Phenanthrene	ug/L	0.09	0.08	ND	0.05	1343481
Pyrene	ug/L	0.09	0.06	0.08	0.05	1343481
Surrogate Recovery (%)						
D10-Anthracene	%	64	71	79		1343481
D14-Terphenyl (FS)	%	67	68	90		1343481
D7-Quinoline	%	45	73	80		1343481
D8-Acenaphthylene	%	49	69	70		1343481

ND = Not detected

RDL = Reportable Detection Limit

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

Maxxam ID		U25701	U25702	U25703		
Sampling Date		2007/08/22	2007/08/22	2007/08/22		
		12:15	12:45	13:00		
COC Number		43134	43134	43134		
	Units	MW 104	MW 107	TH8	RDL	QC Batch

PAHs						
Acenaphthene	ug/L	ND	0.06	ND	0.05	1343481
Acenaphthylene	ug/L	ND	ND	ND	0.05	1343481
Anthracene	ug/L	ND	ND	ND	0.05	1343481
Benzo(a)anthracene	ug/L	ND	ND	0.16	0.05	1343481
Benzo(a)pyrene	ug/L	0.01	ND	0.15	0.01	1343481
Benzo(b/j)fluoranthene	ug/L	ND	ND	0.25	0.05	1343481
Benzo(g,h,i)perylene	ug/L	ND	ND	0.1	0.1	1343481
Benzo(k)fluoranthene	ug/L	ND	ND	0.08	0.05	1343481
Chrysene	ug/L	ND	ND	0.10	0.05	1343481
Dibenz(a,h)anthracene	ug/L	ND	ND	ND	0.1	1343481
Fluoranthene	ug/L	ND	ND	0.23	0.05	1343481
Fluorene	ug/L	ND	ND	ND	0.05	1343481
Indeno(1,2,3-cd)pyrene	ug/L	ND	ND	0.1	0.1	1343481
1-Methylnaphthalene	ug/L	ND	ND	ND	0.05	1343481
2-Methylnaphthalene	ug/L	ND	ND	ND	0.05	1343481
Naphthalene	ug/L	ND	0.07	ND	0.05	1343481
Phenanthrene	ug/L	ND	ND	0.08	0.05	1343481
Pyrene	ug/L	ND	ND	0.27	0.05	1343481
Surrogate Recovery (%)						
D10-Anthracene	%	74	78	68		1343481
D14-Terphenyl (FS)	%	79	80	74		1343481
D7-Quinoline	%	75	78	67		1343481
D8-Acenaphthylene	%	68	79	54		134348

ND = Not detected

RDL = Reportable Detection Limit

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (WATER)

COC Number	Units	43134 TH9	43134 TH10	PDI	QC Batch
		13:15	13:30		
Sampling Date		2007/08/22	2007/08/22		
Maxxam ID		U25704	U25705		

PAHs					
Acenaphthene	ug/L	ND	ND	0.05	1343481
Acenaphthylene	ug/L	ND	ND	0.05	1343481
Anthracene	ug/L	ND	ND	0.05	1343481
Benzo(a)anthracene	ug/L	0.07	ND	0.05	1343481
Benzo(a)pyrene	ug/L	0.02	0.01	0.01	1343481
Benzo(b/j)fluoranthene	ug/L	ND	ND	0.05	1343481
Benzo(g,h,i)perylene	ug/L	ND	ND	0.1	1343481
Benzo(k)fluoranthene	ug/L	ND	ND	0.05	1343481
Chrysene	ug/L	ND	ND	0.05	1343481
Dibenz(a,h)anthracene	ug/L	ND	ND	0.1	1343481
Fluoranthene	ug/L	0.10	ND	0.05	1343481
Fluorene	ug/L	0.06	ND	0.05	1343481
Indeno(1,2,3-cd)pyrene	ug/L	ND	ND	0.1	1343481
1-Methylnaphthalene	ug/L	ND	ND	0.05	1343481
2-Methylnaphthalene	ug/L	ND	ND	0.05	1343481
Naphthalene	ug/L	ND	ND	0.05	1343481
Phenanthrene	ug/L	0.08	ND	0.05	1343481
Pyrene	ug/L	0.09	ND	0.05	1343481
Surrogate Recovery (%)					
D10-Anthracene	%	75	74		1343481
D14-Terphenyl (FS)	%	69	72		1343481
D7-Quinoline	%	67	71		1343481
D8-Acenaphthylene	%	68	65		1343481

ND = Not detected

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		U25695	U25696	U25697		
Sampling Date		2007/08/22	2007/08/22	2007/08/22		
		10:45	11:00	11:15		
COC Number		43134	43134	43134		
	Units	MW 4	MW 5	MW 6	RDL	QC Batch

	Units	IVIVV 4	IVIVV 5	IVIVV 6	KDL	QC Batch
VOLATILES						
Acetone (2-Propanone)	ug/L	ND	ND	ND	10	1342800
Benzene	ug/L	ND	ND	ND	0.1	1342800
Bromodichloromethane	ug/L	ND	ND	ND	0.1	1342800
Bromoform	ug/L	ND	ND	ND	0.2	1342800
Bromomethane	ug/L	ND	ND	ND	0.5	1342800
Carbon Tetrachloride	ug/L	ND	ND	ND	0.1	1342800
Chlorobenzene	ug/L	ND	ND	ND	0.1	1342800
Chloroform	ug/L	ND	ND	ND	0.1	1342800
Dibromochloromethane	ug/L	ND	ND	ND	0.2	1342800
1,2-Dichlorobenzene	ug/L	ND	ND	ND	0.2	1342800
1,3-Dichlorobenzene	ug/L	ND	ND	ND	0.2	1342800
1,4-Dichlorobenzene	ug/L	ND	ND	ND	0.2	1342800
1,1-Dichloroethane	ug/L	0.8	ND	ND	0.1	1342800
1,2-Dichloroethane	ug/L	0.2	ND	ND	0.1	1342800
1,1-Dichloroethylene	ug/L	ND	ND	ND	0.1	1342800
cis-1,2-Dichloroethylene	ug/L	0.5	ND	ND	0.1	1342800
trans-1,2-Dichloroethylene	ug/L	1.2	ND	ND	0.1	1342800
1,2-Dichloropropane	ug/L	ND	ND	ND	0.1	1342800
cis-1,3-Dichloropropene	ug/L	ND	ND	ND	0.2	1342800
trans-1,3-Dichloropropene	ug/L	ND	ND	ND	0.2	1342800
Ethylbenzene	ug/L	ND	ND	ND	0.1	1342800
Ethylene Dibromide	ug/L	ND	ND	ND	0.2	1342800
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	ND	0.5	1342800
Methyl Isobutyl Ketone	ug/L	ND	ND	ND	5	1342800
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	ND	5	1342800
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	ND	0.2	1342800
Styrene	ug/L	ND	ND	ND	0.1	1342800
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	ND	0.1	1342800
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	ND	0.2	1342800
Tetrachloroethylene	ug/L	ND	2.2	ND	0.1	1342800

ND = Not detected

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		U25695	U25696	U25697		
Sampling Date		2007/08/22	2007/08/22	2007/08/22		
		10:45	11:00	11:15		
COC Number		43134	43134	43134		
	Units	MW 4	MW 5	MW 6	RDL	QC Batch
			1	1		
Toluene	ug/L	ND	ND	ND	0.2	1342800
1,1,1-Trichloroethane	ug/L	ND	0.2	ND	0.1	1342800
1,1,2-Trichloroethane	ug/L	ND	ND	ND	0.2	1342800
Trichloroethylene	ug/L	ND	ND	ND	0.1	1342800
Vinyl Chloride	ug/L	ND	ND	ND	0.2	1342800
p+m-Xylene	ug/L	ND	ND	ND	0.1	1342800
o-Xylene	ug/L	ND	ND	ND	0.1	1342800
Xylene (Total)	ug/L	ND	ND	ND	0.1	1342800
Surrogate Recovery (%)						
4-Bromofluorobenzene	%	82	84	84		1342800
D4-1,2-Dichloroethane	%	113	110	110		1342800
D8-Toluene	%	99	98	100		1342800

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		U25698	U25699	U25700		
Sampling Date		2007/08/22	2007/08/22	2007/08/22		
		11:30	11:45	12:00		
COC Number		43134	43134	43134		
	Units	MW 7	MW 11	MW 103	RDL	QC Batch

	Units	MW 7	MW 11	MW 103	RDL	QC Batch
VOLATILES						
VOLATILES						
Acetone (2-Propanone)	ug/L	ND	ND	ND	10	1342800
Benzene	ug/L	ND	ND	ND	0.1	1342800
Bromodichloromethane	ug/L	ND	ND	ND	0.1	1342800
Bromoform	ug/L	ND	ND	ND	0.2	1342800
Bromomethane	ug/L	ND	ND	ND	0.5	1342800
Carbon Tetrachloride	ug/L	ND	ND	ND	0.1	1342800
Chlorobenzene	ug/L	ND	ND	ND	0.1	1342800
Chloroform	ug/L	ND	ND	ND	0.1	1342800
Dibromochloromethane	ug/L	ND	ND	ND	0.2	1342800
1,2-Dichlorobenzene	ug/L	ND	ND	ND	0.2	1342800
1,3-Dichlorobenzene	ug/L	ND	ND	ND	0.2	1342800
1,4-Dichlorobenzene	ug/L	ND	ND	ND	0.2	1342800
1,1-Dichloroethane	ug/L	ND	ND	0.1	0.1	1342800
1,2-Dichloroethane	ug/L	ND	ND	ND	0.1	1342800
1,1-Dichloroethylene	ug/L	ND	ND	ND	0.1	1342800
cis-1,2-Dichloroethylene	ug/L	ND	ND	0.4	0.1	1342800
trans-1,2-Dichloroethylene	ug/L	ND	ND	ND	0.1	1342800
1,2-Dichloropropane	ug/L	ND	ND	ND	0.1	1342800
cis-1,3-Dichloropropene	ug/L	ND	ND	ND	0.2	1342800
trans-1,3-Dichloropropene	ug/L	ND	ND	ND	0.2	1342800
Ethylbenzene	ug/L	ND	ND	ND	0.1	1342800
Ethylene Dibromide	ug/L	ND	ND	ND	0.2	1342800
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	ND	0.5	1342800
Methyl Isobutyl Ketone	ug/L	ND	ND	ND	5	1342800
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	ND	5	1342800
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	ND	0.2	1342800
Styrene	ug/L	ND	ND	ND	0.1	1342800
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	ND	0.1	1342800
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	ND	0.2	1342800
Tetrachloroethylene	ug/L	ND	ND	ND	0.1	1342800
	•		•		-	

ND = Not detected

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

	U25698	U25699	U25700		
	2007/08/22	2007/08/22	2007/08/22		
	11:30	11:45	12:00		
	43134	43134	43134		
Units	MW 7	MW 11	MW 103	RDL	QC Batch
ug/L	ND	ND	ND	0.2	1342800
ug/L	ND	ND	ND	0.1	1342800
ug/L	ND	ND	ND	0.2	1342800
ug/L	ND	ND	0.5	0.1	1342800
ug/L	ND	ND	ND	0.2	1342800
ug/L	ND	ND	ND	0.1	1342800
ug/L	ND	ND	ND	0.1	1342800
ug/L	ND	ND	ND	0.1	1342800
%	83	81	82		1342800
%	112	110	113		1342800
%	98	98	100		1342800
	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	2007/08/22 11:30 43134 Units MW 7 Wg/L ND Ug/L ND Wg/L N	2007/08/22 2007/08/22 11:30 11:45 43134 43134 43134 MW 7 MW 11 MD MD MD MD MD MD MD	2007/08/22 2007/08/22 11:30 11:45 12:00 43134 43134 43134 43134 Units MW 7 MW 11 MW 103 Ug/L ND ND ND ND Ug/L ND ND	2007/08/22 2007/08/22 11:30 11:45 12:00 43134 43134 43134 43134 Units MW 7 MW 11 MW 103 RDL Ug/L ND ND ND 0.2 Ug/L ND ND ND 0.1 Ug/L ND ND ND 0.2 Ug/L ND ND ND ND 0.1 Ug/L ND ND ND 0.1 W6 83 81 82 W6 112 110 113 Ug/L ND ND ND ND ND ND ND N

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		U25701	U25702		
Sampling Date		2007/08/22	2007/08/22		
		12:15	12:45		
COC Number	I Inside	43134	43134	RDL	OC Detak
	Units	MW 104	MW 107	KUL	QC Batch
VOLATILES					
Acetone (2-Propanone)	ug/L	ND	ND	10	1342800
Benzene	ug/L	ND	ND	0.1	1342800
Bromodichloromethane	ug/L	ND	ND	0.1	1342800
Bromoform	ug/L	ND	ND	0.2	1342800
Bromomethane	ug/L	ND	ND	0.5	1342800
Carbon Tetrachloride	ug/L	ND	ND	0.1	1342800
Chlorobenzene	ug/L	ND	0.2	0.1	1342800
Chloroform	ug/L	ND	ND	0.1	1342800
Dibromochloromethane	ug/L	ND	ND	0.2	1342800
1,2-Dichlorobenzene	ug/L	ND	ND	0.2	1342800
1,3-Dichlorobenzene	ug/L	ND	ND	0.2	1342800
1,4-Dichlorobenzene	ug/L	ND	ND	0.2	1342800
1,1-Dichloroethane	ug/L	ND	ND	0.1	1342800
1,2-Dichloroethane	ug/L	ND	ND	0.1	1342800
1,1-Dichloroethylene	ug/L	ND	ND	0.1	1342800
cis-1,2-Dichloroethylene	ug/L	ND	ND	0.1	1342800
trans-1,2-Dichloroethylene	ug/L	ND	ND	0.1	1342800
1,2-Dichloropropane	ug/L	ND	ND	0.1	1342800
cis-1,3-Dichloropropene	ug/L	ND	ND	0.2	1342800
trans-1,3-Dichloropropene	ug/L	ND	ND	0.2	1342800
Ethylbenzene	ug/L	ND	ND	0.1	1342800
Ethylene Dibromide	ug/L	ND	ND	0.2	1342800
Methylene Chloride(Dichloromethane)	ug/L	ND	ND	0.5	1342800
Methyl Isobutyl Ketone	ug/L	ND	ND	5	1342800
Methyl Ethyl Ketone (2-Butanone)	ug/L	ND	ND	5	1342800
Methyl t-butyl ether (MTBE)	ug/L	ND	ND	0.2	1342800
Styrene	ug/L	ND	ND	0.1	1342800
1,1,1,2-Tetrachloroethane	ug/L	ND	ND	0.1	1342800
1,1,2,2-Tetrachloroethane	ug/L	ND	ND	0.2	1342800
Tetrachloroethylene	ug/L	ND	ND	0.1	1342800

ND = Not detected

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (WATER)

Maxxam ID		U25701	U25702		
Sampling Date		2007/08/22	2007/08/22		
		12:15	12:45		
COC Number		43134	43134		
	Units	MW 104	MW 107	RDL	QC Batch
Toluene	ug/L	ND	ND	0.2	1342800
1,1,1-Trichloroethane	ug/L	ND	ND	0.1	1342800
1,1,2-Trichloroethane	ug/L	ND	ND	0.2	1342800
Trichloroethylene	ug/L	ND	ND	0.1	1342800
Vinyl Chloride	ug/L	ND	ND	0.2	1342800
p+m-Xylene	ug/L	ND	ND	0.1	1342800
o-Xylene	ug/L	ND	ND	0.1	1342800
Xylene (Total)	ug/L	ND	ND	0.1	1342800
Surrogate Recovery (%)					
4-Bromofluorobenzene	%	81	81		1342800
D4-1,2-Dichloroethane	%	111	113		1342800
D8-Toluene	%	100	98		1342800

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Barenco Inc Client Project #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

Sample U25698-01: PAH analysis:The concentration of benzo(e)pyrene could not be determined due to background interference. The DL was adjusted accordingly.

Results relate only to the items tested.

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Quality Assurance Report Maxxam Job Number: MA790947

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1342800 AAD	MATRIX SPIKE						
	[U25697-03]	4-Bromofluorobenzene	2007/08/28		93	%	70 - 130
		D4-1,2-Dichloroethane	2007/08/28		104	%	70 - 130
		D8-Toluene	2007/08/28		101	%	70 - 130
		Acetone (2-Propanone)	2007/08/28		102	%	60 - 140
		Benzene	2007/08/28		90	%	70 - 130
		Bromodichloromethane	2007/08/28		111	%	70 - 130
		Bromoform	2007/08/28		98	%	70 - 130
		Bromomethane	2007/08/28		85	%	60 - 140
		Carbon Tetrachloride	2007/08/28		94	%	70 - 130
		Chlorobenzene	2007/08/28		103	%	70 - 130
		Chloroform	2007/08/28		99	%	70 - 130
		Dibromochloromethane	2007/08/28		122	%	70 - 130
		1,2-Dichlorobenzene	2007/08/28		101	%	70 - 130
		1,3-Dichlorobenzene	2007/08/28		103	%	70 - 130
		1,4-Dichlorobenzene	2007/08/28		110	%	70 - 130
		1,1-Dichloroethane	2007/08/28		92	%	70 - 130
		1,2-Dichloroethane	2007/08/28		95	%	70 - 130
		1,1-Dichloroethylene	2007/08/28		88	%	70 - 130
		cis-1,2-Dichloroethylene	2007/08/28		98	%	70 - 130
		trans-1,2-Dichloroethylene	2007/08/28		88	%	70 - 130
		1,2-Dichloropropane	2007/08/28		115	%	70 - 130
		cis-1,3-Dichloropropene	2007/08/28		93	%	70 - 130
		trans-1,3-Dichloropropene	2007/08/28		99	%	70 - 130
		Ethylbenzene	2007/08/28		109	%	70 - 130
		Ethylene Dibromide	2007/08/28		114	%	70 - 130
		Methylene Chloride(Dichloromethane)	2007/08/28		91	%	70 - 130
		Methyl Isobutyl Ketone	2007/08/28		131	%	60 - 140
		Methyl Ethyl Ketone (2-Butanone)	2007/08/28		120	%	60 - 140
		Methyl t-butyl ether (MTBE)	2007/08/28		95	%	70 - 130
		Styrene	2007/08/28		91	%	70 - 130
		1,1,1,2-Tetrachloroethane	2007/08/28		118	%	70 - 130
		1,1,2,2-Tetrachloroethane	2007/08/28		118	%	70 - 130
		Tetrachloroethylene	2007/08/28		96	%	70 - 130
		Toluene	2007/08/28		104	%	70 - 130
		1,1,1-Trichloroethane	2007/08/28		92	%	70 - 130
		1,1,2-Trichloroethane	2007/08/28		119	%	70 - 130
		Trichloroethylene	2007/08/28		95	%	70 - 130
		Vinyl Chloride	2007/08/28		79	%	70 - 130
		p+m-Xylene	2007/08/28		111	%	70 - 130
		o-Xylene	2007/08/28		97	%	70 - 130
	Spiked Blank	4-Bromofluorobenzene	2007/08/28		94	%	70 - 130
		D4-1,2-Dichloroethane	2007/08/28		102	%	70 - 130
		D8-Toluene	2007/08/28		105	%	70 - 130
		Acetone (2-Propanone)	2007/08/28		98	%	60 - 140
		Benzene	2007/08/28		89	%	70 - 130
		Bromodichloromethane	2007/08/28		111	%	70 - 130
		Bromoform	2007/08/28		98	%	70 - 130
		Bromomethane	2007/08/28		82	%	60 - 140
		Carbon Tetrachloride	2007/08/28		93	%	70 - 130
		Chlorobenzene	2007/08/28		102	%	70 - 130
		Chloroform	2007/08/28		98	%	70 - 130
		Dibromochloromethane	2007/08/28		122	%	70 - 130
		1,2-Dichlorobenzene	2007/08/28		97	%	70 - 130
		1,3-Dichlorobenzene	2007/08/28		101	%	70 - 130
		,					. 5 100

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Quality Assurance Report (Continued)

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1342800 AAD	Spiked Blank	1,4-Dichlorobenzene	2007/08/28	106	%	70 - 130
10-12000 71710	Opinoa Biarin	1.1-Dichloroethane	2007/08/28	91	%	70 - 130
		1,2-Dichloroethane	2007/08/28	93	%	70 - 130
		1,1-Dichloroethylene	2007/08/28	86	%	70 - 130
		cis-1,2-Dichloroethylene	2007/08/28	96	%	70 - 130
		trans-1,2-Dichloroethylene	2007/08/28	88	%	70 - 130
		1,2-Dichloropropane	2007/08/28	114	%	70 - 130
		cis-1,3-Dichloropropene	2007/08/28	92	%	70 - 130
		trans-1,3-Dichloropropene	2007/08/28	99	%	70 - 13
		Ethylbenzene	2007/08/28	109	%	70 - 13
		Ethylene Dibromide	2007/08/28	115	% %	70 - 13
		Methylene Chloride(Dichloromethane)	2007/08/28	90	%	70 - 13
		Methyl Isobutyl Ketone	2007/08/28	128	%	60 - 14
			2007/08/28	114	%	60 - 14
		Methyl Ethyl Ketone (2-Butanone) Methyl t-butyl ether (MTBE)	2007/08/28	91	%	70 - 13
		Styrene	2007/08/28	92	%	70 - 13
		1,1,1,2-Tetrachloroethane	2007/08/28	118	%	70 - 13
		1,1,2,2-Tetrachloroethane	2007/08/28	116	%	70 - 13
		Tetrachloroethylene	2007/08/28	96	%	70 - 13
		Toluene	2007/08/28	104	%	70 - 13
		1,1,1-Trichloroethane	2007/08/28	91	%	70 - 13
		1,1,2-Trichloroethane	2007/08/28	119	%	70 - 13
		Trichloroethylene	2007/08/28	93	%	70 - 13
		Vinyl Chloride	2007/08/28	78	%	70 - 13
		p+m-Xylene	2007/08/28	112	%	70 - 13
		o-Xylene	2007/08/28	98	%	70 - 13
	Method Blank	4-Bromofluorobenzene	2007/08/28	86	%	70 - 13
		D4-1,2-Dichloroethane	2007/08/28	110	%	70 - 13
		D8-Toluene	2007/08/28	101	%	70 - 13
		Acetone (2-Propanone)	2007/08/28	ND, RDL=10	ug/L	
		Benzene	2007/08/28	ND, RDL=0.1	ug/L	
		Bromodichloromethane	2007/08/28	ND, RDL=0.1	ug/L	
		Bromoform	2007/08/28	ND, RDL=0.2	ug/L	
		Bromomethane	2007/08/28	ND, RDL=0.5	ug/L	
		Carbon Tetrachloride	2007/08/28	ND, RDL=0.1	ug/L	
		Chlorobenzene	2007/08/28	ND, RDL=0.1	ug/L	
		Chloroform	2007/08/28	ND, RDL=0.1	ug/L	
		Dibromochloromethane	2007/08/28	ND, RDL=0.2	ug/L	
		1,2-Dichlorobenzene	2007/08/28	ND, RDL=0.2	ug/L	
		1,3-Dichlorobenzene	2007/08/28	ND, RDL=0.2	ug/L	
		1,4-Dichlorobenzene	2007/08/28	ND, RDL=0.2	ug/L	
		1,1-Dichloroethane	2007/08/28	ND, RDL=0.1	ug/L	
		1,2-Dichloroethane	2007/08/28	ND, RDL=0.1	ug/L	
		1,1-Dichloroethylene	2007/08/28	ND, RDL=0.1	ug/L	
		cis-1,2-Dichloroethylene	2007/08/28	ND, RDL=0.1	ug/L	
		trans-1,2-Dichloroethylene	2007/08/28	ND, RDL=0.1	ug/L	
		1,2-Dichloropropane	2007/08/28	ND, RDL=0.1	ug/L	
		cis-1,3-Dichloropropene	2007/08/28	ND, RDL=0.2	ug/L	
		trans-1,3-Dichloropropene	2007/08/28	ND, RDL=0.2	ug/L	
		Ethylbenzene	2007/08/28	ND, RDL=0.2	ug/L	
		Ethylene Dibromide	2007/08/28	ND, RDL=0.1	ug/L ug/L	
		Methylene Chloride(Dichloromethane)	2007/08/28	ND, RDL=0.2 ND, RDL=0.5	ug/L ug/L	
		Methyl Isobutyl Ketone	2007/08/28	ND, RDL=0.5 ND, RDL=5	-	
		, ,		· · · · · · · · · · · · · · · · · · ·	ug/L	
		Methyl Ethyl Ketone (2-Butanone)	2007/08/28	ND, RDL=5	ug/L	
		Methyl t-butyl ether (MTBE)	2007/08/28	ND, RDL=0.2	ug/L	

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Quality Assurance Report (Continued)

1342800 AAD 1	QC Type Method Blank RPD [U25696-03]	Parameter Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride p+m-Xylene o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	Analyzed yyyy/mm/dd 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28	Value Recovery ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 NC	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	QC Limits
1342800 AAD 1	Method Blank	Styrene 1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride p+m-Xylene o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28	ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	
		1,1,1,2-Tetrachloroethane 1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride p+m-Xylene o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28	ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Al
1	RPD [U25696-03]	1,1,2,2-Tetrachloroethane Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride p+m-Xylene o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28	ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	AI
ı	RPD [U25696-03]	Tetrachloroethylene Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride p+m-Xylene o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28	ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	AI
ı	RPD [U25696-03]	Toluene 1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride p+m-Xylene o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28	ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 NC	ug/L ug/L ug/L ug/L ug/L ug/L ug/L ug/L	AI
ı	RPD [U25696-03]	1,1,1-Trichloroethane 1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride p+m-Xylene o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28	ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 NC	ug/L ug/L ug/L ug/L ug/L ug/L ug/L	Al
I	RPD [U25696-03]	1,1,2-Trichloroethane Trichloroethylene Vinyl Chloride p+m-Xylene o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28	ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 NC	ug/L ug/L ug/L ug/L ug/L ug/L %	AI
I	RPD [U25696-03]	Trichloroethylene Vinyl Chloride p+m-Xylene o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28	ND, RDL=0.1 ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 NC	ug/L ug/L ug/L ug/L ug/L %	AI
ı	RPD [U25696-03]	Vinyl Chloride p+m-Xylene o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28 2007/08/28 2007/08/28 2007/08/28	ND, RDL=0.2 ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 NC	ug/L ug/L ug/L ug/L %	ΔI
I	RPD [U25696-03]	p+m-Xylene o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28 2007/08/28 2007/08/28	ND, RDL=0.1 ND, RDL=0.1 ND, RDL=0.1 NC	ug/L ug/L ug/L %	ΔΙ
I	RPD [U25696-03]	o-Xylene Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28 2007/08/28	ND, RDL=0.1 ND, RDL=0.1 NC	ug/L ug/L %	А
I	RPD [U25696-03]	Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28 2007/08/28	ND, RDL=0.1 NC	ug/L %	A
I	RPD [U25696-03]	Xylene (Total) Acetone (2-Propanone) Benzene Bromodichloromethane	2007/08/28	NC	ug/L %	Α
1	RPD [U25696-03]	Acetone (2-Propanone) Benzene Bromodichloromethane		NC	%	4
	, ,	Benzene Bromodichloromethane				
		Bromodichloromethane			%	4
			2007/08/28	NC	%	40
		Bromoform	2007/08/28	NC	%	4
		Bromomethane	2007/08/28	NC	%	4
		Carbon Tetrachloride	2007/08/28	NC	%	4
		Chlorobenzene	2007/08/28	NC	%	4
		Chloroform	2007/08/28	NC	%	4
		Dibromochloromethane	2007/08/28	NC	%	4
		1,2-Dichlorobenzene	2007/08/28	NC	%	4
		1,3-Dichlorobenzene	2007/08/28	NC	%	4
		1.4-Dichlorobenzene	2007/08/28	NC NC	% %	4
		,	2007/08/28	NC NC	%	4
		1,1-Dichloroethane		NC NC	% %	
		1,2-Dichloroethane	2007/08/28	NC NC	%	4
		1,1-Dichloroethylene	2007/08/28			4
		cis-1,2-Dichloroethylene	2007/08/28	NC NC	%	4
		trans-1,2-Dichloroethylene	2007/08/28	NC	%	4
		1,2-Dichloropropane	2007/08/28	NC	%	4
		cis-1,3-Dichloropropene	2007/08/28	NC	%	4
		trans-1,3-Dichloropropene	2007/08/28	NC	%	4
		Ethylbenzene	2007/08/28	NC	%	4
		Ethylene Dibromide	2007/08/28	NC	%	4
		Methylene Chloride(Dichloromethane)	2007/08/28	NC	%	4
		Methyl Isobutyl Ketone	2007/08/28	NC	%	4
		Methyl Ethyl Ketone (2-Butanone)	2007/08/28	NC	%	4
		Methyl t-butyl ether (MTBE)	2007/08/28	NC	%	4
		Styrene	2007/08/28	NC	%	4
		1,1,1,2-Tetrachloroethane	2007/08/28	NC	%	4
		1,1,2,2-Tetrachloroethane	2007/08/28	NC	%	4
		Tetrachloroethylene	2007/08/28	4.1	%	4
		Toluene	2007/08/28	NC	%	4
		1,1,1-Trichloroethane	2007/08/28	NC	%	4
		1,1,2-Trichloroethane	2007/08/28	NC	%	4
		Trichloroethylene	2007/08/28	NC	%	4
		Vinyl Chloride	2007/08/28	NC	%	4
		p+m-Xylene	2007/08/28	NC	%	4
		o-Xylene	2007/08/28	NC	%	4
		Xylene (Total)	2007/08/28	NC	%	4
343481 JJI	Spiked Blank	D10-Anthracene	2007/08/27	59		30 - 13
	•	D14-Terphenyl (FS)	2007/08/27	65		30 - 13
		D7-Quinoline	2007/08/27	46		30 - 13
		D8-Acenaphthylene	2007/08/27	41		30 - 13
		Acenaphthene	2007/08/27	42		30 - 13

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Quality Assurance Report (Continued)

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Unite	QC Limit
343481 JJI	RPD		2007/08/27	24.8	Recovery	Units %	4
34346 I JJI	=	Acenaphthene		24.6	44		
	Spiked Blank	Acenaphthylene	2007/08/27	00.0	41	%	30 - 13
	RPD	Acenaphthylene	2007/08/27	20.0	00	%	4
	Spiked Blank	Anthracene	2007/08/27		62	%	30 - 13
	RPD	Anthracene	2007/08/27	9.3		%	4
	Spiked Blank	Benzo(a)anthracene	2007/08/27		78	%	30 - 13
	RPD	Benzo(a)anthracene	2007/08/27	7.8		%	4
	Spiked Blank	Benzo(a)pyrene	2007/08/27		66	%	30 - 13
	RPD	Benzo(a)pyrene	2007/08/27	10.6		%	4
	Spiked Blank	Benzo(b/j)fluoranthene	2007/08/27		76	%	30 - 13
	RPD	Benzo(b/j)fluoranthene	2007/08/27	6.5		%	4
	Spiked Blank	Benzo(g,h,i)perylene	2007/08/27		71	%	30 - 13
	RPD	Benzo(g,h,i)perylene	2007/08/27	4.1		%	4
	Spiked Blank	Benzo(k)fluoranthene	2007/08/27		78	%	30 - 13
	RPD	Benzo(k)fluoranthene	2007/08/27	8.9		%	4
	Spiked Blank	Chrysene	2007/08/27	0.0	79	%	30 - 13
	RPD	Chrysene	2007/08/27	5.9	7.5	%	30 - 10
	Spiked Blank	Dibenz(a,h)anthracene	2007/08/27	5.9	84	% %	30 - 13
	•			5 0	04		
	RPD	Dibenz(a,h)anthracene	2007/08/27	5.8	00	%	20 4
	Spiked Blank	Fluoranthene	2007/08/27		69	%	30 - 13
	RPD	Fluoranthene	2007/08/27	5.6		%	4
	Spiked Blank	Fluorene	2007/08/27		47	%	30 - 13
	RPD	Fluorene	2007/08/27	19.9		%	4
	Spiked Blank	Indeno(1,2,3-cd)pyrene	2007/08/27		78	%	30 - 13
	RPD	Indeno(1,2,3-cd)pyrene	2007/08/27	5.4		%	4
	Spiked Blank	1-Methylnaphthalene	2007/08/27		38	%	30 - 13
	RPD	1-Methylnaphthalene	2007/08/27	20.9		%	4
	Spiked Blank	2-Methylnaphthalene	2007/08/27		36	%	30 - 13
	RPD	2-Methylnaphthalene	2007/08/27	21.3		%	4
	Spiked Blank	Naphthalene	2007/08/27		37	%	30 - 13
	RPD	Naphthalene	2007/08/27	20.9	٥.	%	2
	Spiked Blank	Phenanthrene	2007/08/27	20.0	54	%	30 - 13
	RPD	Phenanthrene	2007/08/27	11.6	34	%	30 - 10
	Spiked Blank	Pyrene	2007/08/27	11.0	79	%	30 - 13
	•	•		6.7	79		
	RPD	Pyrene	2007/08/27	6.7	04	%	00 4
	Method Blank	D10-Anthracene	2007/08/27		61	%	30 - 10
		D14-Terphenyl (FS)	2007/08/27		69	%	30 - 13
		D7-Quinoline	2007/08/27		50	%	30 - 13
		D8-Acenaphthylene	2007/08/27		48	%	30 - 13
		Acenaphthene	2007/08/27		DL=0.05	ug/L	
		Acenaphthylene	2007/08/27	ND, R	DL=0.05	ug/L	
		Anthracene	2007/08/27	ND, R	DL=0.05	ug/L	
		Benzo(a)anthracene	2007/08/27		DL=0.05	ug/L	
		Benzo(a)pyrene	2007/08/27		DL=0.01	ug/L	
		Benzo(b/j)fluoranthene	2007/08/27		DL=0.05	ug/L	
		Benzo(g,h,i)perylene	2007/08/27		DL=0.00 DL=0.1	ug/L	
		Benzo(k)fluoranthene	2007/08/27		DL=0.1 DL=0.05	ug/L ug/L	
		· /	2007/08/27		DL=0.05 DL=0.05		
		Chrysene				ug/L	
		Dibenz(a,h)anthracene	2007/08/27		DL=0.1	ug/L	
		Fluoranthene	2007/08/27		DL=0.05	ug/L	
		Fluorene	2007/08/27		DL=0.05	ug/L	
		Indeno(1,2,3-cd)pyrene	2007/08/27		DL=0.1	ug/L	
		1-Methylnaphthalene	2007/08/27	ND, R	DL=0.05	ug/L	
		2-Methylnaphthalene	2007/08/27	ND, R	DL=0.05	ug/L	
		Naphthalene	2007/08/27		DL=0.05	ug/L	

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Quality Assurance Report (Continued)

QA/QC Batch			Date Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1343481 JJI	Method Blank	Phenanthrene	2007/08/27	ND, RDL=0.05	ug/L	QO LIIIII
10-10-10-1001	Wictioa Blank	Pyrene	2007/08/27	ND, RDL=0.05	ug/L	
1346298 JBW	MATRIX SPIKE	Dissolved Antimony (Sb)	2007/08/30	110	%	80 - 12
340230 3DVV	WATRIX OF IRE	Dissolved Artifficity (Ob) Dissolved Arsenic (As)	2007/08/30	103	%	80 - 12
		Dissolved Arserlic (As) Dissolved Barium (Ba)	2007/08/30	103	%	80 - 12
		` ,			%	75 - 12
		Dissolved Beryllium (Be)	2007/08/30	105 89	%	75 - 12 75 - 12
		Dissolved Boron (B)	2007/08/30		%	_
		Dissolved Cadmium (Cd)	2007/08/30 2007/08/30	106		80 - 12
		Dissolved Chromium (Cr)		103	%	80 - 12
		Dissolved Cobalt (Co)	2007/08/30	103	%	80 - 12
		Dissolved Copper (Cu)	2007/08/30	99	%	80 - 12
		Dissolved Lead (Pb)	2007/08/30	101	%	80 - 12
		Dissolved Molybdenum (Mo)	2007/08/30	109	%	80 - 12
		Dissolved Nickel (Ni)	2007/08/30	98	%	80 - 12
		Dissolved Selenium (Se)	2007/08/30	104	%	80 - 12
		Dissolved Silver (Ag)	2007/08/30	103	%	80 - 12
		Dissolved Sodium (Na)	2007/08/30	105	%	75 - 12
		Dissolved Thallium (TI)	2007/08/30	102	%	75 - 12
		Dissolved Vanadium (V)	2007/08/30	104	%	80 - 1
		Dissolved Zinc (Zn)	2007/08/30	100	%	80 - 1
	Spiked Blank	Dissolved Antimony (Sb)	2007/08/30	104	%	85 - 1
		Dissolved Arsenic (As)	2007/08/30	103	%	85 - 1
		Dissolved Barium (Ba)	2007/08/30	101	%	85 - 1
		Dissolved Beryllium (Be)	2007/08/30	105	%	85 - 1
		Dissolved Boron (B)	2007/08/30	106	%	85 - 1
		Dissolved Cadmium (Cd)	2007/08/30	103	%	85 - 1
		Dissolved Chromium (Cr)	2007/08/30	104	%	85 - 1
		Dissolved Chioffidin (Cr) Dissolved Cobalt (Co)	2007/08/30	103	%	85 - 1
		Dissolved Cobait (Co) Dissolved Copper (Cu)	2007/08/30	98	% %	85 - 1
		• • • • •				
		Dissolved Lead (Pb)	2007/08/30	101	%	85 - 1
		Dissolved Molybdenum (Mo)	2007/08/30	103	%	85 - 1
		Dissolved Nickel (Ni)	2007/08/30	98	%	85 - 1
		Dissolved Selenium (Se)	2007/08/30	100	%	85 - 1
		Dissolved Silver (Ag)	2007/08/30	101	%	85 - 1
		Dissolved Sodium (Na)	2007/08/30	107	%	85 - 1
		Dissolved Thallium (TI)	2007/08/30	100	%	85 - 1
		Dissolved Vanadium (V)	2007/08/30	104	%	85 - 1
		Dissolved Zinc (Zn)	2007/08/30	101	%	85 - 1
	Method Blank	Dissolved Antimony (Sb)	2007/08/30	ND, RDL=0.5	ug/L	
		Dissolved Arsenic (As)	2007/08/30	ND, RDL=1	ug/L	
		Dissolved Barium (Ba)	2007/08/30	ND, RDL=5	ug/L	
		Dissolved Beryllium (Be)	2007/08/30	ND, RDL=0.5	ug/L	
		Dissolved Boron (B)	2007/08/30	ND, RDL=10	ug/L	
		Dissolved Cadmium (Cd)	2007/08/30	ND, RDL=0.1	ug/L	
		Dissolved Chromium (Cr)	2007/08/30	ND, RDL=5	ug/L	
		Dissolved Cobalt (Co)	2007/08/30	ND, RDL=0.5	ug/L	
		Dissolved Copper (Cu)	2007/08/30	ND, RDL=1	ug/L	
		Dissolved Copper (Cu) Dissolved Lead (Pb)	2007/08/30	ND, RDL=1 ND, RDL=0.5	ug/L ug/L	
		Dissolved Lead (Fb) Dissolved Molybdenum (Mo)		ND, RDL=0.5 ND, RDL=1	-	
		, ,	2007/08/30		ug/L	
		Dissolved Nickel (Ni)	2007/08/30	ND, RDL=1	ug/L	
		Dissolved Selenium (Se)	2007/08/30	ND, RDL=2	ug/L	
		Dissolved Silver (Ag)	2007/08/30	ND, RDL=0.1	ug/L	
		Dissolved Sodium (Na)	2007/08/30	ND, RDL=100	ug/L	
		Dissolved Thallium (TI)	2007/08/30	ND, RDL=0.05	ug/L	
		Dissolved Vanadium (V)	2007/08/30	ND, RDL=1	ug/L	

Attention: Vinod Kella Client Project #: 06043

P.O. #: 06043

Project name: OWEN SOUND,2202-3RD AVE. EAST

Quality Assurance Report (Continued)

Maxxam Job Number: MA790947

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1346298 JBW	Method Blank	Dissolved Zinc (Zn)	2007/08/30	ND, R		ug/L	
	RPD	Dissolved Antimony (Sb)	2007/08/30	NĆ		%	25
		Dissolved Arsenic (As)	2007/08/30	NC		%	25
		Dissolved Barium (Ba)	2007/08/30	0.6		%	25
		Dissolved Beryllium (Be)	2007/08/30	NC		%	25
		Dissolved Boron (B)	2007/08/30	2.9		%	25
		Dissolved Cadmium (Cd)	2007/08/30	NC		%	25
		Dissolved Chromium (Cr)	2007/08/30	NC		%	25
		Dissolved Cobalt (Co)	2007/08/30	NC		%	25
		Dissolved Copper (Cu)	2007/08/30	NC		%	25
		Dissolved Lead (Pb)	2007/08/30	NC		%	25
		Dissolved Molybdenum (Mo)	2007/08/30	NC		%	25
		Dissolved Nickel (Ni)	2007/08/30	NC		%	25
		Dissolved Selenium (Se)	2007/08/30	NC		%	25
		Dissolved Silver (Ag)	2007/08/30	NC		%	25
		Dissolved Sodium (Na)	2007/08/30	0.3		%	25
		Dissolved Thallium (TI)	2007/08/30	NC		%	25
		Dissolved Vanadium (V)	2007/08/30	NC		%	25
		Dissolved Zinc (Zn)	2007/08/30	NC		%	25

ND = Not detected NC = Non-calculable

RPD = Relative Percent Difference

SPIKE = Fortified sample

Validation Signature Page

Maxxa	m J	ob i	#: A	790	947
-------	-----	------	------	-----	-----

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

MICHAEL WANG,

TROY CARRIERE, B.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00544826

Attention: Carolyn Singer
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON

Report Date: 2007/11/28

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7D0581 Received: 2007/11/23, 15:22

L0H 1G0

Sample Matrix: Soil # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Acid Extractable Metals in Soil by GF	1	2007/11/27	2007/11/28	CAM SOP-00404	EPA 7010
MOISTURE	1	N/A	2007/11/26	Ont SOP-0114	MOE HANDBOOK(1983)
PAH Compounds in Soil by GC/MS (SIM)	1	2007/11/26	2007/11/26	SOP - 00318	EPA 8270

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	MW3-B	RDL	QC Batch
COC Number		00544826		
Sampling Date		2007/11/21		
Maxxam ID		W04213		

INORGANICS				
Moisture	%	22	0.2	1413008

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	Units	MW3-B	RDL	QC Batch
COC Number		00544826		
Sampling Date		2007/11/21		
Maxxam ID		W04213		

METALS				
Acid Extractable Arsenic (As)	ug/g	23	1	1413770

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

	Units	MW3-B	RDL	QC Batch
COC Number		00544826		
Sampling Date		2007/11/21		
Maxxam ID		W04213		

PAHs				
Benzo(a)pyrene	ug/g	0.016	0.005	1413540
Surrogate Recovery (%)				
D10-Anthracene	%	94		1413540
D14-Terphenyl (FS)	%	82		1413540
D7-Quinoline	%	49		1413540
D8-Acenaphthylene	%	71		1413540

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GEN	IFR A I	COM	MFN	TS

Results relate only to the items tested.

Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA7D0581

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1413008 COP	RPD	Moisture	2007/11/26	0		%	50
1413540 JJI	MATRIX SPIKE	D10-Anthracene	2007/11/26		86	%	30 - 130
		D14-Terphenyl (FS)	2007/11/26		78	%	30 - 130
		D7-Quinoline	2007/11/26		40	%	30 - 130
		D8-Acenaphthylene	2007/11/26		65	%	30 - 130
		Benzo(a)pyrene	2007/11/26		80	%	30 - 130
	Spiked Blank	D10-Anthracene	2007/11/26		104	%	30 - 130
		D14-Terphenyl (FS)	2007/11/26		99	%	30 - 130
		D7-Quinoline	2007/11/26		95	%	30 - 130
		D8-Acenaphthylene	2007/11/26		84	%	30 - 130
		Benzo(a)pyrene	2007/11/26		101	%	30 - 130
	Method Blank	D10-Anthracene	2007/11/26		89	%	30 - 130
		D14-Terphenyl (FS)	2007/11/26		81	%	30 - 130
		D7-Quinoline	2007/11/26		65	%	30 - 130
		D8-Acenaphthylene	2007/11/26		61	%	30 - 130
		Benzo(a)pyrene	2007/11/26	ND, R	DL=0.005	ug/g	
	RPD	D14-Terphenyl (FS)	2007/11/26	5.8		%	N/A
		Benzo(a)pyrene	2007/11/26	36.6		%	50
1413770 CDH	MATRIX SPIKE	Acid Extractable Arsenic (As)	2007/11/28		112	%	75 - 125
	QC STANDARD	Acid Extractable Arsenic (As)	2007/11/28		107	%	30 - 170
	Method Blank	Acid Extractable Arsenic (As)	2007/11/28	ND, R	DL=1	ug/g	
	RPD	Acid Extractable Arsenic (As)	2007/11/28	1.1		%	35

ND = Not detected

N/A = Not Applicable RPD = Relative Percent Difference

QC Standard = Quality Control Standard

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A7D0581	
The analytical data and all QC contained in this report were revie	wed and validated by the following individual(s).
Cliptina Neur	
CHRISTINA NERVO, Scientific Services	
Muzway	
MICHAEL WANG,	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00550983

Attention: Carolyn Singer Barenco Inc 2561 Stouffville Rd PO Box 295 Gormley, ON L0H 1G0

Report Date: 2007/11/28

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7D0588 Received: 2007/11/23, 15:22

Sample Matrix: Soil # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
MOISTURE	1	N/A	2007/11/26	Ont SOP-0114	MOE HANDBOOK(1983)
PAH Compounds in Soil by GC/MS (SIM)	1	2007/11/26	2007/11/26	SOP - 00318	FPA 8270

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

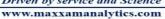
Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	TP104B	RDL	QC Batch
COC Number		00550983		
Sampling Date		2007/11/21		
Maxxam ID		W04231		

INORGANICS				
Moisture	%	9.1	0.2	1413008


Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

	Units	TP104B	RDL	QC Batch
COC Number		00550983		
Sampling Date		2007/11/21		
Maxxam ID		W04231		

PAHs				
Benzo(a)pyrene	ug/g	1.8 (1)	0.01	1413540
Surrogate Recovery (%)				
D10-Anthracene	%	66		1413540
D14-Terphenyl (FS)	%	78		1413540
D7-Quinoline	%	62		1413540
D8-Acenaphthylene	%	70		1413540

⁽¹⁾ Due to colour interferences, sample required dilution. Detection limit was adjusted accordingly.

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GEN	FRΔI	COM	MFN	ITS

Results relate only to the items tested.

Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA7D0588

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1413008 COP	RPD	Moisture	2007/11/26	0	%	50
1413540 JJI	MATRIX SPIKE	D10-Anthracene	2007/11/26	86	%	30 - 130
		D14-Terphenyl (FS)	2007/11/26	78	%	30 - 130
		D7-Quinoline	2007/11/26	40	%	30 - 130
		D8-Acenaphthylene	2007/11/26	65	%	30 - 130
		Benzo(a)pyrene	2007/11/26	80	%	30 - 130
	Spiked Blank	D10-Anthracene	2007/11/26	104	%	30 - 130
		D14-Terphenyl (FS)	2007/11/26	99	%	30 - 130
		D7-Quinoline	2007/11/26	95	%	30 - 130
		D8-Acenaphthylene	2007/11/26	84	%	30 - 130
		Benzo(a)pyrene	2007/11/26	101	%	30 - 130
	Method Blank	D10-Anthracene	2007/11/26	89	%	30 - 130
		D14-Terphenyl (FS)	2007/11/26	81	%	30 - 130
		D7-Quinoline	2007/11/26	65	%	30 - 130
		D8-Acenaphthylene	2007/11/26	61	%	30 - 130
		Benzo(a)pyrene	2007/11/26	ND, RDL=0.005	ug/g	
	RPD	D14-Terphenyl (FS)	2007/11/26	5.8	%	N/A
		Benzo(a)pyrene	2007/11/26	36.6	%	50

ND = Not detected N/A = Not Applicable

RPD = Relative Percent Difference

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A7D0588	
The analytical data and all QC contained in this report were revi	ewed and validated by the following individual(s).
Cliptina Neur	
CHRISTINA NERVO, Scientific Services	
Mung Way MICHAEL WANG,	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00550982

Attention: Carolyn Singer
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2007/11/28

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7D0592 Received: 2007/11/23, 15:23

Sample Matrix: Soil # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
MOISTURE	1	N/A	2007/11/26	Ont SOP-0114	MOE HANDBOOK(1983)
PAH Compounds in Soil by GC/MS (SIM)	1	2007/11/26	2007/11/26	SOP - 00318	EPA 8270

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

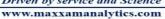
Total cover pages: 1

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	TP19-B	RDL	QC Batch
COC Number		00550982		
		09:30		
Sampling Date		2007/11/21		
Maxxam ID		W04248		

Moisture %	6	22	0.2	1413008



Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

SEMI-VOLATILE ORGANICS BY GC-MS (SOIL)

Maxxam ID		W04248		
Sampling Date		2007/11/21		
		09:30		
COC Number		00550982		
	Units	TP19-B	RDL	QC Batch

PAHs				
Benzo(a)pyrene	ug/g	0.87	0.005	1413540
Surrogate Recovery (%)				
D10-Anthracene	%	90		1413540
D14-Terphenyl (FS)	%	85		1413540
D7-Quinoline	%	65		1413540
D8-Acenaphthylene	%	77		1413540

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

Results relate only to the items tested.

Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA7D0592

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1413008 COP	RPD	Moisture	2007/11/26	0		%	50
1413540 JJI	MATRIX SPIKE	D10-Anthracene	2007/11/26		86	%	30 - 130
		D14-Terphenyl (FS)	2007/11/26		78	%	30 - 130
		D7-Quinoline	2007/11/26		40	%	30 - 130
		D8-Acenaphthylene	2007/11/26		65	%	30 - 130
		Benzo(a)pyrene	2007/11/26		80	%	30 - 130
	Spiked Blank	D10-Anthracene	2007/11/26		104	%	30 - 130
		D14-Terphenyl (FS)	2007/11/26		99	%	30 - 130
		D7-Quinoline	2007/11/26		95	%	30 - 130
		D8-Acenaphthylene	2007/11/26		84	%	30 - 130
		Benzo(a)pyrene	2007/11/26		101	%	30 - 130
	Method Blank	D10-Anthracene	2007/11/26		89	%	30 - 130
		D14-Terphenyl (FS)	2007/11/26		81	%	30 - 130
		D7-Quinoline	2007/11/26		65	%	30 - 130
		D8-Acenaphthylene	2007/11/26		61	%	30 - 130
		Benzo(a)pyrene	2007/11/26	ND, R	DL=0.005	ug/g	
	RPD	D14-Terphenyl (FS)	2007/11/26	5.8		%	N/A
		Benzo(a)pyrene	2007/11/26	36.6		%	50

ND = Not detected N/A = Not Applicable

RPD = Relative Percent Difference

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A7D0592
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).
Cliptina Neur
CHRISTINA NERVO, Scientific Services
Mushay
MICHAEL WANG,

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00544825

Attention: Carolyn Singer
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2007/11/28

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7D0600 Received: 2007/11/23, 15:22

Sample Matrix: Soil # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Acid Extractable Metals in Soil by GF	1	2007/11/27	2007/11/28	CAM SOP-00404	EPA 7010

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

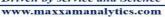
Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1



Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	Units	SP7-B	RDL	QC Batch
COC Number		00544825		
Sampling Date		2007/11/21		
Maxxam ID		W04283		

METALS				
Acid Extractable Arsenic (As)	ug/g	15	1	1413770

Maxxam Job #: A7D0600 Report Date: 2007/11/28 Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GENERAL	COMMENTS
	• • • • • •

Results relate only to the items tested.

Barenco Inc Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA7D0600

QA/QC Batch			Date Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1413770 CDH	MATRIX SPIKE						
	[W04283-01]	Acid Extractable Arsenic (As)	2007/11/28		112	%	75 - 125
	QC STANDARD	Acid Extractable Arsenic (As)	2007/11/28		107	%	30 - 170
	Method Blank	Acid Extractable Arsenic (As)	2007/11/28	ND, R	DL=1	ug/g	
	RPD [W04283-01]	Acid Extractable Arsenic (As)	2007/11/28	1.1		%	35

ND = Not detected RPD = Relative Percent Difference QC Standard = Quality Control Standard

Validation Signature Page

Maxxam Job #: A7D0600	
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).	
Cliptina Neur	
CHRISTINA NERVO, Scientific Services	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00550985

Attention: Carolyn Singer
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2007/11/27

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7D0597 Received: 2007/11/23, 15:22

Sample Matrix: Soil # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Total Metals Analysis by ICP	1	2007/11/26	2007/11/27	' CAM SOP-00408	EPA 6010

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Maxxam Job #: A7D0597 Report Date: 2007/11/27 Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

Maxxam ID		W04259		
Sampling Date		2007/11/21		
COC Number		00550985		
	Units	MW7-B	RDL	QC Batch

METALS				
Acid Extractable Molybdenum (Mo)	ug/g	4	2	1413626

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A7D0597 Report Date: 2007/11/27

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

Results relate only to the items tested.

Barenco Inc Attention: Carolyn Singer Client Project #: 06043 P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA7D0597

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1413626 KCO	MATRIX SPIKE	Acid Extractable Molybdenum (Mo)	2007/11/27		99	%	75 - 125
	Method Blank	Acid Extractable Molybdenum (Mo)	2007/11/27	ND, R	DL=2	ug/g	
		, , ,		,			
ND = Not detected	ed						

Validation Signature Page

Maxxam Job #: A7D059	9	5	0	D	7	Α	#:	ob	J	am	ахх	И
----------------------	---	---	---	---	---	---	----	----	---	----	-----	---

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

TROY CARRIERE, B.Sc., C.Chem, Scientific Specialist

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00550984

Attention: Carolyn Singer
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON

Report Date: 2007/11/26

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A7D0585 Received: 2007/11/23, 15:23

L0H 1G0

Sample Matrix: Soil # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Petroleum Hydro. CCME F1 & BTEX in Soil	1	2007/11/23	2007/11/23	CAM SOP-00315	CCME CWS
Petroleum Hydrocarbons F2-F4 in Soil	1	2007/11/23	2007/11/25	CAM SOP-00316	CCME CWS
MOISTURE	1	N/A	2007/11/24	Ont SOP-0114	MOE HANDBOOK(1983)

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

VALENTINA ULLOA, Project Manager Email: valentina.ulloa@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Maxxam Job #: A7D0585 Report Date: 2007/11/26

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	TP15-B	RDL	QC Batch
COC Number		00550984		
Sampling Date		2007/11/21		
Maxxam ID		W04220		

INORGANICS				
Moisture	%	18	0.2	1412825

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A7D0585 Report Date: 2007/11/26 Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

PETROLEUM HYDROCARBONS (CCME)

Maxxam ID		W04220		
Sampling Date		2007/11/21		
COC Number		00550984		
	Units	TP15-B	RDL	QC Batch

F1 PHC and BTEX				
Benzene	ug/g	ND	0.1	1412656
Toluene	ug/g	ND	0.1	1412656
Ethylbenzene	ug/g	5.7	0.1	1412656
o-Xylene	ug/g	5.5	0.1	1412656
p+m-Xylene	ug/g	31	0.2	1412656
Total Xylenes	ug/g	37	0.2	1412656
F1 (C6-C10)	ug/g	310	50	1412656
F1 (C6-C10) - BTEX	ug/g	270	50	1412656
F2-F4 PHC				
F2 (C10-C16 Hydrocarbons)	ug/g	1200	10	1412677
F3 (C16-C34 Hydrocarbons)	ug/g	450	10	1412677
F4 (C34-C50 Hydrocarbons)	ug/g	ND	10	1412677
Reached Baseline at C50	ug/g	Yes		1412677
Surrogate Recovery (%)				
1,4-Difluorobenzene	%	101		1412656
4-Bromofluorobenzene	%	97		1412656
D10-Ethylbenzene	%	95		1412656
D4-1,2-Dichloroethane	%	101		1412656
o-Terphenyl	%	87		1412677
	•	•		

ND = Not detected

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A7D0585 Report Date: 2007/11/26

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GENERAL COMMENTS

Note: F1BTEX - all soils were Methanol extracted on 2007/11/23

W04220-01: F1/BTEX Analysis: Sample was diluted due to high concentration of target compounds. Reporting limits were adjusted accordingly.

Results relate only to the items tested.

Barenco Inc

Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA7D0585

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limit
1412656 ABD	MATRIX SPIKE	1,4-Difluorobenzene	2007/11/23	100	%	60 - 14
		4-Bromofluorobenzene	2007/11/23	99	%	60 - 14
		D10-Ethylbenzene	2007/11/23	92	%	30 - 13
		D4-1,2-Dichloroethane	2007/11/23	92	%	60 - 14
		Benzene	2007/11/23	87	%	60 - 14
		Toluene	2007/11/23	93	%	60 - 14
		Ethylbenzene	2007/11/23	88	%	60 - 14
		o-Xylene	2007/11/23	91	%	60 - 14
		p+m-Xylene	2007/11/23	94	%	60 - 14
		F1 (C6-C10)	2007/11/23	103	%	60 - 14
	Spiked Blank	1,4-Difluorobenzene	2007/11/23	98	%	60 - 14
	эрікей Біалк	•				
		4-Bromofluorobenzene	2007/11/23	100	%	60 - 14
		D10-Ethylbenzene	2007/11/23	91	%	30 - 13
		D4-1,2-Dichloroethane	2007/11/23	99	%	60 - 14
		Benzene	2007/11/23	89	%	60 - 14
		Toluene	2007/11/23	93	%	60 - 14
		Ethylbenzene	2007/11/23	88	%	60 - 14
		o-Xylene	2007/11/23	92	%	60 - 14
		p+m-Xylene	2007/11/23	93	%	60 - 14
		F1 (C6-C10)	2007/11/23	107	%	60 - 14
	Method Blank	1,4-Difluorobenzene	2007/11/23	98	%	60 - 14
		4-Bromofluorobenzene	2007/11/23	98	%	60 - 14
		D10-Ethylbenzene	2007/11/23	92	%	30 - 13
		D4-1,2-Dichloroethane	2007/11/23	100	%	60 - 14
		Benzene	2007/11/23	ND, RDL=0.02	ug/g	00 1-
		Toluene	2007/11/23	ND, RDL=0.02	ug/g ug/g	
		Ethylbenzene	2007/11/23	ND, RDL=0.02	ug/g	
		o-Xylene	2007/11/23	ND, RDL=0.02	ug/g	
		p+m-Xylene	2007/11/23	ND, RDL=0.04	ug/g	
		Total Xylenes	2007/11/23	ND, RDL=0.04	ug/g	
		F1 (C6-C10)	2007/11/23	ND, RDL=10	ug/g	
		F1 (C6-C10) - BTEX	2007/11/23	ND, RDL=10	ug/g	
	RPD	Benzene	2007/11/23	NC	%	Ę
		Toluene	2007/11/23	NC	%	5
		Ethylbenzene	2007/11/23	NC	%	5
		o-Xylene	2007/11/23	NC	%	
		p+m-Xylene	2007/11/23	NC	%	Ę
		Total Xylenes	2007/11/23	NC	%	5
		F1 (C6-C10)	2007/11/23	NC	%	5
		F1 (C6-C10) - BTEX	2007/11/23	NC	%	5
412677 LSY	MATRIX SPIKE	o-Terphenyl	2007/11/25	90	%	30 - 13
412077 LS1	WATKIN OF IKE	F2 (C10-C16 Hydrocarbons)	2007/11/25	85	%	
						60 - 13
		F3 (C16-C34 Hydrocarbons)	2007/11/25	85	%	60 - 13
	On the d Discola	F4 (C34-C50 Hydrocarbons)	2007/11/25	85	%	60 - 13
	Spiked Blank	o-Terphenyl	2007/11/25	85	%	30 - 13
		F2 (C10-C16 Hydrocarbons)	2007/11/25	82	%	60 - 13
		F3 (C16-C34 Hydrocarbons)	2007/11/25	82	%	60 - 13
		F4 (C34-C50 Hydrocarbons)	2007/11/25	82	%	60 - 13
	Method Blank	o-Terphenyl	2007/11/25	81	%	30 - 13
		F2 (C10-C16 Hydrocarbons)	2007/11/25	ND, RDL=10	ug/g	
		F3 (C16-C34 Hydrocarbons)	2007/11/25	ND, RDL=10	ug/g	
		F4 (C34-C50 Hydrocarbons)	2007/11/25	ND, RDL=10	ug/g	
	RPD	F2 (C10-C16 Hydrocarbons)	2007/11/25	NC	% %	į
	5	F3 (C16-C34 Hydrocarbons)	2007/11/25	5.3	%	Ę
		F4 (C34-C50 Hydrocarbons)	2007/11/25	NC		į
		1 + (034-030 Hydrocarbons)	2007/11/20	INC	%	;

Barenco Inc Attention: Carolyn Singer Client Project #: 06043 P.O. #: 06043 Project name:

Quality Assurance Report (Continued)

Maxxam Job Number: MA7D0585

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1412825 FOT	RPD	Moisture	2007/11/24	7.0		%	50

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A7D0585

The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).

EWA PRANJIC, M-Sc., C'Chem, Scientific Specialist

MEDHAT RISKALLAH, Manager, Hydrocarbon Department

MAMDOUH SALIB, Analyst, Hydrocarbons

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00555460

Attention: Carolyn Singer
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON

Report Date: 2008/04/10

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A833988 Received: 2008/04/08, 14:22

L0H 1G0

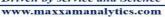
Sample Matrix: Soil # Samples Received: 1

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
MOISTURE	1	N/A	2008/04/09 Ont SOP-0114	MOE HANDBOOK(1983)
Volatile Organic Compounds in Soil	1	N/A	2008/04/09 CAM SOP-00226	EPA 8260 modified

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.


SARA SAROOP, Campobello Customer service Email: Sara.Saroop@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section

For Service Group specific validation please refer to the Validation Signature Page

5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Total cover pages: 1

Maxxam Job #: A833988 Report Date: 2008/04/10 Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

	Units	TP5	RDL	QC Batch
COC Number		00555460		
		11:30		
Sampling Date		2008/04/07		
Maxxam ID		X97913		

Inorganics				
Moisture	%	12	0.2	1490597

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A833988 Report Date: 2008/04/10

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

	Units	TP5	RDL	QC Batch
COC Number		00555460		
		11:30		
Sampling Date		2008/04/07		
Maxxam ID		X97913		

Volatile Organics				
Vinyl Chloride	ug/g	ND	0.002	1490445
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	83		1490445
D4-1,2-Dichloroethane	%	88		1490445
D8-Toluene	%	106		1490445

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam Job #: A833988 Report Date: 2008/04/10 Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GENERAL	COMMENTS
O-11-11/1-	00

Results relate only to the items tested.

Barenco Inc

Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA833988

QA/QC	-		Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1490445 RZH	MATRIX SPIKE	4-Bromofluorobenzene	2008/04/09	96	%	60 - 140
		D4-1,2-Dichloroethane	2008/04/09	84	%	60 - 140
		D8-Toluene	2008/04/09	103	%	60 - 140
		Vinyl Chloride	2008/04/09	73	%	34 - 136
	Spiked Blank	4-Bromofluorobenzene	2008/04/09	99	%	60 - 140
		D4-1,2-Dichloroethane	2008/04/09	90	%	60 - 140
		D8-Toluene	2008/04/09	103	%	60 - 140
		Vinyl Chloride	2008/04/09	76	%	60 - 140
	Method Blank	4-Bromofluorobenzene	2008/04/09	94	%	60 - 140
		D4-1,2-Dichloroethane	2008/04/09	89	%	60 - 140
		D8-Toluene	2008/04/09	107	%	60 - 140
		Vinyl Chloride	2008/04/09	ND, RDL=0.002	ug/g	
	RPD	Vinyl Chloride	2008/04/09	NC	%	50
1490597 FOT	RPD	Moisture	2008/04/09	7.2	%	50

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A833988	
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).	
Cliptina Neur	
CHRISTINA NERVO, Scientific Services	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00555464

Attention: Carolyn Singer
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2008/04/11

CERTIFICATE OF ANALYSIS

MAXXAM JOB #: A833986 Received: 2008/04/08, 14:22

Sample Matrix: Soil # Samples Received: 1

		Date	Date		Method
Analyses	Quantity	Extracted	Analyzed	Laboratory Method	Reference
Total Metals Analysis by ICP	1	2008/04/10	2008/04/10	CAM SOP-00408	EPA 6010

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key

Please direct all questions regarding this Certificate of Analysis to your Project Manager.

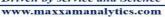
SARA SAROOP, Campobello Customer service Email: Sara.Saroop@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Maxxam Job #: A833986 Report Date: 2008/04/11


Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

ELEMENTS BY ATOMIC SPECTROSCOPY (SOIL)

	Units	TP115	RDL	QC Batch
COC Number		00555464		
		12:00		
Sampling Date		2008/04/07		
Maxxam ID		X97911		

Metals				
Acid Extractable Lead (Pb)	ug/g	20	5	1490914

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A833986 Report Date: 2008/04/11 Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

Results relate only to the items tested.

Barenco Inc Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA833986

QA/QC			Date				
Batch			Analyzed				
Num Init	QC Type	Parameter	yyyy/mm/dd	Value	Recovery	Units	QC Limits
1490914 KCO	MATRIX SPIKE	Acid Extractable Lead (Pb)	2008/04/10		88	%	75 - 125
	QC STANDARD	Acid Extractable Lead (Pb)	2008/04/10		92	%	75 - 125
	Method Blank	Acid Extractable Lead (Pb)	2008/04/10	ND, R	DL=5	ug/g	
	RPD	Acid Extractable Lead (Pb)	2008/04/10	NC		%	35

ND = Not detected NC = Non-calculable RPD = Relative Percent Difference QC Standard = Quality Control Standard

Validation Signature Page

Maxxam Job #: A833986	
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).	
Cliptina Neur	
CHRISTINA NERVO, Scientific Services	

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

Your P.O. #: 06043 Your Project #: 06043 Your C.O.C. #: 00539015

Attention: Carolyn Singer
Barenco Inc
2561 Stouffville Rd
PO Box 295
Gormley, ON
L0H 1G0

Report Date: 2008/04/10

CERTIFICATE OF ANALYSIS

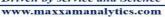
MAXXAM JOB #: A833976 Received: 2008/04/08, 14:22

Sample Matrix: Soil # Samples Received: 1

		Date	Date	Method
Analyses	Quantity	Extracted	Analyzed Laboratory Method	Reference
MOISTURE	1	N/A	2008/04/09 Ont SOP-0114	MOE HANDBOOK(1983)
Volatile Organic Compounds in Soil	1	N/A	2008/04/09 CAM SOP-00226	EPA 8260 modified

^{*} RPDs calculated using raw data. The rounding of final results may result in the apparent difference.

Encryption Key


Please direct all questions regarding this Certificate of Analysis to your Project Manager.

SARA SAROOP, Campobello Customer service Email: Sara.Saroop@maxxamanalytics.com Phone# (905) 817-5700 Ext:5821

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.

For Service Group specific validation please refer to the Validation Signature Page

Total cover pages: 1

Maxxam Job #: A833976 Report Date: 2008/04/10 Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

RESULTS OF ANALYSES OF SOIL

OCC IVamber	Units		RDL	QC Batch
COC Number		00539015		
		10:30		
Sampling Date		2008/04/07		
Maxxam ID		X97862		

Inorganics				
Moisture	%	14	0.2	1490597

RDL = Reportable Detection Limit QC Batch = Quality Control Batch

Maxxam Job #: A833976 Report Date: 2008/04/10 Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

VOLATILE ORGANICS BY GC/MS (SOIL)

COC Number	Units	MW 11	RDL	QC Batch
COC Number		00539015		
		10:30		
Sampling Date		2008/04/07		
Maxxam ID		X97862		

	_			
Volatile Organics				
Vinyl Chloride	ug/g	ND	0.002	1490445
Surrogate Recovery (%)				
4-Bromofluorobenzene	%	81		1490445
D4-1,2-Dichloroethane	%	90		1490445
D8-Toluene	%	113		1490445

ND = Not detected

RDL = Reportable Detection Limit

QC Batch = Quality Control Batch

Maxxam Job #: A833976 Report Date: 2008/04/10

Barenco Inc Client Project #: 06043 Project name: Your P.O. #: 06043 Sampler Initials:

GENERAL	COMMENTS

Results relate only to the items tested.

Barenco Inc

Attention: Carolyn Singer Client Project #: 06043

P.O. #: 06043 Project name:

Quality Assurance Report Maxxam Job Number: MA833976

QA/QC			Date			
Batch			Analyzed			
Num Init	QC Type	Parameter	yyyy/mm/dd	Value Recovery	Units	QC Limits
1490445 RZH	MATRIX SPIKE	4-Bromofluorobenzene	2008/04/09	96	%	60 - 140
		D4-1,2-Dichloroethane	2008/04/09	84	%	60 - 140
		D8-Toluene	2008/04/09	103	%	60 - 140
		Vinyl Chloride	2008/04/09	73	%	34 - 136
	Spiked Blank	4-Bromofluorobenzene	2008/04/09	99	%	60 - 140
		D4-1,2-Dichloroethane	2008/04/09	90	%	60 - 140
		D8-Toluene	2008/04/09	103	%	60 - 140
		Vinyl Chloride	2008/04/09	76	%	60 - 140
	Method Blank	4-Bromofluorobenzene	2008/04/09	94	%	60 - 140
		D4-1,2-Dichloroethane	2008/04/09	89	%	60 - 140
		D8-Toluene	2008/04/09	107	%	60 - 140
		Vinyl Chloride	2008/04/09	ND, RDL=0.002	ug/g	
	RPD	Vinyl Chloride	2008/04/09	NC	%	50
1490597 FOT	RPD	Moisture	2008/04/09	7.2	%	50

ND = Not detected

NC = Non-calculable

RPD = Relative Percent Difference

SPIKE = Fortified sample

Validation Signature Page

Maxxam Job #: A833976
The analytical data and all QC contained in this report were reviewed and validated by the following individual(s).
Cliptina Neur
CHRISTINA NERVO, Scientific Services

Maxxam has procedures in place to guard against improper use of the electronic signature and have the required "signatories", as per section 5.10.2 of ISO/IEC 17025:2005(E), signing the reports. SCC and CAEAL have approved this reporting process and electronic report format.